TODAY Applications \& Constructions of PRS

RECAP

State t-clesigns A distribution over n-qubit states is called a state t-design if the t-th moments match the t-th moment of the Haar measure,

$$
\mathbb{E}_{|\psi\rangle \sim t \text {-design }}\left[|\psi X \psi|^{\otimes t}\right]=\mathbb{E}_{|\psi\rangle \sim \text { Haar }}[|\psi X \psi| \otimes t]
$$

Note that this means that no quantum algorithm can distinguish the two no matter how much time it takes when given only t-copies of the state. t is fixed here beforehand and this is an information-theoretic notion.

Pseudorandom states A distribution over states is called a pseudorandom state distribution (PRS)
if \exists a poly-time quantum algorithm that takes n-bit classical input k and outputs a state $\left|\psi_{k}\right\rangle$ s.t. no poly-time quantum distinguisher can distinguish any poly (n) copies of $\left.1 \psi_{k}\right)$ from a Haar random state ie. $\forall t=\operatorname{poly}(n)$, and for all poly-time distinguishers A,

$$
\mid \mathbb{P}_{k \in\left\{0, B^{n}\right.}\left[A\left(\left|\psi_{k}\right\rangle\right) \text { accepts }\right]-\mathbb{P}_{|\psi\rangle \sim H \text { Haar }}[A(|\psi\rangle) \text { accepts }] \mid \leq \operatorname{neg}((n)
$$

Since the algorithm does not know k, and distributions over quantum states is a mixed state, One can equivalently think of the above problem as distinguishing two mixed states

$$
\rho_{P R S}^{(t)}=\mathbb{E}_{k}\left|\psi_{k} X \psi_{k}\right|^{\otimes t} \quad \text { and } \quad \rho_{\text {Haar }}^{(t)}=\mathbb{E}_{|\psi\rangle \sim \text { Haar }}|\psi X \psi| \otimes t
$$

Single- copy PRS It is trivial to construct a PRS if $t=1$ and $|\Psi\rangle$ is on n-quits where the key-length is n. This ir because here we just want a mixed state that is indistinguishable from $\rho_{\text {Haar }}^{(1)}=\frac{\mathbb{I}_{n}}{2^{n}}$, i.e. the maximally mixed state.

Such a PRS can be constructed just by outputting a random computational basis states.

However, if we require that the PRS generator outputs a state on more quits than the key length, then this becomes a non-trivial definition.

Before talking about how to construct PRS and the assumptions needed for that, let us look at some applications of PRS. We will not talk much about state t-design applications.

Secret Key Encryption

Alice and Bob share a secret key k and Alice wants to send Bob a bit encoded in a quantum message that no poly-time adversary can crack but Bob can still decode it.

Here is a scheme that achiever this:

Let $U_{k}\left|0^{n}\right\rangle \rightarrow\left|\Psi_{k}\right\rangle$ be the poly-time unitary that prepares the PRS on key k. We will assume that k is the shared secret key.

Suppose Alice wants to send a bit $b \in\{0,1\}$ to Bob. If $b=0$, she sends $1 \psi_{k}$) and if $b=1$, she sends a Haar random state To decode, Bob applies U_{k}^{+}to the message and if he rets $\left.10^{n}\right\rangle$ he says $b=0$ and otherwise $b=1$

One can show that if the number of quoits in the PRS is $>n+\omega(\log n)$ where n is the key length, then this scheme is secure. Note that this only relies on single copy security.

One can also easily extend this to send multiple bit messages [Exercise]
A related notion called bit-commitment can also be boil from PRS but we will not cover it here since the part that relies on PRS is similar to the above.

