
LECTURE & (February 14th)

TODAY BQP vs PH (part 2)

-> called the Forrier Correlation problemRECAP => a problem s
.
t

.

(1) A quantum algorithm can solve it with one query with success

probability 1

↳ TlN)
=>

OnecalMakethis TotbutitsMoreare
(2) Any AC circuit of size &Polylog/N) has success probability

atmost log-/N) 1 1E+ + --

↓F Z N"2
- 0(1)

=> Using diagonization and the connection between PH-oracle machines
and ACO circuit this implies that

= 0 s
.

t. BQpO & PHO

Forvier Correlation or Forrelation Problem introduced by Aaronson

ut Xi . ---YN , D ....YEEIg2N => One can encode this with In qubits where N =2
"

Hy) 7 1 "Accept" H = H
*" is the
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Decide if 32.10gN Hadamard Matrix
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of size 2" x 2" = NXN

Hy71 : g "Reject"

Note, # and I are unit Vectors andH is a unitary Matrixo
↓T
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Connection to Quantum Circuits

QM

10) - H - *

- Oy H
**m

12) -> xili) (j)+ yj(j)

The final state of this circuit (before measurement) in the computational
basis 10)

,
11
..... IN) looks like

<xy)(0) + -(1) + - (2) + ....
(Exercise)

In the exercises
, you saw how to construct a quantum algorithm for Forrelation

Today We will see that no AC-circuit of size zPolylog-N can solve Forrelation

Lower Bounds for AC circuit

Recalling our general recipe for proving- lower bounds , we need to come up with
a candidate hard distribution on inputs (x1 .. -Xv . Y -... Yn)= (4 , y)

Experience tells us to try the following distribution first

(
With probability #(x,y) +E1132" sampled uniformly conditioned on <HY) < FoN "Accept"

32

-
- "Reject"With probability # (x,y) +&1132" sampled uniformly conditioned onK -

6410g-N

The problem here is that this distribution is hard to analyze , so we will introduce a

different way of generating hard distributions by rounding continuous distributions
to E113-values

2

Let (U
,
V) ERP be a Gaussian with covariance G

I
IN HN

I & meanO

6 =
1
+°

-
--& --°

Note that UEIRN is a standard Gaussian in IRN HN IN ↓16 . IogN

with independent coordinates with mean 0 &

variance o
,
and so is V EIRN i, j entry of the covariance matrix

of a multi-variate Gaussian GEIR"

But U & V are correlated and is lEi[GiGj]
#[V; Vj] = 0 HN(j) ==

1
26
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Moreover- for a Gaussian in 1-dimension with mean o & variance 62

- tY/2
# / (6) > 6 t] =e

#(10) = yaze (bY2 2 (1882)
1610g-N

since 6==
-

By union bound this means that with probability 1-N" all coordinates of We are going3 to assume that
uov are in [E] this happens

with probability
1

Now , how do we round them to[13 values ?

Given a value Be C , 17 . 1P/X = + 1) = Eff

#(x = -1)= ( +i(x) = B
=> We do this to each coordinate of (U, V) ERR to obtain (x ,y) E1132N

(Ei[(x ,y)) = (0 , V)

Why this distribution ? Consider EECxy) under this distribution

= Hlij). 82
-

<X , Hy) = ↓ &Hr(ij) E(XiYj] = + &Hr(ij) IE[UiV

-HN(ij = N = 62
N-

=

In Expectation, this distribution has large Fourier Correlation "Accept"
Round

To summarize
,
Gaussian - I IN HN I -> E1 132N

-

ISTON Hir IN

on the other hand
,

-Independent Gaussian
o
For I

Round
&I,

ZN

"Reject"
uniform distribution

In expectation , this distribution has low Forvier Correlation ( )
L actually also with high probability)

③



From what you have shown in the exercises

=> a quantum algorithm s
.t .

J Ex
.ye firstribution

(Alg"accepts" < ,4) - Exyeunif [Al8 . accepts x,/" o
We are going to show that the above is small for any Ac circuit

In fact, we are going to prove a general purpose statement in terms
of Forrier Coefficients

Forvier Analysis over E11" "101"

Any function f : EI13" -> R can be expressed as a multilinear polynomial

1 f(x) = 5) FCS) i [We have seen quantum
algs. give such polynomials
of low degree but here

This is called the Fourier expansion of f deree can be in]

some intuition behind why this should be true :

A function f : E113"-IR can be written as a vector (f(x))xest]*

of length 2
*

One can equivalently write this as

f(x) = & f(a) 1[X = a]
at 2113m

The functions [1[X=al3 forms an orthogonal basis for the space of functions
under the inner product (f , g) = ([f(x)g(x)

