
LECTURE 26 (April 24th

#DAY Applications & Constructions of PRS

RECAP

State t-designs A distribution over n-qubit states is called a state t-design
if the t-th moments match the t-th moment of the flaar measure ,
i . e.

#
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Note that this means that no quantum algorithm can distinguish the two
no matter how much time it takes when given only t-copies of the state .
t is fixed here beforehand and this is an information - theoretic notion .

Pseudorandom States A distribution over states is called a pseudorandom state distribution

(PRS) ifI a poly-time quantum algorithm that takes n-bit classical input k

and outputs a state (14) S
.
t

. no poly-time quantum distinguisher
can distinguish any poly(n) copies of 11) from a Haar random state
i. e. At = poly(n) , and for all poly-time distinguishers An
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Since the algorithm does not know k
, and distributions over guantum states is a mixed state

,

One can equivalently think of the above problem as distinguishing two mixed states

(t)
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Single-copy PRS It is trivial to construct a PRS if t = 1 and 14) is on n-qubits
Where the key-length is n. This is because here we just
want a mixed state that is indistinguishable from Phar = Eie .

the maximally mixed state
.

Such a PRS can be constructed just by outputting a random computational
basis states

.

However
, if we require that the PRS generator outputs a state

on more arbits than the key length , then this becomes a non-trivial
definition.
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Applications of PRS

Before talking about how to construct PRSs and the assumptions needed for that , let us
look at some applications of PRS .

We will not talk much about state +-design applications .

Secret Key Encryption A lice and Bob share a secret key K and Alice wants to

send Bob a bit encoded in a quantum message that no poly-time
adversary can crack but Bob can still decode it.

Here is a scheme that achieves this :

Let Uplo + 14k) be the poly-time unitary that prepares
the PRS on key K

.
We will assume that K is the shared secret key.

Suppose Alice wants to send a bit be 20 , 13 to Bob
.

If D = 0
. she sends 14) and if b = 1 , she sends a Haar random state

To decode
,
Bob applies U to the message and if he gets 10")

he says b = 0 and otherwise b = 1

One can show that if the number of qubits in the PRS is < n + c(logn)
where i is the key length o then this scheme is secure. Note that

this only relies on single copy security.

One can also easily extend this to send multiple bit messages (Exercise]

↑ related notion called bit-commitment can also be built from PRS

but we will not cover it here since the part that relies on PRS is
similar to the above .

Pseudoentanglement Recall that a Haar random state has the maximal amount of entanglement
entropy , i. e. if 11) is a n-qubit state that is Haar random , then

for any bipartition of the n-arbits into two parts (A ,B) , the entropy
of (4) across this cut is ~min &IAI , 1B13 with high probability .

(n-qubit)
A distribution over quantum states is called pseudoentangled if it is a PRs
and the entanglement entropy across every cut is OClogn). The Ollogn
is a parameter that can be tuned but it must be wClogn) since a PRS
it is known that PRS must have wllogn)-entanglement entropy . (We already
mentioned that PRS have some entanglement and this is a more precise
version of that]

Such pseudoentangled states have applications in quantum information
theory, property testing and quantum gravity .
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Assumptions Needed for PRS

Remarks # We know how to construct state - designs unconditionally ,
but for PRS

we need some sort of assumption .

This is because if we have exponentially many copies of the state , one
can learn the classical description of the state by a procedure called

"

state tomography" .
This can be done in PSPACE

.

Thuse showing PRS exist unconditionally implies BQP = PSPACE

What assumptions do we need to construct PRS ?

6) e-way functions These are functions such that it is easy to compute
f(x) but hard to computef(x) for a random
point in the image

Almost all classical cryptography can be based on

one-way functions and vice-versa

We will see a construction of PRSs based on

one-way functions that are secure against quantum
adversaries

# Weaker assumptions There is some evidence that PRS can still exist

in a world where one-way functions do not

In particular - in a joint work with Kretschmer,
Qian & Tal

,
I showed that I a classical oracle

O such that po = NPO but PRS exist relative

to 0
.

