LECTRE 13 [ February 28")

TODAY  Random Circuit Sarn}:»ll'ng' (conid)
Ruanhtvm Proofs and QMA

RECAP  The task we looked in He last lectuve was vandom circort Samyh‘ngr

C

Sample. from ootput distribution of a simple quantom circort

quantom
ciregit

The goa( was fo demonstvate practical guantom aAVani-qge _(e. there (¢ po classial
a(gon'f:hm that can even sample from a distribotion that is close to the above
Ce-a‘ in TV distanee)

To do this, we fost conndered the case where we wle ovt exact Sqm?IQYS

for this we introduced the hotion of Postseled:fon

oly(h)
postseleckion bits Pe 013" " | |
BGP F sutput bt A and simlafly  for BPP algorrthms

cirwait

LP[ A is correct | P= 0~--o]->,%

Postselection |s not Physicq.l l INe. can take as mueh time as we want 1 Postselecb
For instane , we vwn the BRP (o BPP circort) QXJ:Oth—h'a”y or dovbly ex/Donehb&l
Hmes {o estimate all Pmbabih'ﬁcs with Jciny ervor and then we can postselect

We saw that postBRP= PP , 0 BRP wih posiselection can selve very har|

problems and even sim?\g quantim crcort classes with FogbselecHOn become as
Powtrfol

On 4he other hand postBPP # PP onless  PH COHQ}DSE.S

“This means -that eveh the exidence of an exact classical gamPlcr that woiks {for the
WOTSt- case %oamm clreort  would \’mf\)’ dhat PH co”ques

Same ovgument also works f the classical sampley gave a (+ e)-mqu)vh'cative
GFPYDYimCFU'Dn-
What dboyt a classicq) sam}?kv that s £- close In TV- distance ?

Z |RY- 9.0 <€

|
2 yefoudr



= By lpely) -q.y)l < %F;_

=) For 99+ of ]’5 p

IP:Cy) _clccy)l < zoohe

Z

Using— Stockmeyer's algofl"chm,wt Ssaw that such a classical Sam}Dkr can be vsed
1o gt a gepN? a\gc'n"\:bm ot ouﬁfu,{s ah esbimate

A
0/ € ‘ \ /e )
'Py € (ltri_dr_lnj) CLCCy) + (E_;) qﬂ?mﬂmahon for 337 of y's

B we also pick o circot C at vandom and svppase that

with prob. 08 C is ambiconcentrted | fe. most y's s'qt._'sf}/ q.9) 7 ’1__._?
00.2

then the above irn)?\fe; +Ahat

W.p. 0?5 over (C,y) we  can ge:{: Q muHif)ichVe_ [+ ]

a})}wox/'mahbr;
polyt)

o the ou’cFut Pmbab;)f-h'e; of the quantom circvit C
Let us call the above ”Avemge-case Task”

We know for the worst case droit €, petihg o molbiplicative qpfroxl'mabbn
for al y's with a BpPMP algorithm wevld collgpse PH

let us call this the "Wovst- coce Task "

T we covld show -that "Avemg’cFCase task " is as hard as the "Wovst-case sk

we woold be done!
This is what we conjectyre | Why do we believe his cory"ed‘UYc 7
(© Some svch vedoctions are known for —'#—P—})rablem: over jt‘nl'te fields since the Jo %

® We can prove it for Haar random cireort family with (1t exp(-) )—mul’r/))licab‘ve

evy oy
TVhat s \,Jhy 4here S <come of(:’ml'sm.

what  abovt anticoncerbation 7 We can actually show this for several famfh‘cs
of rahdom quarntom circots,



Final Remorks on Random  Circot Sampling

©  \erifiction

Anti conc entmtion \‘mplies that )oypl'cal Probabih'ﬁe: ave 2"

If n=5o cbu\ofts s how can we vev?ﬁ: that ovr ex,:&n'men-l- pvoduces
Sqult from the Corect distribution and wet yniform noise

Linear Cvoss- Entropy Banchmark

A statisical test o distinguish anti-concentrated distributions from unifem
Takes exponential tme , so difficult 4o scale

O Collect a lavge # San-,j:lc.s Yo Y from vandom cirewit C
® Ompute Pyobqb“fty that gquantom Clrcos outpdls each Y, = Exponentral
m

® Compute Z1 gL time
ST gatyi)

® Hope that m (c large encogh, so that the above onwerpes 16

Z o Syllop
ye{o,1}*° Y 3.0)

©® One can compute that this quanbly is sufficiently defevent when
C s the cvwr vs qniform hoise

@ Noise. “The above assumes that we can’t hope to ;&‘r aQ TV-error classical san;f/tr
from the ovipub distrbytion of o simple bot perfect quantvm circoit

In Yea\l'ty ~the  quantom Grewtt also has poise . Does all the above Still work?

This and verdication ave both very big botflenecks in prachice and a [st of
vesearch S g'm'ng— ints these

You can look at the vecent papers 1o gei‘ ah fdea of wWhat the cowent status is

This conclvdes oour discossion of q/oqntum advontqg'e
— How 4o estgblish & or vole 1= ovt ”
~ What sort of structire is peeded 7

— Practical and hear-term considevations



Quantum Notions of NP

We are e’ofng’ to distoss quantum ahalggues of NP

“[hese tivn gut o be connected o fundamental q’uest/bm in quantom chemistry and
condensed matter Fh}/s?c;

Firs’ol], let vs think of NP as a ])a’aqf s)/_vtem

Borvowing Iogpt ‘l:crmfbo(ogy, vie. call his

e poly (ix1)
x€ L = I proof/certficate e {0f Completeness of proof System
| which means
st. Verfier accept (=7 always "Every twe statement can bt proven

¢L = H# )DYoofs T, Ven'ff&r does not accept Soundnecs of onof Sy stem
Cx, ) "' No falee statements can be proven !

