RECAP Theorem $3 B Q \subseteq P P$ where $P P=$ probabilistic poly -time algorithms w/ error $<\frac{1}{2}$
We converted a circuit that takes $n$-bit inputs and uses $h$ Hadamard oates into a tree with $2^{h}$ leaves


The final state $\left.|\psi\rangle=\frac{1}{\sqrt{2^{h}}} \sum_{p} \operatorname{sign}(p) \right\rvert\,$ abel $\left.(p)\right\rangle$

$$
\left.=\frac{1}{\sqrt{2^{n}}} \sum_{y \in\{0,1\}^{\text {poly }(n)}} \underbrace{\left.\sum_{\substack{\text { paths } \\ \text { with label }}} \operatorname{sigh}(p)\right)}_{:=\alpha_{y}} \right\rvert\, y)
$$

Then, $\alpha_{y}{ }^{2}=\frac{1}{2^{h}} \sum_{p, p^{\prime}} \operatorname{sign}(p) \cdot \operatorname{sign}\left(p^{\prime}\right)$

$$
\operatorname{label}(p)=\operatorname{label}\left(p^{\prime}\right)=y
$$

$\mathbb{P}[B Q P$ algorithm outputs 1$]-\mathbb{P}[B Q P$ algorithm outputs 0$]$

$$
=\begin{aligned}
& \sum_{y}\left|\alpha_{y}\right|^{2}(-1)^{\mathbb{1}\left[y_{1}=0\right]} \\
& =\frac{1}{2^{h}} \sum_{\substack{p, p^{\prime} \text { same } \\
\text { labels }}} \underbrace{\operatorname{sign}(p) \cdot \operatorname{sign}\left(p^{\prime}\right)(-1)^{\mathbb{1}\left[(1 a b e l(p))_{1}=0\right]}}_{\beta\left(p, p^{\prime}\right)}=\left\{\begin{array}{ll}
>\frac{1}{3} & \begin{array}{l}
\text { correct } \\
\text { if } \\
\text { answer is } 1 \\
<-\frac{1}{3}
\end{array} \\
\text { if answer is } \begin{array}{l}
\text { correct }
\end{array}
\end{array}\right\}
\end{aligned}
$$

PP algorithm Randomly select two paths PIP' in the tree

- If labels are different, just accept/reject w.p. 1/2
- If labels are same,

$$
\begin{aligned}
& \text { ire same, } \\
& \text { accept iff } \underbrace{\operatorname{sigh}(p) \cdot \operatorname{sigh}\left(\rho^{\prime}\right)(-1)^{\mathbb{1}}}_{\beta\left(p, p^{\prime}\right)} \text { [(1abel(p))})_{1}=0]
\end{aligned} 0
$$

$$
\dot{\text { Time }}=\text { poly }(n)
$$

TODAY Intro to oracle separations \& query complexity $B Q P$ vs BPP

How do we show that BQP is more powerful than BPP?
or Other classical complexity classes? or that BQP can not solve NP-hard problems?

- Proving unconditional separations is out of reach
- Proving separations based on standard assumptions such as $P \neq N P$, cryptographic assumptions is also extremely difficult
- Oracle or Black-box separations - still very difficult in many cases

Show that $\exists$ oracle 0 st. $B Q P^{0} \neq B P P^{0}$
Disclaimer: Oracles increase the computational power of classes differently
So, this is only a heuristic
For instance, $\begin{gathered}\exists \text { complexity classes } A, B \text { s.t. } A=B \\ \text { but } \ni \text { oracle } O \text { s.t. } A^{O} \neq B O\end{gathered}$
So, what is the point?
Showing black-box separations reduces to unconditional separations for query algorithms
Understanding algorithms in this simplified model gives useful algorithmic ideas and can also lead to a candidate for quantum advantage in the real-world

L If separations don't hold in the simplified model, it gives indications that new principles are needed to establish unconditional separations

## Query Algorithms

Suppose we have an oracle $O_{f}$ that computes $f:\{0,1\}^{n} \rightarrow\{0,1\}$
To use this oracle as part of the quantum circuit we must define a unitary $U_{f}$ that implements calls to the oracle

Moreover, ideally if we have an efficient quantum circuit for $f$, we should be able convert it into an efficient quantum circuit for $v_{f}$

