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Starting Point



Starting Point

Quantum Information theory is a generalization 
of probability theory where probabilities can 

be negative or even complex numbers 



Starting Point
Consider a system  with  distinguishable states, 

labeled  and an external observer 
S d

0,…, d − 1 E E S

The external observer  can measure the state of E S

The system  can evolve without interacting with the 
external observer 

S
E

Measurement

Isolated Evolution



Classical Physics
Initially the observer  assigns a state to the system E S

E S
Classical physics models the state of the system 

 as a probability distribution over  states, 
represented as a column vector

S d

s =
s0
⋮

sd−1
∈ ℝd s0 + ⋯ + sd−1 = 1

≥ 0



Classical Physics
If the observer measures the system , then  obtains 

measurement outcome  with probability  
S E
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⋮
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-th coordinatei
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Classical Physics
If the system  undergoes isolated evolution, then  

the state of the system  gets updated via a 
multiplication by a stochastic matrix

S
S E S

s =
s0
⋮

sd−1
s′ = A

s0
⋮

sd−1

Stochastic matrices map probability 
vectors to probability vectors

A
d × d

Matrix is stochastic if all entries are non-negative 
and each column sum is  one 



Quantum Physics
Initially the observer  assigns a state to the system E S

E S
Quantum physics models the state of the 

system  as a complex unit vector,  
represented as a column vector

S

|α0 |2 + ⋯ + |αd−1 |2 = 1|ψ⟩ =
α0
⋮

αd−1
∈ ℂd ’s are called amplitudesα

|ψ⟩



Quantum Physics
Quantum physics models the state of the 

system  as a complex unit vector,  
represented as a column vector

S |ψ⟩ =
α0
⋮

αd−1
∈ ℂd

|ψ⟩

The  distinguishable states are represented byd

|0⟩ =
1
⋮
0

|d − 1⟩ =
0
⋮
1

These vectors form an orthonormal basis for 
 called the standard basisℂd

Also called “classical” or “basis” states

⋯

A general quantum state is a 
superposition of classical basis states

|ψ⟩ = α0 |0⟩ + ⋯ + αd−1 |d − 1⟩
This is called the Dirac notation 



Quantum Physics
Quantum physics models the state of the 

system  as a complex unit vector,  
represented as a column vector

S |ψ⟩ =
α0
⋮

αd−1
∈ ℂd

|ψ⟩

The  distinguishable states are represented byd

|0⟩ =
1
⋮
0

|d − 1⟩ =
0
⋮
1

These vectors form an orthonormal basis for 
 called the standard basisℂd

Also called “classical” or “basis” states

⋯

A general quantum state is a 
superposition of classical basis states

|ψ⟩ = α0 |0⟩ + ⋯ + αd−1 |d − 1⟩
This is called the Dirac notation 

A quantum state of the form
 is called a qubit|ψ⟩ = α0 |0⟩ + α1 |1⟩



Dirac Notation
• Mathematically  is a column vector  |ψ⟩

called “ket psi” 

• The complex conjugate of  (which is a row vector) is denoted  |ψ⟩ ⟨ψ |

|ψ⟩ = (α
β)

called “bra psi” 

⟨ψ | = (α*, β*) = α*⟨0 | + β*⟨1 |
 denotes the complex 

conjugate of  
α*

α

 and  ⟨0 | = (1,0) ⟨1 | = (0,1)

• Inner product between a column vector   

and row vector is

|ψ⟩ = α |0⟩ + β |1⟩
⟨θ | = γ⟨0 | + δ⟨1 |

⟨θ |ψ⟩
called “braket” 



Dirac Notation
• Outer Product  is a matrix |ψ⟩⟨θ |

• The matrix vector multiplication of Matrix  and vector M = |ψ⟩⟨θ | |ϕ⟩

• Every matrix  with entries  can be written as  

                       

M {Mij}
M = ∑

ij
Mij | i⟩⟨j |
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If the observer measures the system , 

 then  obtains measurement outcome  
 with probability  
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Quantum Physics
If the system  undergoes isolated evolution, then  

the state of the system  gets updated via a 
multiplication by a unitary matrix

S
S E S

|ψ⟩ |ψ′ ⟩ = U |ψ⟩

 is the Hermitian conjugate of : 
take transpose, then complex 

conjugate each entry, i.e. 