Pseudoentanglement
Recall that a Haar random state has the maximal amount of entanglement entropy, i.e. if $|\psi\rangle$ is a n-qubit state that is Haar random, then for any bipartition of the n-qubits into two parts (A, B), the entropy of $|\psi\rangle$ across this cut is $\sim \min \{|A|,|B|\}$ with high probability.

$$
(n-q u b i t)
$$

A distribution over quantum states is called pseudoentangled if it is a PRS and the entanglement entropy across every cut is $O\left(\log ^{2} n\right)$. The $O\left(\log ^{2} n\right)$ is a parameter that can be tuned but it must be $\omega(\log n)$ since a PRS it is known that PRS must have $\omega(\log n)$-entanglement entropy. We already mentioned that PRS have some entanglement and this is a more precise version of that]

Such pseudoentangled states have applications in quantum information theory, property testing and quantum gravity.

Remarks (1) We know how to construct state t-designs unconditionally, but for PRS we need some sort of assumption.

This is because if we have exponentially many copies of the state, one can learn the classical description of the state by a procedure called
"state tomography". This can be clone in PSPACE.
Thus, showing PRS exist unconditionally implies $B Q P \neq$ PSPACE
What assumptions do we need to construct PRS?
[a] One-way functions These are functions such that it is easy to compute $f(x)$ but hard to compute $f^{-1}(y)$ for a random point in the image

Almost all classical cryptography can be based on one-way functions and vice-versa

We will see a construction of PRS based on one-way functions that are secure against quantum adversaries
(b) Weaker assumptions There is some evidence that PRS can still exist in a world where one-way functions do not

In particular, in a joint work with Kretschmer, Qian \& Wal, I showed that \exists a classical oracle 0 such that $P^{0}=N P^{0}$ but $P R S$ exist relative to 0 .

Remark The above is for single-copy PRS, for multi-copy, the proof is under a conjecture.

This means that quantum cryptography and other applications of PRS, that we will discuss later might still be possible even if classical cryptography based on one-way functions is not possible
(2) We don't know how to stretch or stink a PRS. This is because removing quits does not give a pure state and a PRS always has some entanglement (This will be an exercise). This is in contrast to the classical setting. In fact, there is some evidence in the form of black-box separations that shrinking a PRS is not possible in a black-box way.

We will introduce a construction that will give us an easy way to construct both state designs and PRS, under different assumptions.

The crux of the matter is the following statement, for which we first introduce the notion of trace distance.

Trace distance Trace distance generalizes the notion of total variation distance between two distributions to the setting of density matrices

The Trace norm of a Hermititian matrix $A=\sum_{i} \lambda_{i}\left|v_{i} X V_{i}\right|$ is the quantity

$$
\|A\|_{1}=\sum_{i}\left|\lambda_{i}\right|
$$

The trace distance between $\rho Q \sigma$ is $\frac{1}{2}\|\rho-\sigma\|_{1}$.
Operationally, the probability that any measurement (possibly inefficient) distinguishes ρ from σ is exactly

$$
\frac{1}{2}+\frac{1}{2}\|\rho-\sigma\|_{1}
$$

We claim the following:
Theorem Let $f:\{0,1\}^{\eta} \rightarrow\{0,1\}$ be a random boolean function. Then, the random state

$$
\left|\psi_{f}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in\left\{0,13^{n}\right.}(-1)^{f(x)}|x\rangle
$$

is a. $O\left(\frac{t^{2}}{2^{n}}\right)$-approximate t-design in trace distance.

$$
\text { ie. } \quad\left\| \pm\left|\psi_{f} X \psi_{f}\right|^{\otimes t}-\left.\mathbb{E}_{|\psi\rangle \sim \text { Haar }}|\psi X X|\right|^{\otimes t}\right\|_{1} \leqslant \frac{t^{2}}{2^{n}} \text {. }
$$

Note: $\left|\Psi_{f}\right\rangle$ can be prepared by making one query to the phase oracle $\left.0_{f}:|x\rangle \rightarrow(-1)|x| x\right\rangle$

Moreover, $1 \Psi_{f}$) remains an approximate t-design even if $t \sim 2^{h / 2}$, however so far it does not give efficient constructions of state designs or PRS, since O_{f} has exponential circuit complexity typically

Constructing state t-designs efficiently
For this we replace the random function $f:\{0,1\}^{h} \rightarrow\{0,1\}$ with a t-wise independent function. What is a t-wise independent function?

