Quantum Information Refresher

*Borrowed from a tutorial at the BIU Winter School on Cryptography 2021 by Henry Yuen



Starting Point



Starting Point

Quantum Information theory is a generalization

of probability theory where probabilities can
be negative or even complex numbers




Starting Point

A
Consider a system § with d distinguishable states, @ .
£ S

labeled 0,...,d — 1 and an external observer E

The external observer E can measure the state of S

K\ MAY][Tlile])) The system S can evolve without interacting with the

external observer E



Classical Physics

Initially the observer E assigns a state to the system S

Classical physics models the state of the system

S as a probability distribution over d states,
represented as a column vector
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Sd—1



Classical Physics

't the observer measures the system §, then E obtains

measurement outcome i with probability s;

State of the system gets updated to
0
50 :
§ = E * S/ — 1 i-th coordinate
Sd—1 5
0
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Classical Physics

't the observer measures the system §, then E obtains

measurement outcome i with probability s;

State of the system gets updated to

0
So :
What happens if the observer
. / : :
s=1 : - §° = | 1| #thcoordinate measures again?
Sd—l : Outcome state i with probability one
0

Pre-measurement Post-measurement



Classical Physics

It the system § undergoes isolated evolution, then
the state of the system § gets updated via a

multiplication by a stochastic matrix

50) 50)

Sd—1 Sd—1

dxd

Matrix is stochastic if all entries are non-negative
and each column sum is one

Stochastic matrices map probability
vectors to probability vectors



Quantum Physics

Initially the observer E assigns a state to the system §

Quantum physics models the state of the

system S as a complex unit vector,
represented as a column vector

20
‘ l/j> — E — ([:d | a() ‘2 + °e° + ‘ ad_l ‘2 p— a's are called amplitudes
g1



Quantum Physics

Quantum physics models the state of the e

° _ o d
system S as a complex unit vector, lyy=1 : |€C

d | Ha-1
represented as a column vector

The d distinguishable states are represented by Also called “classical” or “basis” states
1 () These vectors form an orthonormal basis for
C? called the standard basis
o=[:] ~  jd-1=|:
0 |

A general guantum state is a
JenTe HAEn A y) = gl 0) + -+ |d— 1)
superposition of classical basis states N

This is called the Dirac notation



Quantum Physics

Quantum physics models the state of the e

° _ o d
system S as a complex unit vector, lyy=1 : |€C

d | Ha-1
represented as a column vector

The d distinguishable states are represented by Also called “classical” or “basis” states
1 () These vectors form an orthonormal basis for
C? called the standard basis
o=|:| - 1d-1=];
0 |
A general quantum state is a A quantum state of the form
.o . . ly) = ay|0) + ay | 1) is called a qubit
0 |
superposition of classical basis states N

This is called the Dirac notation



Dirac Notation

e Mathematically |y) is a column vector

called “ket psi”
called “bra psi”

® The complex conjugate of |y) (which is a row vector) is denoted (|

a* denotes the complex

) = (;) (w| = (a*, %) = a*(0] + p*(1| rotes e con

(0] =(1,0)and (1| =(0,1)

® Inner product between a column vector|y) = a|0) + | 1)

and row vector (8| = y(0O| + 6(1 |is

l called “braket” I




Dirac Notation

® Quter Product |y){@| is a matrix
-

H ___J

® The matrix vector multiplication of Matrix M = |y)(@| and vector | ¢)
- T

H —_J

® Every matrix M with entries {M;;} can be written as

M=) Myli)(|




Quantum Physics

't the observer measures the system S,

then E obtains measurement outcome i

with probability |a;|*

State of the system gets “collapsed” to |i)
0

iy = : | = (W)= 1| ncoorinee

0

Pre-measurement After measuring
outcome i
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Quantum Physics

't the observer measures the system S,

then E obtains measurement outcome i

with probability |a;|°

State of the system gets “collapsed” to |i)

0
% , ' | What happens if the observer
| l//) — : » ‘ l//) — 1 i-th coordinate measures again?
04 : Outcome state i with probability one
d—1 0

Pre-measurement After measuring
outcome i



Quantum Physics

It the system § undergoes isolated evolution, then

the state of the system § gets updated via a

A
®
S

multiplication by a unitary matrix

() —r|y) = U|y)

U" is the Hermitian conjugate of U:

A d X d complex matrix is unitary if U™! = U"

take transpose, then complex
conjugate each entry, i.e. U; = (U)*



Quantum Physics

Equivalent definitions of a unitary matrix c Cdxd
o l]_1 — l]T
® [ preserves the length of vectors 1 particular, U maps (complex) unit

vectors to unit vectors

® [J preserves the inner product between vectors

rr e ———— o ———————— e I R e e e e R — e R E— ‘1

| |

L E———— ———————— A —————————————— R — R S R — R — R — R ——— —————————— —————————— ——— S R R ————————— R —————————— —————————— JJ




Quantum Physics

Equivalent definitions of a unitary matrix

® Columns of U form an orthonormal basis of C

® Rows of U form an orthonormal basis of C¢

e U maps one orthonormal basis of C? to another

U can be thought of as a
change of basis operator



Unitary Evolution of a Qubit




Unitary Evolution of a Qubit




Unitary Evolution of a Qubit

| 1) | 1)
----- 0 1 ik I
X = >
S (5 0)
|0) ﬁ |10)
"bitflip” gate

4
~~~~~

W) = ——(0) + | 1)
2




Unitary Evolution of a Qubit

4
~~~~~

W) = ——(0) + | 1)
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Quantum vs Classical Bits

s there an essential difference between a quantum bit and a classical bit? Does
allowing negative or complex amplitudes make a discernible difference?

