LECTURE 9 (February $14^{\text {th }}$)

TODAY BQP vs PH (part 2)
RECAP \exists a problem s.t. \rightarrow called the Fourier Correlation problem
(1) A quantum algorithm can solve it with one query with success probability
$\frac{1}{2}+\frac{1}{\text { polylog(N) }} \leftarrow$ One can make this $\frac{1}{2}+0.1$ but its more complicated and we won't cover it here
(2) Any $A C^{0}$ circuit of size $2^{\text {poly log }}(N)$ has success probability

$$
\text { atmost } \frac{1}{2}+\frac{\operatorname{poly} \log (N)}{\sqrt{N}} \ll \frac{1}{2}+\frac{1}{N^{1 / 2-\theta(1)}}
$$

\Longrightarrow Using diagonization and the connection between PH -oracle machines and $A C^{0}$ circuit this implies that

$$
\exists 0 \text { sit. } B Q P^{0} \nsubseteq P H^{0}
$$

Fourier Correlation or Forrelation Problem
introduced by Aaronson
Input $x_{1} \ldots x_{N}, y_{1} \ldots y_{N} \in\{ \pm 1\}^{2 N} \Longrightarrow$ One can encode this with $2 n$ quits where $N=2^{n}$
Promise $\left\{\begin{array}{lll}\text { Decide if } \frac{\langle x, H y\rangle}{N} \geqslant \frac{1}{32 \cdot \log N} & \text { "Accept" } & \begin{array}{l}H=\begin{array}{l}H^{\otimes n} \\ \text { Hadamard matrix }\end{array} \\ \\ \\ \frac{|\langle x, H y\rangle|}{N} \leqslant \frac{1}{64 \cdot \log -N}\end{array} \quad \text { "Reject" }\end{array}\right.$

Note, $\frac{x}{\sqrt{N}}$ and $\frac{y}{\sqrt{N}}$ are unit vectors and H is a unitary matrix
so, $\frac{\langle x, H y\rangle}{N} \in[-1,1]$

Also, note $\frac{\left\langle x_{1} H y\right\rangle}{N}=\sum_{i j} x_{i} y_{i} \frac{H_{i j}}{N}$

The final state of this circuit (before measurement) in the computational basis (10), (17,.... (N) looks like

$$
\begin{equation*}
\frac{\langle x, H y\rangle}{N}|0\rangle+(11\rangle+(|2\rangle+\ldots \tag{Exercise}
\end{equation*}
$$

In the exercises, you saw how to construct a quantum algorithm for Forrelation Today we will see that no $A C^{0}$-circuit of size $2^{\text {poly log }}$ (N) can solve Forrelation Lower Bounds for $A C^{0}$ circuit

Recalling our general recipe for proving- lower pounds, we need to come up with a candidate hard distribution on inputs $\left(x_{1} \ldots x_{N}, y_{1} \ldots y_{N}\right)=(x, y)$

Expenence tells us to try the following distribution first
$\left\{\begin{array}{l}\text { with probability } \frac{1}{2} \quad(x, y) \in\{ \pm 1\}^{2 N} \text { sampled uniformly conditioned on } \frac{\langle x, H y\rangle}{N} \geqslant \frac{1}{32 \log N} \text { "Accept" } \\ \text { with probability } \frac{1}{2} \quad(x, y) \in\{ \pm 1\}^{2 N} \text { sampled uniformly conditioned on } \frac{|\langle x, H y\rangle|}{N} \frac{1}{64 \log N} \text { "Reject" }\end{array}\right.$

The problem here is that this distribution is hard to analyze, so we will introduce a different way of generating hard distributions by rounding continuous distributions to $\{ \pm 1\}$-values

Let $(U, V) \in \mathbb{R}^{2 N}$ be a Gaussian with covariance $\sigma^{2}\left[\begin{array}{cc}I_{N} & H_{N} \\ H_{N} & I_{N}\end{array}\right] \begin{gathered}\text { \& mean } 0 \\ \sigma=\frac{1}{\sqrt{16 \cdot \log N}}\end{gathered}$
Note that $U \in \mathbb{R}^{N}$ is a stanclard Gaussian in \mathbb{R}^{N} with independent coordinates with mean 0 \& variance σ^{2}, and so is $V \in \mathbb{R}^{N}$