U† U

U†
ij = (Uji)*

U ∈ ℂd×d

A  complex matrix is unitary if d × d U−1 = U†



Quantum Physics
Equivalent definitions of a unitary matrix

In particular,  maps (complex) unit 
vectors to unit vectors

U

U ∈ ℂd×d

• U−1 = U†

•  preserves the length of vectorsU

•  preserves the inner product between vectorsU



Quantum Physics
Equivalent definitions of a unitary matrix

 can be thought of as a 
change of basis operator
U

U ∈ ℂd×d

• Columns of  form an orthonormal basis of U ℂd

• Rows of  form an orthonormal basis of U ℂd

•  maps one orthonormal basis of  to anotherU ℂd



Unitary Evolution of a Qubit

|ψ⟩ = |1⟩

|0⟩

|1⟩

|0⟩

|1⟩

before after

X = (0 1
1 0)

“bitflip” gate



Unitary Evolution of a Qubit

|0⟩

|1⟩

|0⟩

|1⟩

before after

H = 1
2 (1 1

1 −1)
Hadamard gate

|ψ⟩ = |1⟩



Unitary Evolution of a Qubit

|ψ⟩ = 1
2

( |0⟩ + |1⟩)

|0⟩

|1⟩

|0⟩

|1⟩

before after

X = (0 1
1 0)

“bitflip” gate



Unitary Evolution of a Qubit

|ψ⟩ = 1
2

( |0⟩ + |1⟩)

|0⟩

|1⟩

|0⟩

|1⟩

before after

Z = (1 0
0 −1)

“phase flip” gate



Quantum vs Classical Bits
Is there an essential difference between a quantum bit and a classical bit? Does 

allowing negative or complex amplitudes make a discernible difference?

| + ⟩ = 1
2

|0⟩ + 1
2

|1⟩ | − ⟩ = 1
2

|0⟩ − 1
2

|1⟩Example vs

|0⟩

|1⟩

|0⟩

|1⟩
| + ⟩

| − ⟩

What happens when we 
measure these two states?



Quantum vs Classical Bits
 and  are orthogonal to each other | + ⟩ | − ⟩

⟨ − | + ⟩

In quantum mechanics, orthogonal states are  
perfectly distinguishable from one another 



Quantum vs Classical Bits
Unknown state  that is either  or |ψ⟩ | + ⟩ | − ⟩
How could an observer tell the difference? |0⟩

|1⟩
| + ⟩

| − ⟩

|0⟩

|1⟩

= H | + ⟩

= H | − ⟩

• Before measuring, apply a unitary  H = 1
2 (1 1

1 −1)

• Measuring the rotated state tell us what  was|ψ⟩

H | + ⟩ = H | − ⟩ =



Quantum vs Classical Bits
Takeaway: Minus signs in the amplitude matter!

More precisely, relative phases between the 
classical basis states matter

|0⟩

|1⟩
| + ⟩

| − ⟩

On the other hand global phases don’t matter

• There is no quantum process (unitary + measurement) 
that can distinguish  from |ψ⟩ − |ψ⟩ Or in fact  from |ψ⟩ eiθ |ψ⟩

• Because  and measurements at the 
end destroy sign information, since we take absolute 
values of the amplitudes!

