LECTURE 23 (APY;.L 1sth)

TODAY  Arvea laws WYapup
Complexity of quahtum states & “Transformations

RECAP Area. Laws in 1-Pp

let H= S H: where H, gcts on q/udc'ts ¢y 1

We will assume that

0) gfound sate 1§ of H s uniq'ue

L. . ) .2_= .
® eoch H. is « ])TO\)QLtO'f,L.E., Ho= H not necessary

@ My (H =0

® spectral pap: the second lowesb e\'ge_anlue s (1)

“Theovem For ahy ot Ce,1+1) , the enbanglemtnt entmpy of YY) is O(1).

r ' ) J L -

A

Commuting Hambonians — HH; =HH;  ¥i4;

Clam  P= (B-H,) - (2-K.) = IPXY
s a ?ro'Jec‘_tmr with schmidt rank ot most d* and t Pm\')ccl:s
on io +he ground state (@)

Then, consider the state PIP> = 4y  sine P= 1WXY|
P

Since SR(P) £d, SRIWY) < d - sr(\4)) =d
T \ - g
s, Ent—qngemen-b c,ntYoPy across Qny wt s Log'd = O(1)
Non- commuting Hamuiltonans In this case P= (U-Hq)(2-H,)) -~ (A—H,,) @

hot a FYoJec{:of [Why ?] , so the gbove FYocf
does not work

This vequies some new ideas, but overall ctrategy vemains similar



The first new idex we wWill need s the notion of an C(Pfroximqte grovnd
space  projectdr  (AGSP)

This will be an alxrator P st.

() PIY) = 1> whee W) isthe vnigwe groond  state
ie. Gromnd stale (s preserved

2
(ii) ||P|L\)‘L)|\15 SINYH N wheve 19D is orthogenal -to >
(2. Ofﬂﬂogonal states  shrink

It toms ovt that f we have a su:}‘{(c(cn‘tl)l good AGSP we can carry out
the previons proof  stvatesy

lemma If 9 an AGSP P wrth  Schmidt rank SR(P)<v ond §< L

2
then +the e,hf:anglmewt en«tmy}/ of groond state \q/> Y
Qcross any cok Y 1%+1) (s OU'OgY)'

We will talk aboyt how 4o construct a good AGSP later
but the proof of this lemma goes in the folloing- way

Claim 1. Existence of AGSP as staterd l-mPl('QS that thee s a product state 19)

that hos a large overhp uth the grovnd state ,ie. 1 <G YH] > Lo
ge overkp g =
— —eme g———O0— 0
1 i* n
\/\(_) —
3= 19> @ 1V = No entanglement ertropy across cob

Clam 2. APPlyl'ng the AGSP 4p this <tate shrinks the part or-l:hogonal 1o ILP>

Thus, the novmalized state P1@D  has more ave_r(qP weth (4D
\(Pigll

inCveasts by
a factor of 60r)

If we keep repeating t, we will ge‘u closer to the ground state and
the en{unglc\'ntnt entropy does hot tncrease 90 much (h each s&lo



Proof of Clam 1 Consider the prodoct ctate IB) that has 4he larpest Owerlap with 1Y)
and let IKP|Y?|=uL

Then, \@Y= wlW+ Ji~u* 1Y)
Applying P Plg)= alPl+ 8107 where SLSZ:%‘—

Moveover, schmdt cl&comros;élbn Gfr{he vnnormalized State Plg)
has at most v terms , PI@) = £ & (1 ®v.)

=r \_’_\/q
orthonormal

l
T = IPII € w52

Ao, w=]<YIPIP| ¢ T e | <Pl
2 s, | <Yl

U e
>0 L L

= S 71 = b qa 7> 1 b)l Cauc,hy— schwayrz
(=] Y

_“—'!\)s, ,uf'+87_7/1— = w7l e

T ANz

Proof of claim2  We start with o product  state 13> with overlp w = l/J -~

Tﬁeh, OVCV‘qf Oj" \¢1)= P|¢> 2 —’{_L/_ 2 1/f£y-_ > £
IPIN P+ 82 — 2.
20 oF

<

and schmidt vank of |¢17 2y

I we tterate | overlap keeps increasing” and schmidt yank also keeF_s

2_, y:" —_ -

ihcvecesing ih each tevatlon (r- v

However , with a carefdl analysis , one can show that the entangkment
entvopy ok e end behaves lke the enfmfy of the foHO‘wfhE'

distribution over [d"]
Y—q waht v o not dePtha/ oh h

Yy Pfobqb;ln'ty mass over {1,...vf
172+1/27— frcbab\'\ﬂy mass ovey {1, ..... ,fzf ahd so on