There are two standard ways of doing this

Phase or ache $\quad \begin{gathered}V_{f}|x\rangle=(-1)^{f(x)}|x\rangle \quad \text { Value of } f \text { is returned in the phase }\end{gathered}$
Also, satisfies $V_{f}^{+}=V_{f}$
Note that although global phases don't matter if
$V_{f}$ is applied to a superposition it can create relative phases
For example, if $f:\{0,1\} \rightarrow\{0,1\}$ is defined as $f(x)=x$
Then, $V_{f}\left(\frac{|0\rangle+|1|\rangle}{\sqrt{2}}\right)=\frac{|0\rangle-|1|}{\sqrt{2}}$

The two oracles are equivalent in the sense that given access to one (and some ancillas) the other can also be implemented efficiently

Bit oracle to phase oracle

$$
\begin{aligned}
\frac{U_{f}|x\rangle|0\rangle-|x\rangle|1\rangle}{\sqrt{2}} & =\frac{|x\rangle|f(x)\rangle-|x\rangle|1 \oplus f(x)\rangle}{\sqrt{2}} \\
& = \begin{cases}|x\rangle|-\rangle & \text { if } f(x)=0 \\
-|x\rangle|-\rangle & \text { if } f(x)=1\end{cases}
\end{aligned}
$$

## Phase Oracle to bit oracle Exercise

Query Complexity Given black-box or query access to $U_{f}$ or $V_{f}$, how many queries need to be made to the black-box in order to solve a problem?

If classically, we need exponentially many queries but quantumly, only polynomially many
This is an evidence of quantum algorithms having an exponential advantage in terms of query complexity for a problem

$$
\begin{aligned}
& \begin{array}{r}
|x\rangle- \\
\text { ancilla }\rangle \\
\rightarrow \text { uses } U_{f} \text { and universal gate }
\end{array} \\
& \underset{\substack{\otimes \\
\mid \rightarrow-}}{\substack{|x|}} u^{(-1)^{f(x)}|x\rangle(\otimes|-\rangle}
\end{aligned}
$$

Moreover, query complexity separation $\Rightarrow$ oracle separation
And if we can find an efficient circuit for the black-box or a new quantum algorithmic technique, this can give rise to real-world problems with practical quantum advantage For instance, Simon's problem shows an exponential separation in terms of classical versus quantum query complexity and also inspired Shor's algorithm

Simon's problem Given a black-box $f:\{0,1\}^{n} \rightarrow\{0,1\}^{h}$ promised that either

$$
\text { - } f \text { is } 1-t_{0}-1
$$

- Or $\exists$ an Unknown string $s \neq 0$ st. $\forall x \neq y, f(x)=f(y)$ ff $y=x \oplus s$

Figure out which case we are in
If we think of the hypercube $\{0,1\}^{n}$ as being -colored by the corresponding $f$-values, the first condition means all colors are distinct, the second means all pairs ( $x, x \oplus S$ ) are colored with distinct color but the color within a pair is the same
$\Gamma$ with constant error
Theorem (a) Ia quantum algorithm solving the problem with $O(n)$ queries (simon) (b) any classical algorithm requires $\theta\left(2^{n / 2}\right)$ queries for constant error

Quantum The algorithm runs the following quantum circuit $O(n)$ times
Algorithm and does some classical post-processing afterwards


What does this circuit do ? (1) $=1+\rangle^{\otimes n}|0\rangle^{\otimes n}=\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|0\rangle^{\otimes n}$
for $f$ st. $f(x)=f(x \oplus S)$

$$
\text { Query } f \quad(2)=\frac{1}{\sqrt{2^{n}}} \sum_{x}|x\rangle|f(x)\rangle
$$

Measure
(3) $=\frac{1}{\sqrt{2}}\left(\left|x^{*}\right\rangle+\left|x^{*} \oplus S\right\rangle\right) \otimes\left|f\left(x^{*}\right)\right\rangle$

Prepare uniform superposition over inputs

Discard second register

Are we done here? Can we measure this state $O(1)$ times and obtain s? Why NOT?

