LECTURE # ( febrvay )

ToDAY  Quamtuvm Lower Bouvnds via r'Po{yhorm'als

RECAP . c:oSfm(mO = $1" | §uis a L-to-l funch'onf where O appl:’ey £, ()
for thputs of lehg—th h

co S?monO € BQF‘0

. . V)
By envmerating all NP- Oracle machines M, , Mz, ... = coSimon® & NP
we can choose an :Fﬂi st. M; fals on infu{' i

Onstroctoved search problem : Given black-box access o f: §013" — $0,13
find f §=0 or 3Ix st. f&x)= 1

Grover's algon'thm = Can decide this wth O(?_m) guantom q/uerfes

= Is tere a polyn)-goery gpantom a(gorithm?
NO! Any quantom algorithm must make ne'?) queries

= NP’ g Bap®

We will ntroduce a gehual technigve that can be used| *o prove lower bouonds
for quantum query q[gorﬂhm; for many kinds of Problc,mg

“The polynomial method

Quantom quevy a(gorithm hacl access to a unl'tqry th )y — C-\)’c‘y)\ﬂ for ye 150||§h

To use the polynomial method ; we will assome that the quantom algoﬂthm
has access to

Dx L7 — %D where i€ [N]
v e ££13 and N=2n

This is exaclly the same as Uy where we view the string X =%y -~ ¥y € EAV
the twth table of f (with £1 values instead of on)

let us consicler the unstrvctored Problem N his pew notation

Previously f=0 or Ixst. fx)=1

Now x=1 or 3 a bt ( St ox=-1
;-\/_/ R, I
OR(x).... Xn) = O OR(%X\----%y) = 1 ¥ we view 1= False

—1 = Tyoe ©)



“Thos, our goal is 4o show that ro quattom a[g—ovrtbm @nh compute the
logucal OR of N bits with less than (N q,U?-V'QS with error 5%—_

Quantvm a\g‘orithrn Can query the bt of x e {;tl3” h a su};efPosl'Jabn Vi
Oyt i) — 2 (D

The  polynomial method is based on the —fol(owing obsevvation

Lemma.  The acceptance onbqbilfiy of any qoantym a({sofow'ﬁwm that makes

t queries can be expresed as a polynomal of depree < 2t in
the variables =,....%xy

Proof Consider an avbrivary guantom a(gon%m
input 1LY to the quevy
en _____ T | I N !
loy — o) E ——, O — —lo, F— = o
— fx U — — I U \
Uo 1 — t
D — B3
— S

The final state just before measvrvement s
= ®h+m
B> =y, (o8l o~ (0,81) 0, (0,81) U, lo7

Note that O, 1i>= % 1i> means that Oy is the c\iag'onal Nx N matrix

with ... x,, on +he chg'onal

N

“The am]:htuale of Gny bosis state in 1Y) is a degrae_ t polynomial
N %...x, Snce b can ?IC-K one voviable from each O ®IL

= Acco.ftance probabllity is a degree -2t polynomial D

Observations © We may also assume 4hat the ?o\ynomual has no varnable wdh individoal depree
71 ie. no x* or x> in any monomial Shce x; Only takes £ 1 vales
Such Polynorm‘als are colled molttlinegr and any  Such Polynormal cah
be. e_xPTesseo\ as 2 ¢ T xg

Sc([N] = ¢€s

@ polynomial only takes values between [6,I7 on any l'hput 'xe{ilﬁN



“The tdkeaway  If we can show -hat any pelynomial thot aﬂoroxfma{:es OR of N-bits
has degree J2(J¥) = Quantym gueries needed s also JLUN)

Formally, for any polynomial p Sabisfying | p(w) — GRN(w)\<§. ¥w
we want to show +hat deg CP) = NEN)
“This notion is called approximate depree

APPYoximate Degree of OR How do we bound the approximate depree ?

\We. vse the fol(owing Awo observations

@ OR, is @ symmetic funchion of the bits
Le. f we Permu’ce the bis the output does not chqnge

let ve defie o symme’r,w'acol version of p
= 1
RSYI"I C’XI---—:XN) —m g_egw P(‘xé‘(l)l ---- ' 'xé"(N\‘)
L’ still a Folynoml'nl of degr& £2t  Why?