⑫arkThe ove isforsitecoys ecture.
This means that quantum cryptography and other

applications of PRS ,
that we will discuss later

might still be possible even if classical crypto-
graphy based on one-way functions is not possible

② We don't know how to stretch or shrink a PRS. This is because removing
grbits does not give a pure state and a PRS always has some entanglement
(This will be an exercise). This is in contrast to the classical setting
In fact , there is some evidence in the form of black-box separations that

shrinking a PRS is not possible in a black-box way .
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PRS and state design constructions

We will introduce a construction that will give us an easy way to construct both

state designs and PRS
,
under different assumptions .

The crox of the matter is the following statement , for which we first introduce the
notion of trace distance .

Trace distance Trace distance generalizes the notion of total variation distance
between two distributions to the setting of density iatrices

The Trace norm of a Hermititian matrix A = SXiNiXi) is the quantity

llAll, Mil

The trace distance between P & 0 is Ellp-611:

Operationally , the probability that any measurement (possibly inefficient)
distinguishes p from 6 is exactly

+ Elp-o

We claim the following :

Theorem Let f : 20 , 13" + 50 , 13 be a random boolean function. Then ,
the random state

14(f) = 1Si( 1)
+(4)(x)
· xE40 ,131

is a 0() - approximate t- design in trace distance
.

i . e. 1) E14, X43/
*5
- EmpHaarX41

**

11

Note : 143) can be prepared by making one query to the phase oracle Of : (x)+ ***x)

DES
n/2

Moreover 14) remains an approximate t- design even if + 2
,
however so far&

it does not give efficient constructions of state designs or PRS ,
sinceOf has exponential circuit complexity typically

④



Constructing state t-designs efficiently

For this we replace the random function f : 50 , 13"+ 50 , 13 with a twise independent function .

What is a t-wise independent function ?

The truth table of f , i. e . f(xi) , fixe), ... .. f(xz) is a twise independent bit-string

It is known how to construct these with Octul-size circuits. This gives us efficient
t designs for any fixed +=poly(n)

Constructing PRS [K4)3e20
, 134

By definition ,
PRS must be efficiently computable , i.e. given a key ke50, 13

"

there must be a poly-time quantum algorithm that generates the state
14k) indexed by K .

To get a PRS
-
we need to make the following cryptographic assumption

Existence of Pseudorandom Functions A family of functions [fi : 50 , 13"+ 20 , 133m
(quantum-secure PRFsI is called a PRF if given K&x , fr(x) is

efficiently computable and the output of
is indistinguishable from a uniformly random function
to all poly-time quantum adversaries , i.e .

↳ #
1750, 13

[Adv Ofiz accepts) - #P (Adv
of accepts)) -<negkn)

This assumption is equivalent to assuming (quantum-secure) one-way functions exist .

To get a PRS
,
we just replace random functionf with a pseudorandom function [fi31

This gives us a family of states[14,2)3 that are efficiently preparable and form a PRS .

To prove the theorem we first introduce a useful concept :

Symmetric subspace Consider a quantum state ont registers each of them
d = 24 dimensional. The symmetric subspace captures those

states that are invariant under permuting the registers.

Symp
,
t

= [(() = (4)
*/Rs(p) = 14) for all St St3

where Ro IX
, . .

. . xt) = (
(1) · Xo() . ... YotD is a

permutation of the registers.
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Example Let t=2
.
then (2) Synd,

While 112) Synd
,
2

If t = 1
. Synd

, =

= Dl

The symmetric subspace comes in the picture because of the following

Eact 1143-Haar 14Xpl
**

= where Tsy Ind
,
t
is the

projector on Synd,t

-
: = Psy

This is the maximally mixed state on

the symmetric subspace

The proof of this lemma follows from some basic representation theory which
we won't cover here

Thus
,
our task boils down to showing

#f 14fX4s, 10t = Psym

In order to do this
, we need an explicit basis for the symmetric subspace

which we will introduce next time

NEX&TIME
PRS analysis wrapup and Pseudorandom unitaries
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