But $U \& V$ are correlated and

$$
\mathbb{E}\left[U_{i} v_{j}\right]=\sigma^{2} H_{N}(i, j)= \pm \frac{\sigma^{2}}{\sqrt{N}}
$$

i, j entry of the covariance matrix of a multi-variate Gaussian $G \in \mathbb{R}^{m}$ is $\mathbb{E}\left[G_{i} G_{j}\right]$

$$
\frac{1}{2 \sigma}
$$

Moreover, for a Gaussian in 1-dimension with mean 0 \& variance σ^{2}

$$
\begin{aligned}
& \mathbb{P}[|G| \geqslant \sigma t] \leq 2 e^{-t^{2} / 2} \\
& \mathbb{P}\left[|\sigma| \geqslant \frac{1}{2}\right] \leq 2 e^{-\left(\frac{1}{2 \sigma}\right)^{2} / 2}=2 e^{-\left(1 / 8 \sigma^{2}\right)}=\frac{2}{N^{2}} \text { since } \sigma=\frac{1}{\sqrt{16 \log N}}
\end{aligned}
$$

By union bound this means that with probability $1-N^{-1}$ all coordinates of $\}$ We are going

$$
U \& V \text { are in }\left[-\frac{1}{2}, \frac{1}{2}\right]
$$ to assume that this happens with probability

Now, how do we round them to $\{ \pm 1\}$ values?

$$
\text { Given a value } \left.\begin{array}{rl}
\beta \in[-1,1], \mathbb{P}[x=+1] & =\frac{1}{2}+\frac{\beta}{2} \\
\mathbb{P}[x=-1] & =\frac{1}{2}-\frac{\beta}{2}
\end{array}\right\} \mathbb{E}[x]=\beta
$$

\Rightarrow We do this to each coordinate of $(u, v) \in \mathbb{R}^{2 N}$ to obtain $(x, y) \in\{ \pm 1\}^{2 N}$

$$
\mathbb{E}[(x, y)]=(u, v)
$$

Why this distribution? Consider $\mathbb{E} \frac{\langle x, H y\rangle}{N}$ under this distribution

$$
\begin{aligned}
\frac{1}{N} \mathbb{E}\langle x, H y\rangle=\frac{1}{N} \sum_{i j} H_{N}(i, j) \mathbb{E}\left[x_{i} y_{j}\right] & =\frac{1}{N} \sum_{i j} H_{N}(i, j) \overbrace{\mathbb{E}\left[U_{i} v_{j}\right]}^{=H_{N}(i j) \cdot \sigma^{2}} \\
& =\frac{\sigma^{2}}{N} \sum_{i j} \underbrace{H_{N}(i, j)^{2}}_{=\frac{1}{N}}=\frac{\sigma^{2}}{D^{2}} \cdot X^{2}=\sigma^{2}=\frac{1}{2 \log N}
\end{aligned}
$$

In Expectation, this distribution has large Fourier Correlation "Accept"

$$
\text { To summarize, Gaussian } \left.\underset{2 \sqrt{\text { looN }}}{\frac{1}{I_{N}}} \begin{array}{ll}
H_{N} \\
H_{N} & I_{N}
\end{array}\right] \quad \xrightarrow{\text { Round }}\{1\}^{2 N}
$$

on the other hand,
Independent Gaussian $\frac{1}{2 \sqrt{\log ^{N} N}}\left[\begin{array}{cc}I_{N} & 0 \\ 0 & I_{N}\end{array}\right] \xrightarrow{\text { Round }} \underset{\substack{\{ \pm 1\}^{2 N} \\ \text { uniform }}}{\substack{\text { (Reject" } \\ \text { distribution }}}$
In expectation, this distribution has low Fourier Correlation $\left(\leq \frac{1}{\sqrt{N}}\right)$ (actually also with high probability)

From what you have shown in the exercises

- a quantum algorithm st.

$$
\left.\left|\mathbb{E}_{x, y \in \text { first }}^{\text {distribution }}\right| \text { Alg "accepts" } x, y\right]-\mathbb{E}_{x, y \in \text { unif }}[\text { Alg. accepts } x, y] \left\lvert\, \geqslant \frac{1}{32 \log N}\right.
$$

We are going to show that the above is small for any $A C^{0}$ circuit
In fact, we are going to prove a general purpose statement in terms of Fourier coefficients

Fourier Analysis over $\{ \pm 1\}^{m n} \quad$ "101"
Any function $f:\{ \pm \mid\}^{m} \longrightarrow \mathbb{R}$ can be expressed as a multilinear polynomial
$1 \quad f(x)=\sum_{\delta \in[m]} \hat{f}(s) \prod_{i \in s} x_{i}$

