
LECTURE IS (April 22
**
)

TODAY Unitary Synthesis Lower Bound
-

Pseudorandom States and State Designs

and a encoding scheme that mapsn-qubit unitaries#scrob
Is there a quantum algorithm A a polynomial a

↓ to a boolean function fr : 10
, 13Pm) + 20 , 13 such that

J * makes poly(n) queries to fu ,
Uses poly(n) qubits of

space and approximately implements r ?

Theorem No algorithm can synthesize a unitary with one-query and poly(al ancillas .

Remark In contrast
,
state synthesis can be done with one-query and poly(n) ancillas ,

-

as shown in a recent work by Rosenthal

Last time we reduced it to the following problem about distinguishing two distributions on

quantum states

&

Remark A distribution over pure quantum states is a mixed state
,

so one can also view the

above as the problem of distinguishing two mixed states

First States (4
,
)
..... (4) -(4

*"

are sampled and fixed .
Here (= 2

" -7

Each state is sampled iid from the distribution 1 a (1)
**
(x) where f : 50 ,

15"-1 50, 13
↓n XE50, 13 "

is a uniformly random
Note the algorithm may depend on the initially sampled states boolean function

Consider the following two distributions on pure state

Distribution 1 Pick ke (L] at random and the input to the algorithm
is the state 143kY. The algorithm does not know k so

the corresponding mixed state is E
, 14X4/

Distribution 2 The input to the algorithm is a random state sampled from
the computational basis . In this case

, the corresponding mixed
state is the maximally mixed state

21

We sketched last time that if the algorithm can synthesize any unitary mapping
span 311, ...

(4
, 73 to [117, ... 1273

then it can distinguish the two distributions with probability

What does such an algorithm look like ?

①



The algorithm has access to an oraclefr that might depend on [1,), ... - 14)3

-- qubit (inputItT OLLtput and Of (x) - (1)f(
*
(x)

10)- I
bit

-

M-M

54
-

f : <0 , 13
Poly(n)

where -> 50, 13 encodes

unitary projection some information about unitary U
check if last
qubit is zero we want to synthesize

p(1(4), f) = # [algorithm accepts on (p)] =

F-
The following claim establishes that no such algorithm can distinguish Distribution 1 and 2

With m= poly (n) ancillas and lence also cannot synthesize the above unitary

Claim Wh .p over 14)
,
7

. ... 14) · max II(P(If)] - [P(14 , f)])-J
-

f : 30 ,132 + 0
,13

k

We will sketch the proof of the claim in one special case.

-

#pecial caseEl ecaccept)=
-- (4)
#

I L- 10f)
((4)10f)

Want to show : Ei - (4) is close under two distributions
(4) I147) I↓ for all f : <= 17+ 20

, 13

= <Pf) MyI10f) where My= F
unit Vector

-

I

Suffices to bound Max ( < /E [M1-ELM14f7l whp.4k

= I E
, [My,- op Whp

↓ ↳ fixed matrixrandom

Matrix

(depends on 1 & also 14,
7

, . . . . (4(z)

Letting Br= My-En [Man] ReCL]

we want to bound I/Em(Br]1l =I
+Bellopop

2 x zm

We claim the following without proof : B
..

-- By are iid random matrices with zero mean

and operator norm at most 2

②



Matrix Chernoff Bound says that W. hp .

1) B,
+ B2 +

....
+ B

, /op ↓ J . Jodine

=> II E
, [BK] llopogain=

*

Thus
,

no algorithm of this form can distinguish the two distributions over states

The general case can essentially be reduced to the above with one small trick

that we will not discuss

#serdorandomStates and Desigins

We saw that the problem above reduced to distinguishing two distributions of quantum states

This motivates the definition of pseudorandom states and state +-designs .

Informally , pseudorandom states and state t- designs are distributions over quantum states

that can not be distinguished from a Haar random state, in related but distinct ways .

First
,
let us revisit the classical analogoves of these objects .

Suppose we have a distribution on n bits X...... Xn which are uniform and independent
One way to relax the notion of independence is to wise independence

-wiseindependent distribution A distribution (on bits) X
......Xn is called t-wise independent

if every subset S& CH) of size =t, the bits in s

are independent ,
i

. e
.,
all <t-wise moments match the uniform

distribution.

E
. g. Let X

, Xz be uniform and independent random bits
Then X

,, 42 , Xz = X, 0 Xe is a z-wise independent distribution .

(poly-time computable)

Outputs of Pseudorandom generators A pseudorandom generator is a function that takes
(PRGs) ↑ uniform random bits and output min random

bits that look like in uniform bits to any poly-time
distinguisher

Formally, g
: 20

, 13" -50 ,
13 s

.

t. # any polynomial time algorithm A
,

we have

1 I
k 20 ,
13/A(g(k)) accepts] - I (A(z) accepts]) <neg((n)

ze50, 13'
↳ decreases
faster than

M-1 is called the "stretch" of the PRO .
any inverse

polynomial ③



t-wise independence is a information theoretic notion - as long as the algorithm only-

looks at t bits
,
it can't distinguish it from the uniform distribution no matter how

long it takes ,
but t is fixed before

In contrast
,
in a PRG

,
the distinguisher can look at any poly(n) bits and it can decide

how many bits to look at in a adaptive fashion ,
but the security is only against

computationally bounded distinguishers since otherwise an exponential time distinguisher
can "break" the PRG

There are several constructions of twise independent distributions but for PRO we

actually do not know if they exist. If we could show this unconditionally ,
then PENP.

The best we can do is to show that PRGs exist under some cryptographic assumption
such as one-way or pseudorandom functions

Remark The stretch of a PRG can be amplified even from 1 to any poly (n)
-

Let us now discuss the quantum analogs of these objects

First
,
let us remind us of the Haar measure on the sphere.

Haar measure (informal) A Haar random state 1) on n-qubits is a "uniformly random"
vector on the 2"-dimensional complex unit sphere .

The the moment of the Haar measure is the quantity

#(4)~Haar [((((x431)
*t ]

State t-designs A distribution over n-qubit states is called a state t-design
if the t-th moments match the t-th moment of the flaar measure ,

i . e.

#

()-t-design
[11DX(p10t] = 1145) ~Haar

(14X41 *+]

Note that this means that no quantum algorithm can distinguish the two
no matter how much time it takes when given only t-copies of the state .

t is fixed here beforehand and this is an information - theoretic notion .

Pseudorandom states * distribution over states is called a pseudorandom state distribution

(PRS) ifI a poly-time quantum algorithm that takes n-bit classical input k

and outputs a state (14) S
.
t

. no poly-time quantum distinguisher
can distinguish any poly(n) copies of 11) from a Haar random state

i. e. At = poly(n) ,
and for all poly-time distinguishers An

④



1 Freso
,
"
[A (1417) accepts] -

1

147-Haay
[A(1(4) accepts)) -

> neg) (n)

Since the algorithm does not know k
, and distributions over guantum states is a mixed state

,

One can equivalently think of the above problem as distinguishing two mixed states

P = EnPiX
**

and Mar = Ex-Haar 14X40t

#EXTTIME Applications & Constructions of PRS


