
Computational Complexity Basics
A very short introduction



Complexity Theory
Study of computational resources needed


 to solve different problems

Time?  Memory?

Randomness?

Proofs? Interaction? 
 P

NP

PSPACE

Efficient classical computation


Efficiently verifiable classically

Polynomial memory



Turing machine and Decision Problems
Turing Machine mathematically formalizes what an algorithm is

You can think of it as a piece of code in some programming 
language that takes an input and gives an output
Turing Machine may take some auxiliary inputs such as random bits, advice, etc.
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Turing Machine mathematically formalizes what an algorithm is

You can think of it as a piece of code in some programming 
language that takes an input and gives an output
Turing Machine may take some auxiliary inputs such as random bits, advice, etc.

Typically, we are interested in resources (e.g. time, space) 
required for computing functions 

f : {0,1}* → {0,1}

Decision Problems

A language is a subset of 

e.g. 

{0,1}*
L = {x | f(x) = 1}

Or equivalently, deciding whether a 
bitstring is in a language 

Languages, problems, functions are 
often used synonymously

Sometimes promise functions or 
promised languages or search 

problems are considered
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The Landscape of Complexity 
There are problems that cannot be solved by 

a Turing machine in any finite time
e.g. HALT =1 iff the Turing machine 
whose code is  halts in finite time on input  

(c, x)
c x

called undecidable problems

P is the class of languages which can be decided with a Turing 
Machine that runs in polynomial time in the input length

e.g. Linear Programming = Decide if a system of linear inequalities  has a solutiona⊤
i x ≤ bi

Typically, we call polynomial 
run time as efficient

e.g. 2SAT = Given a set of boolean 2-clauses (e.g. ) decide if there is an assignment satisfying all clausesxi ∨ xj

NP is the class of languages which can be efficiently decided 
when the Turing machine is given a polynomial-sized witness

e.g. 3SAT = Given a set of boolean 3-clauses (e.g. ) decide if there is a satisfying assignment xi ∨ xj ∨ xk

P  NP but whether it is a strict subset is a Millennium Prize Problem⊆
 Why?
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PSPACE is the class of languages which can be decided with a 

Turing Machine that uses polynomial space

BPP is the class of languages which can be efficiently decided 
with a randomized Turing machine

If  then [TM says “ ”]x ∈ L ℙ x ∈ L ≥ 2/3

If  then [TM says “ ”]x ∉ L ℙ x ∈ L ≤ 1/3

The probabilities  can be made :

 run multiple independent instances and take the 

majority outcome

(2/3,1/3) (1 − ϵ, ϵ)

It is believed that randomness does not help efficiency 
in computation, i.e. BPP=P
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The Landscape of Complexity 

P

BPP
NP

P

NP

PSPACE

In general, we do not have any techniques to show that a problem 
does not lie in (a reasonably powerful) complexity class

 Alternatives?

‣ Say one problem is harder than the other

‣ Use Oracles (in a later lecture)

‣ Study restricted types of algorithms (later)

 Why?
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Reductions and Complete Problems

  if an efficient algorithm for solving  

gives an efficient algorithm for solving 

Leasy ≤ L L
Leasy

Reduction

The type of reductions depends on the 
complexity classes, e.g. reductions could be 


randomized, quantum, space-limited

This formalizes that one problem is harder than another

E.g. every problem in NP is easier than 3SAT 

Such problems are called NP-hard

P

NP

They live here

3SAT is also in NP

Such problems are called NP-complete
These are the hardest problems in NP

Some complexity classes 
are not known to have 

complete problems 



More to come
• Oracles and Diagonalization

• Boolean Circuits

• PCP Theorem

• Supplementary Homework: read 
Chapters 1 and 2

• Polynomial Hierarchy