This is called the Fourier expansion of f
[We have seen quantum algs. give such polynomials of low degree but here degree can be m]

Some intuition behind why this should be true:
A function $f:\{ \pm 1\}^{m_{n}} \rightarrow \mathbb{R}$ can be written as a vector $(f(x))_{x \in\left\{ \pm 3^{m}\right.}$ of length 2^{m}

One can equivalently write this as

$$
f(x)=\sum_{a \in\{ \pm 1\}^{m}} f(a) \mathbb{1}[x=a]
$$

The functions $\{\mathbb{1}[x=a]\}_{a}$ forms an orthogonal basis for the space of functions under the inner product $\langle f, g\rangle=\underset{x}{\mathbb{E}}[f(x) g(x)]$

Note that

$$
\langle 1[x=a], 1[x=a]\rangle=2^{-m}
$$

Taking the Fourier Transform of f represents $f(x)$ in the basis of monomials $\left(\prod_{i \in s} x_{i}\right)_{S \subseteq[m]} \longleftarrow \begin{gathered}\text { orthonormal basis under } \\ \text { the inner product }\end{gathered}$ as the vector $(\hat{f}(s))_{S \leq[m]}$ defined above $\mathbb{E}\left[\left(\prod_{i \in s} x_{i}\right)^{2}\right]=1$

Moreover, this change of basis is a unitary transformation
so, Euclidean lengths remain the same in the two basis (after normalizing-)

$$
\frac{1}{2^{m}} \sum_{x} f(x)^{2}=\sum_{s \subseteq[m]}|\hat{f}(s)|^{2}
$$

(2) i.e. $\mathbb{E}_{\pi}\left[|f(x)|^{2}\right]=\sum_{s \leq[m]}|\hat{f}(s)|^{2}$
(Parseval's identity)

The last point to pay attention to is that

$$
\begin{equation*}
\hat{f}(s)=\partial_{s} f(0) \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+2 x_{1} x_{2}+3 x_{1} x_{2} x_{3} \\
& \partial_{\{1,2\}} f\left(x_{1}, x_{2}, x_{3}\right)=2+3 x_{3} \\
& \Rightarrow \partial_{\{1,2\}} f(0)=2
\end{aligned}
$$

Lower Bounds for Fourier Correlation
$\frac{\langle x, H y\rangle}{N}=\sum \frac{H_{i j}}{N} x_{i} y_{j}$ is a degree 2 polynomial \Rightarrow computed by a quantum algorithm

On the other hand, any function (in particular those computed by $A C^{\circ}$ circuits) can also be written as a polynomial of very large degree

For instance, recall that even approximating the $O R$ function on N bits (which can be computed by an $A C^{\circ}$ circuit of size 1) needs \sqrt{N} degree

So, why can't such large degree polynomials compute Fourier Correlation?
The key message The difference is sparsity and we need a notion that says that polynomials computed by $A C^{\circ}$-circuits (or other classical models) are sparse in some sense

How do we capture sparsity? A good proxy is l,-norm of coeffecients
Here, we need a more refined notion:
l_{1}-norm of coefficients of a particular degree
In particular, define $\quad W t_{k}(f, 0)=\sum_{|s|=k}|\hat{f}(s)| \quad$ sum of absoulte values of all degree k coefficients

$$
=\sum_{|s|=k}\left|\partial_{s} f(0)\right| \quad[\text { By } 3]
$$

Similarly, $\quad \omega t_{k}(f, \mu)=\sum_{|s|=k}\left|\partial_{s} f(\mu)\right| \quad$ for $\mu \in[-1,1]^{2 N}$
This is still a notion of sparsity since one can show that

$$
w t_{k}(f, 0) \leq \max _{\mu \in\left[-1 / 2 \frac{1}{2}\right]^{2 N}} w t_{k}(f, \mu) \leq 16 w t_{k}(f, 0) \leftarrow \text { We are not going }
$$

[Main Lemma] by Raz-Tal
$\mid \underset{\substack{\text { large } \\ \text { Fourier } \\ \text { Corr }}}{\mathbb{E}}[f$ accepts $]-\mathbb{E}_{\text {unif }}[f$ accepts $] \mid$

$$
\leq \max _{\mu \in\left[-\frac{1}{2}, \frac{1}{2}\right]^{2 N}} W t_{2}(f, \mu) \cdot \frac{\sigma^{2}}{\sqrt{N}}
$$