The truth table of f, i.e. $f\left(x_{1}\right), f\left(x_{2}\right), \ldots . f\left(x_{2}{ }^{n}\right)$ is a twine independent bit-string-
It is known how to construct these with $O\left(t_{n}\right)$-size circuits. This drives us efficient t-designs for any fixed $t=$ poly (n)

Constructing PRS $\left\{\left|\psi_{k}\right\rangle\right\}_{k \in\{0,1\}^{n}}$
By definition, PRS must be efficiently computable, i.e given a key $k \in\left\{0_{1} 1\right\}^{h}$ there must be a poly-time quantum algorithm that generates the state $\left|\psi_{k}\right\rangle$ indexed by k.

To greet a PRS, we need to make the following cryptographic assumption
Existence of Pseudorandom Functions A family of functions $\left\{f_{k}:\{0,1\}^{n} \rightarrow\{0,1\}\right\}_{k}$ (quantum-secure PREs) is called a PRF if given $k \& x, f_{k}(x)$ is efficiently computable and the output of is indistinguishable from a uniformly random function to all poly-time quantum adversaries, ie.

$$
\mid \mathbb{P}_{k \in\{0,1\}^{n}}\left[\text { Adv }{ }^{0} f_{k} \text { accepts }\right]-\mathbb{P}_{f}\left[\text { Adv }^{{ }^{0}}{ }^{\text {accepts }}\right] \mid \leqslant \text { negl(n) }
$$

This assumption is equivalent to assuming (quantum-secure) one-way functions exist.
To get a PRS, we just replace random function f with a pseudorandom function $\left\{f_{k}\right\}_{k}$
This gives us a family of states $\left\{\left|\psi_{K}\right\rangle\right\}_{K}$ that are efficiently preparable and form a PRS. To prove the theorem we first introduce a useful concept:

Symmetric subspace Consider a quantum state on t registers each of them $d=2^{h}$ dimensional. The symmetric subspace captures those states that are invariant under permuting the registers.

$$
\left.\operatorname{Sym}_{d, t}=\left\{|\psi\rangle \in\left(\mathbb{C}^{d}\right)^{\otimes t}\left|R_{\sigma}\right| \psi\right\rangle=|\psi\rangle \text { for all } \sigma \in S_{t}\right\}
$$

where $R_{\sigma}\left|x_{1}, \ldots x_{t}\right\rangle=\left|x_{\sigma(1)}, x_{\sigma(2)}, \ldots x_{\sigma(t)}\right\rangle$ is a permutation of the registers.

$$
\begin{aligned}
& \text { Example Let } t=2 \text {, then } \frac{|12\rangle+|21\rangle}{\sqrt{2}} \in \text { Sym }_{d, 2} \\
& \text { while }|12\rangle \notin \text { Sym }_{d, 2} \\
& \text { If } t=1, \text { sym }_{d, 1}=\mathbb{C}^{d}
\end{aligned}
$$

The symmetric subspace comes in the picture because of the following Fact $\left.\left|E_{\mid \psi)_{\sim} \text { Hoar }}\right| \psi X \psi\right|^{\otimes t}=\frac{\pi_{\text {sym }_{d, t}}}{\operatorname{dim}\left(\pi_{\text {sym }}\right)}$ where $\pi_{\begin{array}{l}\pi_{\text {sym }}^{d, t} \\ \text { projector on Sym } d_{d} t\end{array}}$ is the
\qquad \rightarrow
This is the maximally mixed state on
the symmetric subspace

The proof of this lemma follows from some basic representation theory which we won't cover here

Thus, our task boils down to showing

$$
\mathbb{E}_{f}\left|\Psi_{f} X \Psi_{f}\right|^{\otimes t} \approx \rho_{s y m}
$$

In order to do this, we need an explicit basis for the symmetric subspace which we will introduce next time

NEXT TIME PRS analysis wrapup and Pseudorandom unitaries

