
LECTURE 21 (March 3rd)

#A Tensor Networks & Area Laws

* quantum state on n qubits lives in a 2"-dimensional space
This says that if we want to describe a physical system generically
We will need to specify an exponential amount of information

But in practice we only care about a small corner of this exponential
Hilbert space,e .g., states computed by a poly-size circuits , ground
states of physically relevant Hamiltonians

Tensor Networks are a very powerful tool to describe such states

with fewer parameters

Basics of Tensor Networks

A tensor is an array of numbers with a bunch of indices
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We can view it as a vector &Azizin (iii , is , in

Or as a matrix/linear map & Ai
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We are now going to represent tensors visually - a dot with a bunch of lines

coming out of it

The tensor from before will be represented as
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Viewing this tensor as a vector corresponds to the above view
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We can do two operations on tensors to create new tensors

Tensor Product This just puts the two tensors together (This is the same as the outer
product)
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The number that this

tensor spits out is

Aziz Bing is 7

Contraction This operation fuses two free legs
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This is a tensor with 5 indices

and on i , i2 , 13 , in , is the value

it spits out is

* Ai Bi
So we sum over all values

taken by the index of the

free legs

For a more complicated example

is This is a tensor with 6 free indices and we

i sum over all possible internal labelings of-
No-in the other edges

·
TThis/

I -- No matter how you put the initial tensors together
i
2 you can check you get the same result

Such diagrams are called tensor networks

②



In-class Exercise Interpret the following tensor networks

1

. # 2
. ↓

& o O !
3.

o
4. What is the identity operator tensor interpreted as a vector ?

5
. Give a picture of M"given M

6. Prove that trace is cyclic using tensor networks

Some conventionsOne can follow some conventions that are probably not standard but useful

· Identity Matrix is just drawn as a line since

i =0- Contraction
, i
-Q=Ij

i ↑ !
J

! Contraction with the identity matrix
(or unnormalized EPR pair) does not
do anything

One can also go in the reverse direction and split a tensor

- a-0- = -a.......--

I ↓ ↓ I

· Symmetric vs Not symmetric (OR Hermitian us Non-Hermitian)

-
- --
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· Matrix vs Transpose (OR Conjugate Transpose)

-- -Ct

So, symmetric matrices have the same transpose

· Projections s Isometries

-X- us -

Schmidt Decomposition and Entanglement Entropy

For us the most relevant tensor network representation is the Schmidt decomposition

To state what it is let us first recall singular valuedecomposition of matrices

-Any Matrix A = AVT =

(III) - C "It--
↳X XV OX EXAL

11

where and I have outhonormal columns

and A is a diagonal matrix of singular values 6

# non-zero singular values = rk (A)

Writing U=x & X = X

-
/- & - --............... -A
/&

We get A = +D- - = Xu

One can also view this matrix as a vectorIA) in which case we can write it as

(A) = G(OIk This is called the Schmidt Decomposition
K= 1

across this cut

# non-zero terms is called the Schmidt rank and %, 108 is called entanglement entropy
- k=1 6

,
2

-
SR(1A)) S((A))

For example, (4) 1) has Schmidt rank 1 and Entanglement entropy o

D

=> >/) has Schmidt rank D and Entanglement entropy Log-[D)
JD k=1

In general , · > SLIA)) < Log SRAL) , so if SR or SCA) is small
,
it means the state

doesn't have a lot of entanglement
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Matrix Product States

Consider a quantum state (4) = E
:
. ... in ES

in ... in / ....-in) on N quaits of dimension

To describe a generic state we need d" numbers

suppose we do a Schmidt Decomposition by splitting it into first quait & the rest

- # possible indices = SR of this cot

-!
-> - A

,
--# -N n l

Each leg has
# possible indices

= d
a possible indices ↓ Repeat recursively

....,- - --O #.-- - -

- aMi = :!...
-
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I I I

↓ Absorb diagonal into left or right

--

-- =>>
Let B = maximum

-
-

> # indices
↑AAN .... ① needed⑬ j
-

d indices for each leg

This is called a matrix product state & B is called the bond dimension

ETotal # parameters needed to describe each tensor -
B

S dB2

Ic
For the entire MPS

.
we need O(dB parameters

In general B is exponential in no but if B is small ,these quantum states
have low entanglement & small description

One can also compute energy of such states in poly(n ,d , B) time classically
by repeated matrix multiplication (exercise)

Characterizing which systems have such states is of great importance
For instance, ground states of QMA-hard hamiltonians cannot be MPS

(assuming MANP)

There are also higher dimensional generalizations (not on a line) called

PEPS (projected entangled pair states) which we won't introduce
⑤



Area Laws

Recall our motivating question : what kind of local Hamiltonians have simple ground
states (e.g. matrix product states) ?

Let us look at Local Hamiltonians on a grid :

In 1-dimensions
,
there aren quaits arranged on a line and local Hamiltonian term

acts on neighboring quaits

---
-Hi

.

z
,

3
. where each OCHI

and : acts non-trivially on

H = &Hi audit in it s

In 2-dimensions
, quaits are on a grid and Hij acts on two neighboring qubits ij inthe l

#- H = Hi
ijwedge

The area law conjecture says that any ground state (4) of a physically-relevant
Local Hamiltonian has area law behavior

,

i . e.

For any subset A (n) of qubits , the entanglement entropy is proportional to the
size of the boundary of A Li . e . proportional to the area)

E. g . in 1-dimension : --

boundary of A
IAI-7/100

Area law behavior : entanglement entropy = 0

In general , entanglement entropy could be as large as
~ IA Log d ~ logd

One can make even stronger conjecture that the

ground state has a MPS description

NEXT TIME More on this and a proof
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