Deﬁ'm'ng the Lluan{-Um ana(ogucs oj NP will Ye.qw're, vs 4o understand what ha/DPCns when
the vertfier can use. randomness

“This defnes a comf|cxf{;j class called MA which stands for  “Merlin -Avthor"

MA] A language L is in MA i 3 poly- time vandomized verifier V

if AeL = 3 poof T st P[ V acceptrs (7(,77)7 > 7 = Copleteness

if ¢ L = ¥ proofs = P( Vixa accepts ] §L = Sovhdness
The. name. “Merlin~Adhur” comes from the tales of Camelot where Merlin s an all
poverfol wiard thal can come op with any )Droof bub King Arthur —who (s poly- time

boonded — hos to checle the proof Since’ Merlin can’t be trusted

A first a—l-ter::ft at gencrali—u'ng MA 1o a quartum comflexfty class (m‘ght be. £0 make the
verifier quantom . This gives us o comrlexi’cy class called QCMA.

QCMA| A language L is in QUMA f 3 poly-time (unform) etrcurt :famf\] V{(x)

o A ut bt
prect 1 V() cutpue B svch that

| ancilla)




poly( txl)

f xeL = 3 dassica| ?Yooj T €50,13 st. ]P[ V(x) acce_rbs 'n] 7/%‘
. . < 1
f 7¢L = ¥ proofs T Pf\/(x) accepts '(r] 3
® poly (1%1)

We culd also make the onﬁ t be an arbitmv)/ ctuanJaUm state | e@z)
This dcﬁ‘nes the cornfltx'rty class called

RMA

Putﬁng other yestrictions on fhe Tmof gi e vs other c:om?\exi’cy classes in between as we
Will see latey

One can immec\('atE()' see that NP & MA S QMA

To examine the Probab'lbih'ly that the verfier accepts on some proof md
we shall need o move penerol noton of- measyvement called POVMSs.

So far, we have looked ot measoring i d qubit s 0 or 1 (or + o7 - in another

badsis)
Given a statr (Pd= 3, o0
xefo,13"
P st q/ub\'t of ¢/ gchg 0 on rncqsuvamen’t] = Z ltay 1
yefo,n
= | % o |>HZ
yefogtt /

and s'lml'|qvly for el rnc.asun‘ng 1) = I yzqoﬂ"" oy 1yl

These ave rovms of the vector 1Y) after we have projected them on the svbspaces
spanned by computational basls states of dhe form

{1oy)3 and {4y}

ye o, yefo 3"

You can describe the projectsr operotor on ther spates by

= leXel®I ~ and T =(1Xa]® L.,

Note that 2w, 4>= T,
Y€30, 13"

and B( fint qubit x 0] = Uy It}’>\]Z



Now [F[ Verifier accepts I = | L U(l‘ll}107®a)n7_
= Lalcorl T 0) 1041

Suppose M wos a mabix acl:fng on 2-qubits M= M*zyl'i.szy,yz\

X,YE10,}
Thea <O}jMlp) = [} Moy, o [x Xy, |
7;,7'5{0”} “Ve
Pictovially, M= 3‘: <olMlo) = top left block of M
10
00 01 10 1

Simi\m/\y, <o U+1T1U|0q7 = Block of the matrix U+'|T1U
Calh'ng this block M, ,we have that IP[\/erfﬂ'ef accefts ] = L7 (M, 7>

= T [ M ImXx7(]
/!

POVM element

Tr(A) = Z‘A[i = Z)LCA) s the trace func{-{on
<AB>: W[BA] = 2 Bi; Ay defines an inner product on matrices
i
Note that Tr (ABCP) = Ty(DABc) and T (A®B) = Tr(A) Tr(B)

povM  (Positive Operator Valved Mcosovements)

A pPovMm ™, ..M S o set of orerators sqﬁsfyl'ng
Miz0 (M ic a positive gemidefirte matrix meaning
O ¥ all comf)ex vectors x , <xIM[x> Z 0

O0R eqpwvalently
® M= ZxmIkXkl kv %020 )
k

P { Measuring ¥ opevator on (1) ] = T [M mxal]) = &rimgle



A sfe.cful case of POVM fM,1-M7 — Note that they som o T

Any eigenvector V> of M  with ej'genvqlue 2
is alo an eipenvecior of L- M waith eigenvaluc L-2

So, one can c[('agonaliae M and I-M in the same basis
M= 22 X
Then T-M = Z(1-2) 1y Xy |

Naimark’s Dilation Theovem Echy POVM can be exFresncl as a Frojecﬁva measurement

(ie. projection on sobspaces) on a system ¥ensored
Wih  some ancillary space .

For e_mm})k, lP[Vwiﬁer accerts Y] = Memore [m) wih POVM M, T-M)
o
Measore  ITY®10%) \arth projeciors fﬂL,ﬂof

We will not discus POVM measurements for their own Sake fudher

NEXT TIME PovMs and onrefh.e.s of QMA




