LECTURE 21 (March 3™)

TODAY  Tepsor Networks © Area Laws

A quontom state on n qubits lives i a 2" -<limensional space
Ths says that (fwe want fo clescribe a Phy.s cal system gfmcn'ca”y
we will need o spccff/ an ex,voncn’a'a( amovnt of information

But (n prectice we an/y care abost a small corner of this exfonehh'al
Hibert space ,ep. , stales computed by a poly-size cirenits | grovnd
states of physially velevant Hami (tonians

Tensor Networks are a very poverfol tool to describe sueh states
wWih  fewer parameters

Basics of Tensor Networks

A fensor is an areay of rumbers with a bonch of Indices
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We cn view it as a vector Z Ao 10,0, 05,0

OR as a matnx/ linear map 3 A.
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We are now going' to Tepresent  {ehsors visually — a dof with o binch of (ints
coming ovt of it

The 4ensor from before will be vepreserted as

If we fix speafic valves , such as
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\ i3 The tensor SP“SS ovt 4he number A.‘I. 23

y B

Viawl‘ng' this tensor as a wvector corrc_sponds to the above view
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One can dlso view thic as a lnear map ¢ O 0R >QD\



We can do two opevations on tensors to create new tensovs

Tensor Product This Just )m’cs 4the tyyo tensovs together (This ¢s the same as the outer
, Product)
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Contrackion  This opevation fuses two free legs
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This s a 4ensor with S (ndices
and on {,i,, 3, 0, s the valoe
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2 we sum over all valves
taken by the index of the

free leps

For a move comrlicated Qmmfle,

This is a tensor with 6 free indices and we
sum over all possible internal labelings of
the other cdgef

No matter how you Fu-b the. u'nih'ql lensoxs 'bogtther
yoo cah check you get 4he same. vesult

Such diagmms are. called tensor hetworks



In-dass Exercise Interpret the. Jollowing tensor networks

1. ® 2
| o A

4. What ic the idenﬁty oFtYa»l:mf tensor interPre.ted as a veetor 7
S. Give a P|'ctum Of M° gi\/en M

6. Prove that trace s cyclic using tensor nhetworks

Some conventions  One can follow some conventions that are Pprobably not ciandard bot vseful

. lz;\errtlty Matrix (s just drawn as a line since

. _@_k Contraction . L
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Contraction with the \'de.h’ci-lﬂz matrix
(or unhoTmalized EPR poir) does not

do an)f-l;hing

One can also go in the reverse divection and s’)l(:b a +ensor

. Symmd:ﬁc vs Not symmetni: (OR Heymitian we¢ Non - Hermchian)
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e Moabrix s —I?qnsfosa ( OR Conjugate Ta nsro,sa)

So, cywmetric matrices have the same {ranspose

. P‘ro\',ecﬁons vs Isometries
/|

Us
|> N

Schinidt  Decompasiion and Entanglement Entropy

For vs the most velevant tehsor hetwork ve,{:re_sen‘ca'bion e the Schmdt decomfos(btbn

To state what ¢ s let o first recall g'ngulqr valve deconv:»om'tlbn of matrices
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wheve U and "V have ovthonormal columns
and N s a d(agonal matrix of Singvlmf valves 6,

# non- 2ero singular valves = 1k (A)

Y < r
Wn'{ing Vs %ﬂmkthl B A= KZ:'SK lqKXUK\ &8 V= 5 v X0y |
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We get A= M" = %':‘GK(“KX“Kl

One Can also view this matrix as a vector [AD in Whith case we can Wiite & Qs

|AY = %_6‘( (U d8 [V 7 This s called the Schmidt Decomras;tr‘on
K qeross thes ot

# non- zew evms « called the Schmidk rank and s. log L is called entanglkment entropy
(_v_/‘ f:l gﬁ

For QquPle, lg) ® |V has Schmidt vank 1 and Entangltrncnt entropy o)

L%M)@lb has Schmidl vank D and Entar\glernent e_r\’cro):y Logf[D)
JB K=y

In geeral, o < S(A)) < Llogr SR(\M)9 0 If SR or SCA) is small , &t meanr the siate
doesn't have o lot of entanglement



Matrix Prodvct Siates

Corsider a quantom state 1§? = Z : W o i iy? on N gudits of d-dimension
b.--L, €[d R

To descrbe a gmen‘c ctate we need d " humberc

SUfFose we do a Schmidt De_comrosi'bl'on by sﬂ(ﬂl‘ng* It into -ffrsb q/udii g the vest
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# possible indices

¥ possible indices = SR of this cit”

Each (eg has
d possible indices

l ngga{; re_cofs‘we!y

l Absorb diagonal inlo left or right

— |et B=maxmom

2 LA AT - __cj Indices
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~
d indices for each leg

Ths is called o matrix ‘Product state & B s called the bond dimension

. <8
Total # pavameters needed o describe each tensor 5 < de
d

For the entive MPS, we heed O(l'tclBL) porameters

In geneal B is Qx])onc;htl.'al i n,but ¢ B s small these quantom states
have low en‘l;ang\ement & small descv.'rtfon

One can also cornfu’ce, energy of svch stotes i poly(n,d,Bl time classically
lay YeFqu:cd Matrix mu|t|'rll'cqt\'on (QXErcise)

Charactefizing which systems hgve such states is of Q’vegt im):ortancc
For (nstance , gvoond states of QMA-hard hamiltonians cannct be MPs
(assuming” @MA # N?P)

There are also higher dimensional generalizations Cnot on a line) caal lec{
PEPS CPYD:]'ZLtec\ e_h’cqnglcd Fai\r olotes) which we won't introdvce



Arvea Laws

Recall our moil'\/ah'ng cLuestiom what kind of local Hamiohians have s(m}ale, grouncl
slates (e.g. matrix product states) ?

let s |ook ot Local Hamiltonians on a gn'ol =

In 1-dimensions , there afe m q/udiis affanged on a line and local Hamibonian term
acts on neighboring qudis

. Hn o)
L ..ﬂL-.H-" — Wwhere each 0%H;xI
and H: qcts hen-trivially on
H= ZH; e & o |
i qudd T4 (r1
In 2-dimensions, qudds are on a pnd. and H: acts on 4wo neighpotine q/ub/'ts Ciinthe
) q/ g J g 5 J ond
. s
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The area law conjecture says that any groond state 197 of a physically- relevant
local HamiHonian has area lgw behavior (e

For any sobset A s n) of q/u»its , the entanglement entroy is proportional 1o the
size of the boundm’y of A (ie. Frorortional {0 the area )

Eg: @ i-dimension - _‘—@ﬂia boondary of A
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Area law behavioy - ertanglement entropy = Of1)
In general, mftanglemenb entvopy wold be as lqrgre as

~ A Logd ~ hlogd

One can make even stronger can)u%uve that +the
ground State has a MPS clascn',oﬁon

NEXT T/IME Move gn ths and « ?m?f‘