Hadamard on first

$$
\begin{aligned}
&(4)=\frac{1}{\sqrt{2^{n+1}}} \sum_{y \in\{0,1\}^{n}}\left((-1)^{x^{*} \cdot y}+(-1)^{\left(x^{*} \oplus s\right) \cdot y}\right)|y\rangle \\
&=\frac{1}{\sqrt{2^{n+1}}} \sum_{y \in\left\{0,13^{n}\right.}(-1)^{x^{*} \cdot y}\left(1+(-1)^{s \cdot y}\right)|y\rangle \\
&=\frac{1}{\sqrt{2^{n-1}}} \sum_{\substack{y . t . \\
s \cdot y=0}}(-1)^{x^{*} \cdot y}|y\rangle \\
&
\end{aligned}
$$ $n$ quits

Measure first (5) = Get a uniformly random $y$ st. s. $y=0$ $n$ quails

$$
\Rightarrow s_{1} y_{1} \oplus \ldots \oplus S_{n} y_{n}=0
$$

This is a random linear equation over $\mathbb{F}_{2}$ in the variables $s_{1}, \ldots s_{n} \in \mathbb{F}_{2}$
$\left.\left.\begin{array}{l}\text { If we have } n-1 \text { linearly independent equations } s \cdot y_{i}=0 \\ \text { we can solve for } s\end{array}\right\} \Rightarrow \begin{array}{l}2 \text { solutions } \\ s=0 \& s\end{array}\right]$
$\Rightarrow$ If we run this process $O(n)$ times, we get $n$ linearly independent linear equations with constant probability
$\Rightarrow$ If $f$ non-zero solution $s$, output that $f$ is not 1-1 otherwise, output that $f$ is 1-1
(Exercise) Make the above rigorous by showing that if we run the above quantum circuit $m=O(n)$ times and obtain $y_{1}, \ldots y_{m}$

Then, with high probability the system of linear equation over $\mathbb{F}_{2}$

$$
\begin{aligned}
& s \cdot y_{1}=0 \\
& \vdots \\
& s \cdot y_{m}=0
\end{aligned}
$$

- has a non-zero solution if $f$ is not 1-to-1
- Only has a zero solution if $f$ is 1-to-1

Classical Lower Bound Every randomized algorithin needs $\Omega\left(2^{h / 2}\right)$ queries
Recipe (1) Come up with a hard candidate distribution on inputs

$$
f=\left\{\begin{array}{l}
\text { uniformly random 1-1 function w.p. } 1 / 2 \\
\text { uniformly random function satisfying Simon' property w.p. } 1 / 2
\end{array}\right.
$$

(2) Suffices to consider deterministic algorithms

$$
\begin{aligned}
& \mathbb{E}_{f} \mathbb{E}_{r}\left[\mathbb{1}\left[\begin{array}{c}
\text { Algorithm with randomness } \\
r \text { succeeds }
\end{array}\right]\right] \geqslant \frac{2}{3} \\
\Rightarrow & \mathbb{E}_{r} \mathbb{E}_{f}\left[\mathbb { 1 } \left[-\cdots \geqslant \frac{2}{3}\right.\right. \\
\Rightarrow & \exists r \text { s.t. } \mathbb{E}_{f}\left[\mathbb{1}\left[\begin{array}{c}
\text { Algorithm with randomness } \\
r \text { succeeds }
\end{array}\right]\right] \geqslant \frac{2}{3}
\end{aligned}
$$

(3) Lower Bound for Deterministic algorithms
input output
First query $\left(\hat{x}_{1}, \hat{y}_{1}\right) \rightarrow$ No information about $s$ since $y_{1} \in\{0,1\}^{n}$ is uniform
second query $\left(x_{2}, y_{2}\right) \rightarrow$ Either $x_{1} \oplus x_{2}=s \quad$ (collision) $\rightarrow$ w.p. $\approx 2^{-h}$ or $x_{1} \oplus x_{2} \neq s$ (no collision)
$\square$
can't distinguish 1-1 inputs
$k$ queries $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$
Can't distinguish unless $x_{i} \oplus x_{j}=r$ for some pair (i,j)
$\rightarrow \mathbb{P}[$ any collision among $k$ queries $]=O\left(\frac{k^{2}}{2^{n}-k^{2}}\right)$ where $k \leq \frac{2^{n / 2}}{100}$

