
Computational Complexity Basics
A very short introduction

Complexity Theory
Study of computational resources needed

 to solve different problems

Time? Memory?

Randomness?

Proofs? Interaction?
 P

NP

PSPACE

Efficient classical computation

Efficiently verifiable classically

Polynomial memory

Turing machine and Decision Problems
Turing Machine mathematically formalizes what an algorithm is

You can think of it as a piece of code in some programming
language that takes an input and gives an output
Turing Machine may take some auxiliary inputs such as random bits, advice, etc.

Turing machine and Decision Problems
Turing Machine mathematically formalizes what an algorithm is

You can think of it as a piece of code in some programming
language that takes an input and gives an output
Turing Machine may take some auxiliary inputs such as random bits, advice, etc.

Typically, we are interested in resources (e.g. time, space)
required for computing functions

f : {0,1}* → {0,1}

Decision Problems

A language is a subset of

e.g.

{0,1}*
L = {x | f(x) = 1}

Or equivalently, deciding whether a
bitstring is in a language

Languages, problems, functions are
often used synonymously

Sometimes promise functions or
promised languages or search

problems are considered

The Landscape of Complexity

The Landscape of Complexity
There are problems that cannot be solved by

a Turing machine in any finite time
e.g. HALT =1 iff the Turing machine
whose code is halts in finite time on input

(c, x)
c x

called undecidable problems

The Landscape of Complexity
There are problems that cannot be solved by

a Turing machine in any finite time
e.g. HALT =1 iff the Turing machine
whose code is halts in finite time on input

(c, x)
c x

called undecidable problems

P is the class of languages which can be decided with a Turing
Machine that runs in polynomial time in the input length

e.g. Linear Programming = Decide if a system of linear inequalities has a solutiona⊤
i x ≤ bi

Typically, we call polynomial
run time as efficient

e.g. 2SAT = Given a set of boolean 2-clauses (e.g.) decide if there is an assignment satisfying all clausesxi ∨ xj

The Landscape of Complexity
There are problems that cannot be solved by

a Turing machine in any finite time
e.g. HALT =1 iff the Turing machine
whose code is halts in finite time on input

(c, x)
c x

called undecidable problems

P is the class of languages which can be decided with a Turing
Machine that runs in polynomial time in the input length

e.g. Linear Programming = Decide if a system of linear inequalities has a solutiona⊤
i x ≤ bi

Typically, we call polynomial
run time as efficient

e.g. 2SAT = Given a set of boolean 2-clauses (e.g.) decide if there is an assignment satisfying all clausesxi ∨ xj

NP is the class of languages which can be efficiently decided
when the Turing machine is given a polynomial-sized witness

e.g. 3SAT = Given a set of boolean 3-clauses (e.g.) decide if there is a satisfying assignment xi ∨ xj ∨ xk

The Landscape of Complexity
There are problems that cannot be solved by

a Turing machine in any finite time
e.g. HALT =1 iff the Turing machine
whose code is halts in finite time on input

(c, x)
c x

called undecidable problems

P is the class of languages which can be decided with a Turing
Machine that runs in polynomial time in the input length

e.g. Linear Programming = Decide if a system of linear inequalities has a solutiona⊤
i x ≤ bi

Typically, we call polynomial
run time as efficient

e.g. 2SAT = Given a set of boolean 2-clauses (e.g.) decide if there is an assignment satisfying all clausesxi ∨ xj

NP is the class of languages which can be efficiently decided
when the Turing machine is given a polynomial-sized witness

e.g. 3SAT = Given a set of boolean 3-clauses (e.g.) decide if there is a satisfying assignment xi ∨ xj ∨ xk

P NP but whether it is a strict subset is a Millennium Prize Problem⊆
 Why?

The Landscape of Complexity

The Landscape of Complexity
PSPACE is the class of languages which can be decided with a

Turing Machine that uses polynomial space

The Landscape of Complexity
PSPACE is the class of languages which can be decided with a

Turing Machine that uses polynomial space

BPP is the class of languages which can be efficiently decided
with a randomized Turing machine

If then [TM says “ ”]x ∈ L ℙ x ∈ L ≥ 2/3

If then [TM says “ ”]x ∉ L ℙ x ∈ L ≤ 1/3

The probabilities can be made :

 run multiple independent instances and take the

majority outcome

(2/3,1/3) (1 − ϵ, ϵ)

The Landscape of Complexity
PSPACE is the class of languages which can be decided with a

Turing Machine that uses polynomial space

BPP is the class of languages which can be efficiently decided
with a randomized Turing machine

If then [TM says “ ”]x ∈ L ℙ x ∈ L ≥ 2/3

If then [TM says “ ”]x ∉ L ℙ x ∈ L ≤ 1/3

The probabilities can be made :

 run multiple independent instances and take the

majority outcome

(2/3,1/3) (1 − ϵ, ϵ)

It is believed that randomness does not help efficiency
in computation, i.e. BPP=P

The Landscape of Complexity

P

BPP
NP

P

NP

PSPACE

The Landscape of Complexity

P

BPP
NP

P

NP

PSPACE

 Why?

The Landscape of Complexity

P

BPP
NP

P

NP

PSPACE

In general, we do not have any techniques to show that a problem
does not lie in (a reasonably powerful) complexity class

 Why?

The Landscape of Complexity

P

BPP
NP

P

NP

PSPACE

In general, we do not have any techniques to show that a problem
does not lie in (a reasonably powerful) complexity class

 Alternatives?

‣ Say one problem is harder than the other

‣ Use Oracles (in a later lecture)

‣ Study restricted types of algorithms (later)

 Why?

Reductions and Complete Problems

 if an efficient algorithm for solving

gives an efficient algorithm for solving

Leasy ≤ L L
Leasy

Reduction

The type of reductions depends on the
complexity classes, e.g. reductions could be

randomized, quantum, space-limited

This formalizes that one problem is harder than another

Reductions and Complete Problems

 if an efficient algorithm for solving

gives an efficient algorithm for solving

Leasy ≤ L L
Leasy

Reduction

The type of reductions depends on the
complexity classes, e.g. reductions could be

randomized, quantum, space-limited

This formalizes that one problem is harder than another

E.g. every problem in NP is easier than 3SAT

Such problems are called NP-hard

P

NP

They live here

Reductions and Complete Problems

 if an efficient algorithm for solving

gives an efficient algorithm for solving

Leasy ≤ L L
Leasy

Reduction

The type of reductions depends on the
complexity classes, e.g. reductions could be

randomized, quantum, space-limited

This formalizes that one problem is harder than another

E.g. every problem in NP is easier than 3SAT

Such problems are called NP-hard

P

NP

They live here

3SAT is also in NP

Such problems are called NP-complete
These are the hardest problems in NP

Reductions and Complete Problems

 if an efficient algorithm for solving

gives an efficient algorithm for solving

Leasy ≤ L L
Leasy

Reduction

The type of reductions depends on the
complexity classes, e.g. reductions could be

randomized, quantum, space-limited

This formalizes that one problem is harder than another

E.g. every problem in NP is easier than 3SAT

Such problems are called NP-hard

P

NP

They live here

3SAT is also in NP

Such problems are called NP-complete
These are the hardest problems in NP

Some complexity classes
are not known to have

complete problems

More to come
• Oracles and Diagonalization

• Boolean Circuits

• PCP Theorem

• Supplementary Homework: read
Chapters 1 and 2

• Polynomial Hierarchy