1 1 1 1
= —10) A 1 —)=——=10 1
Example BE; 2\) 2\) vs | —) \/§‘> 2\)

- e
P "~

s ¢ \
N / | ' What happens when we
: 10) |0) iy

measure these two states?

~~~~~~~~~



Quantum vs Classical Bits

| + ) and | — ) are orthogonal to each other

R R R e ‘m

(=1+)

!

|
1
|
| |
| |
|
|

L_ e R R — R — R — e e e e e e e

In guantum mechanics, orthogonal states are
perfectly distinguishable from one another



Quantum vs Classical Bits

Unknown state |y) thatis either |+ ) or | —)

How could an observer tell the difference?

: : 1 /1 1
e Before measuring, apply a unitar H=—< )
9, apply Y NG

e R I N e R R e e ——— ———————— e e e ——————— e j

|

|

S |

E— S N A —————————— A ——————— —————————— e ——————————— R ——————— S R e S v;J

e Measuring the rotated state tell us what |y) was

-
e~ N

D
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Quantum vs Classical Bits

- 1)
l Takeaway: Minus signs in the amplitude matter! ] RS ~J+)

More precisely, relative phases between the 110)
classical basis states matter R "_>
On the other hand global phases don't matter
® There is no quantum process (unitary + measurement)
that can distinguish |y) from — |y) Orin fact |y from ¢|y)

® Because U( — |w)) = — U|w) and measurements at the
end destroy sign information, since we take absolute
values of the amplitudes!



Composite Quantum Systems

The state of a qubit is a unit vector in C* which

Hilbert space = complex vector space with inner product

is also called the Hilbert space of the qubit

Hilbert space of two qubits is the tensor product space C* ® C-

e C? has orthonormal basis {|0), | 1)}

e Tensor product space C* @ C* =~ C* is 4-dimensional
with orthonormal basis

00 00

1 0

O o 1]01
0 1) =

Ol o O & 0]10

0 0/)11

00 00

0 Shorthand
01 Olo01

0

1

10) ® |0) = D10y =[], Helh =171, 100) = 0.0} = |0)]0) = |0) ® |0)

11 11

S = O O

11

® This basis represents the classical states of two qubits



Composite Quantum Systems

Tensor Product of Vectors

fly) =al0)+ p|1)and |8) =y|0)+ 6| 1) then the state of two qubits

together is

e R I E—— e I I ——— A R A A R R e e A I e A R N

A e e e R — R — e R — e A e e e ————————




Composite Quantum Systems

e A two qubit state |y) is a unit vector in C* ® C?

hlf):z,]ag‘l)@‘]) Z‘alj‘zzl
1

® A general two-qubit states cannot be written as a tensor product

ly) # |¢) ®10) for one qubit states | ), |0) € C*

® States that cannot be written in tensor product form are called entangled.
Otherwise, they are unentangled



Composite Quantum Systems

e A two qubit state |y) is a unit vector in C* ® C?

hlf):z,]ag‘l)@‘]) Z‘alj‘zzl
1

® A general two-qubit states cannot be written as a tensor product

ly) # |¢) ®10) for one qubit states | ), |0) € C*

® States that cannot be written in tensor product form are called entangled.
Otherwise, they are unentangled



Composite Quantum Systems

e Example: | EPR) = — |00) + L\ 11) is entangled
V2 V2

e Example: |y) = % |00) + % |01) + %\ 10) + %\ 11) is unentangled

-———— @
| I
|

| |
| W
e




Composite Quantum Systems

e Taking inner products in C* ® C* let |a), | b), |c),|d) € C*

o Let |y) = ) ayli.j)and 16) = D’ f;liij)
U 4]

- o) = I
| |
“ ]
-




IMleasurements

Measuring a two qubit state | y) = Z a;|1,]) € C’® C*
]
e Obtain classical outcome (i, ) € {0,1}* with probability |0¢l-j|2

® Post-measurement state of |y) is |i,))

S & —s O 8

N N

% vy = i) ® |])



Partial Measurements

Measuring the first qubit in a two qubit state | ) = Z a;|1,]) € C’® C*
1

® Obtain classical outcome i € {0,1} with probability

2 2
pi=lagl™+ o

e Post-measurement state of |y) is T (O‘io |10) + o | il))
Pi

S & — S8
—— ——

) h/f’>=|i>®ﬁ(aio\o>+aﬂ|1>)






Quantum Physics

Initially the observer E assigns a state to the system §

Quantum physics models the state of the

system S as a complex unit vector,
represented as a column vector

X
(]:d = ‘l//) — E — a() ‘ O> 4+ .00 ad—l ‘d — 1> a's are called amplitudes

Xg-1 0
wnere ‘a()‘ + -0 + ‘ad_l ‘ — i) =] 1 | i-th coordinate




Quantum Physics

't the observer measures the system S,

then E obtains measurement outcome i

with probability |a;|°

State of the system gets “collapsed” to |i)

0
% , ' | What happens if the observer
| l//) — : » ‘ l//) — 1 i-th coordinate measures again?
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Quantum Physics

It the system § undergoes isolated evolution, then

the state of the system § gets updated via a

