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We will construct a OC(ogT) local Hamiltonian H whose E’round stotes
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sihce cnly the »f{‘nql anPshot' matfers
Note that <2 llo XGIout—l'n‘r> (s exqc’c)/v the Frobqbl'h'l}'
that the verifler outputs 0 on in))q{- Ix>e |n®lo%?

This s at most Z_'Fo‘y(n) since Vm'ﬁer ere With Small
):mbqbilfy and x €L

Toll energy <AIHIND = o PO

Reject Case Thic case 'S move CDI'YI'PUCQ'th o analyze
(x¢L)

We want 4o show that the enexy of every state with ru)vecL-
‘o v s qtleost ¢ 3 fov some constant c
T
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Lo This is much bl‘ggcr than 277 vn)
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To gain some intotion , let vs comfpu{e the eneroy of some
history state where the proof |m) is some avbitmay proof
chosen by the  verifier

The cdcolations we did before show that the ehergy only
comes from the last tem Heyp, and  equals

1 IP[Ver{ﬁer ou{-]:ufs 0 on kOeITe[Y)

——

T+
(Y - (
Since x ¢ L o +he probahlity is > |- g POy ®)

7]5\)3, the energy of ah] hisfof)/ State s ﬂ(%—)

Of coorse | we need to show that +the enerpy of any State
Chot just H\‘sto'f)/ ctates) is \qvge.

We won't cover it here but yov will wotk ‘U‘wouéah some
of the steps in the exercies and you wn take o look at Kitaev's pager



Thus , we have shown how instances of @ QMA- Problem can be converted +o

5 scal Hamiltonian with b= N(T>) and a= exp(-n) where T= poly(»)
i fthe YUN’“VW time of the QMA venfier

To summarize

» We looked at the con»]alexiy class QMA which coptoves -the power
of polylinput-size) quantum proofe

T
We also saw that QMA .- = BRP
&

 Evror onbabui\;ies can be veduced in QMA twen wWith a &‘ng’e Copy

of the ?vooj-‘
+ k- Local Hamiltonan s QMA—comFIP:tc With }:mmtse gap 1/):oly(n)
Beyord QYA - Allow move (unentongled) provers — QMA()

— Allow interaction (and move Possl,b(y entangled| provers - MEP ebe.
— Probabthshcal(}/ Checkable Proofs — Quantum PCPs

We won't cover interactive Pproofs in this covrse
All of these have a close velation wWith camrlexiéy of ehfanglement

QMA (2)

Le QWA 3 verfier s.t.
if xe L = J o Proof M@ () s Ve,nfner Qr.ce,Pts %, 10 1Y) with Frob > 2/
if kgL 2 4 proofs (0@19) , Verfier accepts x, 1m>@ 1y) with prob. < /3
Note +hat there are two uncntqng’led Prolfs here . We dornt cqe what the ver‘fﬁ'er
does wWhen the ono_fs are en’mgled
If ve allw entangled proofs,
thic ts same as QMA

[t S casy to see that QMA & QMA(2) [ Why 7]

One might be ftmpted 1o thipk that QMA(z) £ MA Since glven Q ?roqf
Avthur can \lenﬂl nf onqﬁ of e fcwm 38 1y) and Ye‘_/ect— lJ’l not

This  wovld mely that  QMA(2) = oA



Alas, Arthor can't determine f the state (s a tensor product <é:q\/ﬁn Qa s:hgle
(or even polynomially many) Ccopies of the ctate

In us most npaive formulation : theve i no measurement M thof acccff':s onl/
unentangled states [ Why )

Infact ; unenfangled states & a powerful Yesvurce chd they can be ued to
do mme:thing that is lkely not Possibb: withoot .

Short Quontom Proofs for NP

Recall that QMAlog=BQP

What abovt QMAJT?.?u‘Fste ? Can we verify any NP-Probltm with a short
gpantom proof ?

Ep. 3-SAT (v VE) ALK v X, vAG) A
Ts thee o short quamum proof that formula (s satisfiable or fot

3-COLOR.  Given o grth , can its vertices be coloved with 3-colowe co that
end ?oin-b; of all edpres have different clors?

Ic there o q/uqn-l,um Pfaof with Jn or no-ss q/()bl:l;s?

We beliecve. tus s Unlikcly: the FYOOf that QMA ¢ ExP would Lm}D/y that
f suth a short guantum proof exisic , then
there s o £ v 2° 3 time classical

algorithm for 3-SAT ov 3-(OLOR

The ExFoocn«b'al Tflme +fyp0‘l7')e3is says that thie s I‘I’TIFOS'-S').HC’/

Exponentinl Time Hypothesis Any defermunistic algonthm for 3-SAT or 3-ColoR
( Conjecture) most take 2 tiye

This s @ chrengthening of P#NP conjecture

DesPite, move than S0 yeqrs of effof‘t's, the best a(goﬂﬂlm far 3-SAT or 3-COLOR
vyons jn tme 2" for some c<1.

On the obher hand , a suf?(l-s;‘ng resolt of Bler ¢ ’ﬁzﬁa that we will Cover

Showe 4hat ‘ _
TNEXT 3-LOR has a QMA(2) -Pfoqf With only O({og'n) .%ub,ts

_T“"\E Caveat: Gap between SuccCess Probab/'h{)/ IS :l/POth)