En’croF)/ af thic distribotion < é logr ¥ _i_—z_ log rz+

< EI_J_ log” ¥ =O(l0£'r)

=1 7



To complete the proof of Ared law , we need 4o construct an AGSP

. . log>d)
Lemma 3 a gaoo( AGSP with schmidt rank £ 20( €

= This Jcoge:ther with 4he |ast lemma fm}Dh'es that the eﬁqng’emenf 5"6"3/’)’
Qeross any cut IS at most

Ollog®d) = 04(1)

Remark: If one an meYOVt the schmidt rnk to POIy(d) this would
also [mPI/ an arezx law (n h\‘gher climensioh..

We will not prove #his lemma here Since it s fairly involed but we Wlustrate the main idea
The firs{: thing” one an by s
P= (U-H))(0-H,) -~ (L-Hhy) as before

—ms has schmidt rank ~ 4™ but the shn'n/qhg factor (s onl)/ constant wheve as
we would want l/zd"

To peb around this one can use a d\'f‘ferenb loolynornial n H's

Let's vestnct to qy]?l)/ing a Univariofe polyhomial q/( H) wWhere H=SH.
since 4his preserves the eigEhvemEor_c of H

. if IP) & an eipthvector of H wth eigenvalve X , +hen () (s also
an e('gthec-(:or of q/(H) with e_('g‘envalue q/(;\)

- eigenvdves of H are 0, ¥=N0), ...

* We want gH) 1o be our AGSP , <o cLCH’) should map ) to 1(})7
which implies that q(M=1 for A=o

’ Sim(larl)/, all the Or‘l:hogor\al eigenvector's shovld shrink b)/ a factor of &
S0, [Q(A)] £ S ¥ 2 e[V n]

“Thus, we want a polypomial g, that (ooks ke

“The degree of the Folynomc‘al and the size of
the \igrval determine the schmidb rghk , so we
want the smallest dcgree Fo\ynom«'al that S N A n a

looks (ke this . These ave called Chebysher polynomials . y 'VAVAVAYAVSS

Look at +he Unked ve\fevences cf yov are interested in more detai(s on
how 1o construct AGSPs usfng Chebyshey Polyhoml'Qk

O

©



Complexity of guantum states and transformations

So, far we have mostly lopked at problems where the inputs and ovkputs are classiaal
Now , we wil| talk. abovt the comflmi;y of Problems with quantvm inPu{-s or outfu{'s
~ State and Unitavy symthesis

- What is the complexity of synthesizing states and unttanes

~ How mouch of the complex@ of these tasks ¢s classical , versus thal due to quantim (u?ects-?

— Quantum Pseuc{omhdomness and apfll‘ca{:ions
— How to construct ctates or unitanes that look vandom ?
— What can we do wrth them ?

State, and l)nH:ary Synthesis

Gwen a state @7 , ds camf)lexl'g C(y) is the minimom sze of a quahtum circutt
that comPa{'es l$) uvpto error €.
A simf)le coc)hh'ng’ avgument shows that for most n- qub(t States 1)

n)

CE(lq») = 2

The same (s trve for classical boolean functions : most boolean funchions on h-biks
heed circorts of Sze 2™

This motivates the cluestu'on ! can the complexﬂ;/ of gyp-khesizing q czuah'bl)m ctate be
vedvced to the cgmflcxify of com})uﬁng a. hoolean fvnc&'on

State gynthesis ’problem Is there a quartim Query algoffthm , a Po!yhomfal pln)
and ap encoding schme that maps p- qubit  states |y)
to a unction thp :40,3" — f0,1} st. A Tmakes polytn)
quenes 1o J[LP and outf:u—l's a gcsod a})lbra)ama{('on o (Y27
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where O'f‘\l |x21bY — | % lb@-fq,(ﬂ? for x¢ {O,(EF n
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If the answer & yes, then in this sense state synthesis is no harder than compoting
an  appropriate boolean function

NEXT TIME  Stale and Unfbary Synthesis