U( − |ψ⟩) = − U |ψ⟩



Composite Quantum Systems
The state of a qubit is a unit vector in  which 

is also called the Hilbert space of the qubit 
ℂ2

Hilbert space of two qubits is the tensor product space  ℂ2 ⊗ ℂ2

•  has orthonormal basis ℂ2 { |0⟩, |1⟩}

Hilbert space = complex vector space with inner product

•  Tensor product space  is -dimensional 
with orthonormal basis 

ℂ2 ⊗ ℂ2 ≅ ℂ4 4

|0⟩ ⊗ |0⟩ =
1
0
0
0

|0⟩ ⊗ |1⟩ =
0
1
0
0

|1⟩ ⊗ |0⟩ =
0
0
1
0

|1⟩ ⊗ |1⟩ =
0
0
0
1

Shorthand

|00⟩ = |0,0⟩ = |0⟩ |0⟩ = |0⟩ ⊗ |0⟩

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

• This basis represents the classical states of two qubits



Composite Quantum Systems
Tensor Product of Vectors

If  and  then the state of two qubits 

together is 

|ψ⟩ = α |0⟩ + β |1⟩ |θ⟩ = γ |0⟩ + δ |1⟩

|ψ⟩ |θ⟩

|ψ⟩ ⊗ |θ⟩{



Composite Quantum Systems
• A two qubit state  is a unit vector in |ψ⟩ ℂ2 ⊗ ℂ2

|ψ⟩ = ∑ij αij | i⟩ ⊗ | j⟩ ∑
ij

|αij |
2 = 1

• A general two-qubit states cannot be written as a tensor product 

|ψ⟩ ≠ |ϕ⟩ ⊗ |θ⟩ for one qubit states |ϕ⟩, |θ⟩ ∈ ℂ2

• States that cannot be written in tensor product form are called entangled. 
Otherwise, they are unentangled 
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|ψ⟩ = ∑ij αij | i⟩ ⊗ | j⟩ ∑
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• States that cannot be written in tensor product form are called entangled. 
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Composite Quantum Systems
• Example:  is entangled |EPR⟩ = 1

2
|00⟩ + 1

2
|11⟩

• Example:  is unentangled |ψ⟩ = 1
2 |00⟩ + 1

2 |01⟩ + 1
2 |10⟩ + 1

2 |11⟩



Composite Quantum Systems
• Taking inner products in : let ℂ2 ⊗ ℂ2 |a⟩, |b⟩, |c⟩, |d⟩ ∈ ℂ2

• Let  and |ψ⟩ = ∑
ij

αij | i, j⟩ |θ⟩ = ∑
ij

βij | i, j⟩

(⟨a | ⊗ ⟨b | )( |c⟩ ⊗ |d⟩) = ⟨a |c⟩ ⋅ ⟨b |d⟩

⟨ψ |θ⟩ =



Measurements
Measuring a two qubit state |ψ⟩ = ∑

ij
αij | i, j⟩ ∈ ℂ2 ⊗ ℂ2

|ψ⟩ {
• Obtain classical outcome  with probability (i, j) ∈ {0,1}2 |αij |

2

• Post-measurement state of  is |ψ⟩ | i, j⟩

|ψ′ ⟩ = | i⟩ ⊗ | j⟩{



Partial Measurements
Measuring the first qubit in a two qubit state |ψ⟩ = ∑

ij
αij | i, j⟩ ∈ ℂ2 ⊗ ℂ2

|ψ⟩ {
• Obtain classical outcome  with probability i ∈ {0,1}

• Post-measurement state of  is |ψ⟩ 1
pi

(αi0 | i0⟩ + αi1 | i1⟩)

|ψ′ ⟩ = | i⟩ ⊗ 1
pi

(αi0 |0⟩ + αi1 |1⟩){

pi = |αi0 |2 + |αi1 |2



RECAP



Quantum Physics
Initially the observer  assigns a state to the system E S

E S
Quantum physics models the state of the 

system  as a complex unit vector,  
represented as a column vector

S

|α0 |2 + ⋯ + |αd−1 |2 = 1

ℂd ∋ |ψ⟩ =
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⋮
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Quantum Physics
If the observer measures the system , 
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Quantum Physics
If the system  undergoes isolated evolution, then  

the state of the system  gets updated via a 
multiplication by a unitary matrix

S
S E S

|ψ⟩ |ψ′ ⟩ = U |ψ⟩

 is the Hermitian conjugate of : 
take transpose, then complex 

conjugate each entry, i.e. 

U† U

U†
ij = (Uji)*

U ∈ ℂd×d

A  complex matrix is unitary if d × d U−1 = U†

All unitary operations are reversible



Composite Quantum Systems
• A two qubit state  is a unit vector in |ψ⟩ ℂ2 ⊗ ℂ2

|ψ⟩ = ∑ij αij | i⟩ ⊗ | j⟩ ∑
ij

|αij |
2 = 1

• A general two-qubit states cannot be written as a tensor product 

|ψ⟩ ≠ |ϕ⟩ ⊗ |θ⟩ for one qubit states |ϕ⟩, |θ⟩ ∈ ℂ2

• States that cannot be written in tensor product form are called entangled. 
Otherwise, they are unentangled 

