
LECTURE 13 (February 28th)

TODAY Random Circuit Sampling (contd)
-

Quantum Proofs and QMA

RECAP The task we looked in the last lecture was random circuit sampling-

C
-

sample from output distribution of a simple quantum circuit-

quantum
circuit

The goal was to demonstrate practical quantum advantage ,
i. e. there is no classical

algorithm that can even sample from a distribution that is close to the above

Ce . g .
in TV distance)

To do this
,

we first considered the case where we rule out exact samplers

For this we introduced the notion of postselection

- postselection bits PE 20, 13
Poly(M

-

II BQP - output bit A and similarly for BPP algorithms
ircuit

#[A is correct /P= 0 ...0]c, 2

Postselection is not physical ! We can take as much time as we want to postselect
For instance

, we run the BQP (or BPP circuit) exponentially or doubly exponential
times to estimate all probabilities with tiny error and then we can post select

We saw that postBQP = PP
.

so BQP with postSelection can solve very hard

problems and even simple quantum circuit classes with postselection become as

powerful

On the other hando postBPP #PP unless PH collapses

This means that even the existence of an exact classical sampler that works for the
worst-case quantum circuit world imply that PH collapses

same argument also works if the classical sampler gave a 4+ El-multiplicative
approximation.

What about a classical sampler that is E-close in TV-distance"

& Seroign/Pc(y) - Gc(y)) = E

Q



=> Iy(Pc(y) - 9 c(y)1 = z
=> For $9 % of y's ,

IPc(y) - 9c
(y) 1 =>2

Using Stockmeyer's algorithm ,
we saw that such a classical sampler can be used

to get a BPPNP algorithm that outputs an estimate

By e ( Poyin) Pax) + O ( 2) approximation for $9% of Y's

If we also pick a circuit cat random and suppose that

with prob. 0 . 8
.
C is anticoncentrated

,
i. e. mosty's satisfy 9c(y)" Fozi

then the above implies that

w . p.
0 . 75 over (C

, y) we can get a multiplicative IIIpolyin) approximation

to the output probabilities of the quantum circuit C

Let us call the above "Average-case Task"

We know for the worst case circuit 2
, getting a multiplicative approximation

for all y's with a BPPNP algorithm world collapse PH

Let us call this the "Worst-case Task"

If we could show that "Average-case task" is as hard as the "Worst-case task"
we would be done !

This is what we conjecture ! Why do we believe this conjecture !

① some such reductions are known for #P-problems over finite fields since the go's

& We can prove it for Haar random circuit family with 11 exp(-7)) -multiplicative
error

That's why there is some optimism.

What about anticoncentration ? We can actually show this for several families
of random quantum circuits.

②



Final Remarks on Random Circuit Sampling

① Kerification

Anticoncentration implies that typical probabilities are2

If n = 50 qubits , how can we verify that our experiment produces
sample from the correct distribution and not uniform noise

Linear Cross-Entropy Benchmark

A statistical test to distinguish anti-concentrated distributions from uniform
Takes exponential time, so difficult to scale

① collect a large #samples y .... Im from random circuit c

& compute probability that quantum circuit outputs each y : = Exponential
M time

③ compute ! logi

④ Hope thati is large enough ,
so that the above converges to

E
yes0 , 150

cly) log -
qc(y)

& One can compute that this quantity is sufficiently different when
C is the circuit vs uniform noise

② He The above assumes that we can't hope to get a TV-error classical sampler
from the output distribution of a simple but perfect quantum circuit

In reality , the quantum circuit also has noise. Does all the above still work ?

This and verification are both very big bottlenecks in practice and a lot of
research is going into these

You can look at the recent papers to get an idea of what the current status is

This concludes our discussion of quantum advantage
- How to establish it or rule it out ?

- What sort of structure is needed !