A
®
S

multiplication by a unitary matrix

() —r|y) = U|y)

A d X d COmp‘eX matrix |S unitary |'[: l]_1 — UT U" is the Hermitian conjugate of U:

take transpose, then complex
conjugate each entry, i.e. U; = (U)*

All unitary operations are reversible



Composite Quantum Systems

e A two qubit state |y) is a unit vector in C* ® C?
. . 2
W) = 2, ;11) ® 1)) Z\%\ =1
7]

® A general two-qubit states cannot be written as a tensor product

ly) # |¢) ®10) for one qubit states | ), |0) € C*

® States that cannot be written in tensor product form are called entangled.
Otherwise, they are unentangled

Example: | EPR) = — |00) + L\ 11) is entangled
V2 V2



IMleasurements

Measuring a two qubit state | y) = Z a;|1,]) € C’® C*
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e Obtain classical outcome (i, ) € {0,1}* with probability |0¢l-j|2
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Partial Measurements

Measuring the first qubit in a two qubit state | ) = Z a;|1,]) € C’® C*
1

® Obtain classical outcome i € {0,1} with probability

2 2
pi=lagl™+ o

e Post-measurement state of |y) is T (O‘io |10) + o | il))
Pi
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Unitary Evolution on Composite Systems

Two qubit systems in isolation evolve via unitary matrices on C* ® C*

® Tensor product of one-qubit unitaries U, V:

Applying U to the first and V to the second qubit
corresponds to applying U @ V to the larger system

SE — 88

N — N —

lv) ® | 9) URV)|ly)®10)) =Uly)) ® (V]0))



Unitary Evolution on Composite Systems

Two qubit systems in isolation evolve via unitary matrices on C* ® C*

® Tensor product of one-qubit unitaries U, V:

Applying U to the first and V to the second qubit
corresponds to applying U @ V to the larger system

® Matrix representation
[ — Upy Upi V= Yoo Vo1
— \ Uy U Vio Vi1

* MOOV u()l V Matrix representation depends on
U ® V — how one indexes rows/columns
ulOV I/tl 1 V



Unitary Evolution on Composite Systems

General two-qubit unitaries are not product operators; they are entangling

® Example: CNOT acts on two qubits: for any x € {0,1}

CNOT|x) ® |0) = |x) ® | x)
CNOT|x)®|1)=1x)®[x® 1)

Control Target
qubit qubit

e Example: |y) =]+ ) ® |0)

r—— “ " —& -H-  / /——/ //////0/0/0/
CNOT |y) = |




No Cloning Theorem

Classical bits are easily copied. Quantum Information is difterent

® |nformal Statement: “There is no quantum Xerox machine”

® Formally: There is no unitary U acting on two qubits such that

Uly) ® 10) = |y)  |y)

ancilla

for all one qubit states |y)



No Cloning Theorem

Proof: try to copy |0) vs | + )




Mixed State

e Given two qubits in tensor product state |y) = |¢) ® | 9) @ @
what is the state of the first qubit? m
®

® How about when the two qubits are in an entangled state?

Example: | EPR) = — |00) + L\ 11) is entangled
V2 V2

® |n this case the state of the first qubit is described by measuring the first
qubit and describing the state of the second qubit after the measurement

State of first qubit: |0) with probability 1/2
| 1) with probability 1/2



Mixed State

® Mixed states can be represented by density matrices

Example: |y) with probability p,
| ;) with probability p, }:0 = PolwoXwo | + Py Ly )y |

® Different probability mixtures can give rise to the same density matrix

Example: |0) with probability 1/2 Or: | + ) with probability 1/2 }
| 1) with probability 1/2 | — ) with probability 1/2

® No unitary or measurement can distinguish the mixture it the density
matrices are the same

® One can define measurement and unitary evolution for density matrices (later)



Exponentialty of Quantum Mechanics

® Nature is doing an incredible amount of work for us SESS
SESAASs
® However, we can only access the exponential information ..
. . . ly) =1
stored in |y) in a limited way [al. 1

® This leads to a fundamental tension in quantum information:

Exponentialty vs Fragility of Quantum States

® This tension makes quantum information and computation subtle,
mysterious and extremely interesting



Supplementary Homework

' you don't have a background in quantum information

Quantum
Computation
and Quantum
_ Information

® Read first few chapters in Nielsen-Chuang

® | ook at lecture notes and material for /| MICHAEL A. NIELSEN ,
4 ‘r“a?d ISAAC L. CHUANG
CS498QC: Introduction to Quantum Computing

® Supplementary homework from CS498QC to

internalize notation and refresh linear algebra
concepts