Note that only second derivatives of f matter
$A C^{\circ}$-circuits of $2^{\text {poly } \log (N)}$ size have bounded derivatives $f=A C^{\circ}$ circuit output
$\max _{\mu} \omega t_{2}(f, \mu) \leq \operatorname{poly} \log (N)$ We won't prove this fact here

Plugging it in the above statement, we get that the difference is

$$
\text { atmost } \frac{\operatorname{polylog}(N)}{\sqrt{N}}=\frac{1}{N^{1 / 2-0(1)}}
$$

Proof of Main Lemma Let $f(x, y)$ be a multilinear polynomial in x \&
As we saw before $\mathbb{E}\left[x_{i} y_{j}\right]=\mathbb{E}\left[u_{i} v_{j}\right]$ where $U \propto V$ were the underlyingGaussian

Similarly for any multilinear monomial e.g. $x_{1} x_{2} x_{3} x_{4} y_{2} y_{4} y_{5} y_{7}$

$$
\mathbb{E}\left[x_{1} x_{2} x_{3} x_{4} y_{2} y_{4} y_{5} y_{7}\right]=\mathbb{E}\left[U_{1} u_{2} U_{3} U_{4} v_{2} v_{4} v_{5} v_{7}\right]
$$

Thus it suffices to compute

Key idea Interpolate between the two
E.g. $G(t) \in \mathbb{R}^{2 N}$ to be the Gaussian with covariance

$$
t\left[\begin{array}{ll}
\mathbf{I} & H \\
H & \mathbf{I}
\end{array}\right] \cdot \sigma^{2}+(1-t)\left[\begin{array}{ll}
\mathbf{I} & H \\
H & \mathbf{I}
\end{array}\right] \cdot \sigma^{2}
$$

At "time" $0, G(0)=$ Simple Gaussian
$G(1)=$ Complicated Gaussian
If we can show that $\left\lvert\, \frac{d}{d t} \mathbb{E}[f(G(t)] \mid \leq$ small $\quad \forall t \in[0,1]\right.$

$$
\Rightarrow|\mathbb{E}[f(G(1))]-\mathbb{E}[f(G(0))]|=\left|\int_{0}^{1} \frac{d}{d t} \mathbb{E}[f(G(t))]\right| \leq \text { small }
$$

Gaussian Interpolation Formula exactly allows us to compute the "time" derivative

$$
\begin{aligned}
& C^{\text {final }}-C^{\text {initial }}=\sigma^{2} \underbrace{\left[\begin{array}{cc}
0 & H_{N} \\
H_{N} & 0
\end{array}\right]}_{2 N \text { columns }}\} 2 N \text { rows } \Rightarrow \text { All entries } \leq \frac{\sigma^{2}}{\sqrt{N}} \text { in absolute value } \\
& \sum_{i j} \mathbb{E}\left[\mid \partial_{i j} f(G(t))\right] \leq \max _{\mu} \sum_{i j}\left|\partial_{i j} f(\mu)\right| \quad \text { assuming } G(t) \in[-1,1]^{2 N} \text {. } \\
& \text { which holds w.h.p. }
\end{aligned}
$$

So, overall, we oct $\left|\frac{d}{d t} \mathbb{E}[f(G(t))]\right| \leq \frac{\sigma^{2}}{\sqrt{N}} \cdot\left(\max _{\mu \in[-1,1)^{2 N}} \sum_{i j}\left|\partial_{i j} f(\mu)\right|\right)$

To summarize,
F a quantum algorithm sit.

$$
\left.\left|\mathbb{E}_{x, y \in \text { first }}^{\text {distribution }}\right| \text { Alg "accepts" } x, y\right]-\mathbb{E}_{x, y \in \text { uni }}[\text { Alg. accepts } x, y] \left\lvert\, \geqslant \frac{1}{32 \log N}\right.
$$

On the other hand, for any $A C^{0}$ circuit of size $2^{\text {polylog(N) }}$

$$
\left.\left|\mathbb{E}_{x, y \in \text { first }}^{\text {distribution }}\right| \text { Alg "accepts" } x, y\right]-\mathbb{E}_{x, y \in \text { unif }}\left[A(g . \text { accepts } x, y] \left\lvert\, \leq \frac{1}{N^{1 / 2-0(1)}}\right.\right.
$$

This can be used to prove the lower bound for promise version of Fourier Correlation by a standard argument that we leave as an exercise