- Practical and near-term considerations

③



Quantum Notions of NP

We are going to discuss quantum analogues of NP

These turn out to be connected to fundamental questions in quantum chemistry and
condensed matter physics

Firstly, letos think of NP as a proof system

Borrowing logic terminology, we call this

x E L => -> proof/certificate it- 20
,
13
Poly(I) &

3

completeness of proof system

/

which means

s.
t

. Verifier accept (x, i) always Every true statement can be proven

x* L => proofs it , Verifier does not accept 3 soundness of proof system
(X

,
+) "No false statements can be proven"

Defining the quantum analogues of NP will require us to understand what happens when

the verifier can use randomness

This defines a complexity class called MA which stands for "Merlin-Arthor"

MA A language L is in MA if 7 poly-time randomized Verifier

ifXEL => 5 proof it St .
IP [Vaccepts (X,T1)] <, < => Completeness

if < * L = proofs T P(V(X, π) accepts) < ty => Soundness

The name "Merlin-Arthur" comes from the tales of camelot where Merlin is an all

powerful wizard that can come up with any proof but King Arthur-who is poly-time
bounded - has to check the proof since Merlin can't be trusted

A first attempt at generalizing MA to a quantum complexity class might be to make the
verifier quantum. This gives us a complexity class called QCMA

.

QCMA A language L is in QCMA if 7 poly-time (uniform) circuit family VTX)

proof (π) x output bit
such thatV(X)

lancilla)

④



if X EL => 7 classical proof it -[0 1
Poly/I" st. /V(x) accepts it] ?

if x # L = ↓ proofsi # [V(X) accepts π] =E

We could also make the proof to be an arbitrary quantum state(π) e(D2)
Poly(IXK

This defines the complexity class called

QMA

Putting other restrictions on the proof give us other complexity classes in between as we

will see later

One can immediately see that NP & MA < QMA.

To examine the probabibility that the verifier accepts on some proofIt)
we shall need a more general notion of measurement called POVMs

.

so farm we have looked at measuring if a qubit is 0 or 1 (or + or - in another

basis)

Given a state (4) =

20 ,
11x(X)

# [first qubit of 4) gives O on Measurement] = L

yeso ,y ,
oy12

= I L
450 ,34+

9oy(y> /12

and similarly for / measuring 1) = 1
sayn
Cylyl

These are norms of the rector (4) after we have projected them on the subspaces
spanned by computational basis states of the form

[10y)3ye30
,12

and [11y73y250
, 13 "-

You can describe the projector operator on these spaces by

T = 10X01 In, and Ty = 11X1)In-1

Note that Eyeso
, yn-

*y (y) = Toky

andR first qubit is 0] = 1/ πs/p>/

③



Now
.
# [Verifier accepts (ii) = 11 T

_
U(IT) 10

*9)I

= <i <04 ( π U) 10
%) (π)

Suppose M was a matrix acting on 2-qubits M = 2 Mxy/1 , x2Xy , 42)
X

, YE 20 , 132

Then < OlM10) = F | x /Moxz
, OY2

zXy2)
*2013

oo

Pictorially ,
M = I 01

<OIM10) = top left block of M
18

1

00 01 10 11

Similarly.10 U'πU109) = Block of the Matrix UTU

calling this block Mi
i we have that [Verifier acceptsπ] = (πIM

,
It

= TV [M ,
IπX π1]
i

POVM element

Tr (A) = &A, = <xi(A) is the trace function

<A
,
B) = Tr[BTA] = SCDi> Ais defines an inner product on matrices

Note that Tr (ABCD) = Tr(DABC) and Tr(AQB) = Tr(A) . Tr(B)

POVM (Positive Operator Valved Measurements)

A POVM M
, . . . My is a set of operators satisfying

M : > 0 (M ; is a positive semidefinite matrix meaning

Q f all complex vectors Xo <xlMIX) > O

OR equivalently
② Mi= X

,
()/kXK) where 4; (k) 40 )

and Mi = I

# [Measuring it operator on It] = To [MiIπXTB = Milit

⑥



A special case of POVM & M ,
I-M3 - Note that they sum to I

Any eigenvector (v) of M with eigenvalve x
is also an eigenvector of I-M with eigenvalve 1 - x

So
,

one can diagonalize M and I-M in the same basis

M = x
; 1

.XV

Then I-M = [C1-xi) WiXvil
i

Naimark's Dilation Theorem Every POVM can be expressed as a projective measurement

Ci. e. projection on subspaces) on a system tensored

with some ancillary space.

For example. [Verifier accepts (i)] = Measure IT) with POUM &M , I-M3

Op

Measure (7) * 109) with projectors &T , To]

We will not discuss POVM measurements for their own sake further

#EXTTIME POVMs and Properties of QMA

⑦