Example:  is entangled |EPR⟩ = 1
2

|00⟩ + 1
2

|11⟩



Measurements
Measuring a two qubit state |ψ⟩ = ∑

ij
αij | i, j⟩ ∈ ℂ2 ⊗ ℂ2

|ψ⟩ {
• Obtain classical outcome  with probability (i, j) ∈ {0,1}2 |αij |

2

• Post-measurement state of  is |ψ⟩ | i, j⟩

|ψ′ ⟩ = | i⟩ ⊗ | j⟩{



Partial Measurements
Measuring the first qubit in a two qubit state |ψ⟩ = ∑

ij
αij | i, j⟩ ∈ ℂ2 ⊗ ℂ2

|ψ⟩ {
• Obtain classical outcome  with probability i ∈ {0,1}

• Post-measurement state of  is |ψ⟩ 1
pi

(αi0 | i0⟩ + αi1 | i1⟩)

|ψ′ ⟩ = | i⟩ ⊗ 1
pi

(αi0 |0⟩ + αi1 |1⟩){

pi = |αi0 |2 + |αi1 |2



Unitary Evolution on Composite Systems
Two qubit systems in isolation evolve via unitary matrices on ℂ2 ⊗ ℂ2

• Tensor product of one-qubit unitaries :U, V

Applying  to the first and  to the second qubit  
corresponds to applying  to the larger system

U V
U ⊗ V

|ψ⟩ ⊗ |θ⟩{ (U ⊗ V )( |ψ⟩ ⊗ |θ⟩) = (U |ψ⟩) ⊗ (V |θ⟩){U ⊗ V



Unitary Evolution on Composite Systems
Two qubit systems in isolation evolve via unitary matrices on ℂ2 ⊗ ℂ2

• Tensor product of one-qubit unitaries :U, V

• Matrix representation

Applying  to the first and  to the second qubit  
corresponds to applying  to the larger system

U V
U ⊗ V

U = (u00 u01
u10 u11) V = (v00 v01

v10 v11)
U ⊗ V = (u00V u01V

u10V u11V) Matrix representation depends on 
how one indexes rows/columns



Unitary Evolution on Composite Systems
General two-qubit unitaries are not product operators; they are entangling

• Example:  acts on two qubits: for any CNOT x ∈ {0,1}

• Example: |ψ⟩ = | + ⟩ ⊗ |0⟩

CNOT |x⟩ ⊗ |0⟩ = |x⟩ ⊗ |x⟩
CNOT |x⟩ ⊗ |1⟩ = |x⟩ ⊗ |x ⊕ 1⟩

Control 
qubit

Target 
qubit

CNOT |ψ⟩ =



No Cloning Theorem 
Classical bits are easily copied. Quantum Information is different

• Informal Statement: “There is no quantum Xerox machine”

U |ψ⟩ ⊗ |0⟩ = |ψ⟩ ⊗ |ψ⟩

• Formally: There is no unitary  acting on two qubits such that U

for all one qubit states |ψ⟩
ancilla



No Cloning Theorem 
Proof: try to copy  vs |0⟩ | + ⟩



Mixed State
• Given two qubits in tensor product state  

what is the state of the first qubit?
|ψ⟩ = |ϕ⟩ ⊗ |θ⟩

• How about when the two qubits are in an entangled state?

• In this case the state of the first qubit is described by measuring the first 
qubit and describing the state of the second qubit after the measurement

|ϕ⟩ ⊗ |θ⟩{

Example:  is entangled |EPR⟩ = 1
2

|00⟩ + 1
2

|11⟩

State of first qubit:  with probability 1/2|0⟩
 with probability 1/2|1⟩

{



Mixed State
• Mixed states can be represented by density matrices

Example:  with probability |ψ0⟩ p0
 with probability |ψ1⟩ p1

{
ρ = p0 |ψ0⟩⟨ψ0 | + p1 |ψ1⟩⟨ψ1 |

• Different probability mixtures can give rise to the same density matrix

Example:  with probability |0⟩ 1/2
 with probability |1⟩ 1/2

{Or:  with probability | + ⟩ 1/2
 with probability | − ⟩ 1/2

{

• No unitary or measurement can distinguish the mixture if the density 
matrices are the same

• One can define measurement and unitary evolution for density matrices (later)



Exponentialty of Quantum Mechanics
• Nature is doing an incredible amount of work for us

• However, we can only access the exponential information 
stored in  in a limited way |ψ⟩

• This leads to a fundamental tension in quantum information:

|ψ⟩ =
α0⋯0

⋮
α1⋯1

Exponentialty vs Fragility of Quantum States

• This tension makes quantum information and computation subtle, 
mysterious and extremely interesting



Supplementary Homework

• Read first few chapters in Nielsen-Chuang

• Look at lecture notes and material for  
CS498QC: Introduction to Quantum Computing

• Supplementary homework from CS498QC to 
internalize notation and refresh linear algebra 
concepts

If you don’t have a background in quantum information 