Caim T p was o qP?Yoximat{ng Polynorm'q\ for OR,, © Is Psym -

Proof  If &,...xy =1V, then p(1,..-1) € [0.13]

and Psym (1,..--1) = %—r_l N! P(:L,-..'L) (= [o.%—]

1§ 3 a bit that is -1, then each parmubation x . xsq) Cah also not
be all 4's
Thos, chscl)"""am> e[%":& for eadh &

SO, PS)lm (xl---")(ﬂ.) € ),)7 W[-;—:’} e

® For any inPul' K, . Ay eft 1"

Psyem (%, - %a)  only depe_ﬂds on the number of -1's in the l'hput
which we. will call the Hamming Wu‘ght of x & denotr by \«{

= We can defie o onvariate polynomial P (k) st. peyy (xieomy) = py . (Ixl)



Claim  Define the unwomate fynction
Puni (K) = E [P(x,__.-m)]

x s.t. [xl= K

This is a Polynoml'al of deg're.e < at.

Proof Wnte plx..xy) = 2 & Tgsx; Where a_=0 f Is1>2t and x e $+13"
Sstw) *

let us do a vaviable substitokion X; = 2z; -1 wheve 2z ¢ fo,1%

We pet o Po\yHOml'al Ci/(-Z..--Ep) = ) @Sﬂe 2; where 2,__z, €{0)3
gcCn) LES

where (:!S=o o S1> 2t

\hlEx\* [F(ju 790] = [Elz\=k [ C[,(Zl. Erﬁ] whtre :Z\‘= ::-;'5
= s
ju ol o/l

Thes, pa(0 = 2 g E [T g]

$<CN) L&s
(h—(S‘l ) (h-1s1)! k! Ch=tel?
SAKASLD T () (T h)
(&)
= (h-1sD' k(k-1)(k-2) ~-(k-1s1+2)
nl

= 2 B (h-ID" el - (k-18142)
SS(n) wl

IS a Folynom[al of degree S| ¢ 2t sl'nc[: ofverwfre
§= =

So far, we hawe a onivariate Po|yhomfa| of degve_e <2t that qTProximaLeg OR On
ol hamming welghts

. (K') - ‘
Pun: Puri (W)
(®) 4 —— ¢ ——
Ko k21 k2 pa3 keg =N
OR:O OR:\ ORZ\ e e e - OQ'::L



Lemma (Mavkov Brothes' Inequaldy 18905)  Tf p is a univaviate Polyhoml‘al
that s pounded in some box of hetg}ﬂ: h
h ond leng&\ 4, then
~ -

| p'@)| £ i_ c[&g'(f))z

< ! — for z In the box
Ovr ?olynomiol Puni is in (o, on in’cQgEY Foints k=o,2,....,N

let vs suppose first 4hgt  was bounded in [o)) in the \Whole interval ke [o,N

, . 2
Then, we have » h=1, 4=N so maximom cderivative £ deoCpuni)
N
but maxmum denvative = :‘3- [\’\””7?]

= daa(ﬂml-) z LUN) -

Now, since we only have that P (K e lop] for ;hieger k=0,1,2, ...N
how do we f{ix the arguoment ’

let C= mox ‘Pu,m" @) e the maxmum valve of the devivative
2€lo,N)

Then , the folowng claim has a simple one line proof yov can think about

Cleim  Tj Puny (P € (0] for k=0,),2,..N and ¢ be as above.

“Then Pyni (K) € [—_c , l+_c?:] for all ke [o,nN] Cincloding non-integtr
~ points)

Now, awlyfhg' MarkoY's ineq/ua\l‘ﬁy with h:1+c,g|‘ves cs (42) dEg(]’uy,,')z
N

=4dy(p,:) Z INe = N(IN) since ¢ Ve

4C

The Fc\ynomfal method is very Powerfol and can be osed o prove. lower boonds for
many functions

“Theve & another geneval purpose method wlled the qc(vevsa?y method that we will
not cover hevre

NEXT TIME BQP vs PH