Note that

< 1(x =a)
,
1(X=a)) = 2 -

m

Taking the Fourier Transform of f represents f(x)
in the basis of monomials (i xi)

Secm2

=> orthonormal basis under

the inner product
as the vector (f(S)

secu
defined above ((xi) ] = 1

④



Moreover
,
this change of basis is a unitary transformation

so
,
Euclidean lengths remain the same in the two basis (after normalizing

& E f(x)= - !E(S)l
S2[m]

2 i
. e. Ex[IfMTP] = & If(STR (Parseval's identity)

S[[M]

The last point to pay attention to is that

3 f(s) = Osf(0) f(x,zitz) = X
,
+ 2x

, 42 +34 ,4243

02123f(x ,,t2,+z) = 2+ 3x3

=> 821
, 23f(0) = 2

Lower Bounds for ForrierCorrelation

<Hy) = <HijxiY; is a degree 2 polynomial I computed by a graptur algoritiee

On the other hand
, any function (in particular those computed by AC circuits)

can also be written as a polynomial of very large degree

For instance
,
recall that even approximating- the OR function on N bits

(which can be computed by an AC circuit of size 1) needs IT degree

500 Why can't such large degree polynomials compute Forvier Correlation ?

&key message The difference is sparsity and we need a notion that says
that polynomials computed by AC-circuits (or other classical
models) are sparse in some sense

How do we capture sparsity ? A good proxy is 1-horm of coffecients

Here
, we need a more refined notion :

& - norm of coefficients of a particular degree

In particulare define wit
,
(f, 0) =<FS sum of absoulte values

of all degree k coefficients

= losf [By 3]

⑤



2N

similarly e Wh (f , m) = 10sflu) for ME [1 , 1)

This is still a notion of sparsity since one can show that

Wtk (f,0) = Max Wtk(f,M) < 16 Wt (f ,0) = We are not going
UFF'/ 'E2N to prove this here

[Main Lemma] #

by Raz-Tal I iron If accepts) - Eunif If accepte I
I

Note that only second
E Max

u [ , E)2N
Wt2 (f ,2). derivatives off matter

AC-circuits of
Polylogn size have bounded derivatives f = AC circuit output

Max Wtz/f,M) = Polylog-N) We won't prove this
e

fact here

Plugging it in the above statement. we get that the difference is

atmost log=

Proof of Main Lemma Let f(x ,y) be a multilinear polynomial in x0 x

As we saw before E: [x , Y; ] = [viVj) where UOV were the underlying
Gaussians

similarly for any multilinear monomial e
.g. x, +24344 Y24aYsY7

1:[X , 4243 X4 Y2Y4YsY] = l. [U , UzUz Un VzVqVsVz]

Thus it suffices to compute

& 2N
:# [ f (0 ,v)] - I [f(U

,
V)] where (U

,
U) ER- -

Cov A cor[5,]&[# 7. met

ne are gaussian
↑ ↑ with these covariances

Complicated Simple
Gaussian Gaussian

Key idea Interpolate between the two

E
.g. G(t) ER"" to be the Gaussian with covariance

+ (t) .

- + ( -t)[
2

⑥



At "time" 0
,
G(0) = Simple Gaussian

G(1) = Complicated Gaussian

If we can show thatIf/f(G(t))) < small te (0, 1]

=>I IE(f(0(11) - #[f(Gcol) =1 #(GHK) /-> small

Gaussian Interpolation Formula exactly allows us to compute the "time" derivative

((f(G(t))) = S initial) I / Oijf(G(t))]
isedang

(Ctrl Cig
NY I

Final (i,j) Initial (i,j)
covariance Covariance

entry entry

final-ginitial = 62 IOHN]Z2N rows
= All entries = in absolute valuee

-

2 columns

: (10,jf(G(t))) < Max S 10ijf(n) assuming-G(t) E (-1 , 172N .

which holds w.h.p .

so
o
overall

-
we get IH(G(l)) < - Max star Eldijflul↑(

To summarize
,

=> a quantum algorithm s
.t .

J Ex
.Ye firstribution

(Alg"accepts" < ,4) - Exyeunif [Al8 . accepts x,y)) oo

On the other hand
, for any Al circuit of size

zPolylog-in

J Ex
.ye firstribution

(Alg"accepts" < ,4) - Exyeunif [AlG . accepts x,y]) -> Fo

This can be used to prove the lower bound for promise version of Fourier Correlation
by a standard argument that we leave as an exercise

⑦


