
LECTURE 13 (April 1st)

A Area Laws wrapup
complexity of quantum states & Transformations

RECAP Area Laws in 1-1
-

Let H = Hi where Hi acts on quaits in it I

We will assume that

① Ground state(4) of H is unique

& each Hi is a projector, i. e., H= Hi not necessary3
③ min (H) = 0

& spectral gap : the second lowest eigenvalue is R(1)

TheoremFor any cut (i
,
i+2)
,
the entanglement entropy of 147 is O(1) .

E
A

Commuting in Hij =Hii fixj

Claim P = (1 -H1) . .
. . . (1-Hn- 1) = 1X4)

--

is a projector with Schmidt rank at mostd and it projects
on to the ground state (4)

There consider the state
= /) since p = 12 X

Since SR(P) =d SR(17) => b . SR(10) = d

Thus
, Entanglement entropy across any cut is log-d = 0(L)

Non-commuting Hamiltonians In this case P = (1 - H1)(1 - Hz) .
. . .

. (1 - Hp
-
1) is

not a projector [Why ?] ,
so the above proof

does not work

This requires some new ideas
,
but overall strategy remains similar

①



The first new idea we will need is the notion of an approximate ground
space projector (AGSP)

This will be an operator P S .
t.

(i) P(L) = (> Where IL) is the unique ground state
i. e. Ground state is preserved

I 2

(ii) (IP(4/1 = S1/ 1) where /It is orthogonal to (L)
i.e. Orthogonal states shrink

It turns out that if we have a sufficiently good AGSP we can carry out

the previous proof strategy

Lia If 7 an AGSP P with Schmidt rank SR(P) Er and SEE
22

then the entanglement entropy of ground state (c)
across any cut (i+, i

*
+1) is O(logr) .

We will talk about how to construct a good AGSP later

but the proof of this lemma goes in the following way

Claim 2.
.
Existence of AGSP as stated implies that there is a product state 10)
that has a large overlap with the ground state , i . e. I <PICK,

-0-0-0 ....-0-0
0-0-0

1 i*i*+1 th

--

IP 1 = 10) ④ 1PR> => No entanglement entropy across cut

Claim 2. Applying the AGSP to this state shrinks the part orthogonal to (4)-

#us the normalized statepo has more overlap with

E
-

I-
increases by
a factor of ECU)

If we keep repeating it we will get closer to the ground state and&

the entanglement entropy does not increase too much in each step

②



Proof of Claim 1 Consider the product state 10) that has the largest overlap with IA)
and let 1P(()) = 2)

There (07 = 1)(() +1xz (4)+

Applying P
.
P(p) = M/L7 + 810+) Where 82>=

2r

Moreover
,
Schmidt decomposition of the unnormalized state P10~

has at most r terms
,
P(q) = [6; 4)OI)

i= C -

↓ Orthonormal

= /IPIP = u + S

r

Also. m = ((((P(0)) E 6: /< /1 :)(i))
i=1 u-
8 Ch

=> =>E by Carchy-Schwarz

Thus, u +8 u #

N

Proofof Claim 2 We start with a product state 10) with overlap /r

Theme overlap of10 E

andSchmidt rank of 107 - v

If we iterate , overlap keeps increasing and schmidt rank also keeps
increasing in each iteration (r + r- v3 + ...... )

However, with a careful analysis , one can show that the entanglement
entropy at the end behaves like the entropy of the following
distribution over [d")

-> wantr to not depend ona
=
2 probability mass over [1, .... 23

↑
22 probability mass over [1, .....,223 and so on

Entropy of this distribution - Elogr + looka+......

> log = OllogJ

③



To complete the proof of Area law . we need to construct an AGSP

Lemma= a good AGSP with schmidt rank -> 20(1083d)

=> This together with the last Lemma implies that the entanglement entropy
across any cut is at most

Ollog3d) = 0((1)

Remark : If one can improve the schmidt rank to poly(d) this would
also imply an area law in higher dimensions .

We will not prove this lemma here since it is fairly involved but we illustrate the main idea

The first thing one can try is

P = (1- H1)(A - Hz) . . . . - (1 - Hm-1) as before

This has schmidt rank-d2 but the shrinking factor is only constant where as
we would want 2

To get around this one can use a different polynomial in His

Let's restrict to applying a univariate polynomial q(H) where H = &Hi

since this preserves the eigenvectors of H

· if 10) is an eigenvector of H with eigenvalue X . then 10) is also
an eigenrector of qH) with eigenvalue q(xl

· eigenvalues of are 0
,

=11), . . . . .

· We want q() to be our AGSP
-
so q(H) should map I) to (2)>

which implies that q(x) = 1 for x = 0

·Similarly , all the orthogonal eigenvectors should shrink by a factor of S
so
, 19(x)) = 8 x = (U

, 1]

&

This
,
we want a polynomial o that looks like

=1 a

The degree of the polynomial and the size of Lthe interval determine theSchmidt rank
,
so we

want the smallest degree polynomial that S -hum
!

· ]

looks like this. These are called Chebyshev polynomials . ↓ 12
-S

Look at the linked references if you are interested in more details on
how to construct AGSPs using Chebyshev polynomials
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complexity of quantum states and transformations

So
, far we have mostly looked at problems where the inputs and outputs are classical

Now
,
we will talk about the complexity of problems with quantum inputs or outputs

- State and Unitary Synthesis
- What is the complexity of synthesizing states and unitaries ?
- How much of the complexity of these tasks is classical , versus that due to quantum aspects ?

- Quantum pseudorandomness and applications
- How to construct states or unitaries that look random ?

- what can we do with them ?

State and Unitary Synthesis

Given a state 1) : Its complexity ((IL) is the minimum size of a quantum circuit
that computes ((p) up to error E .

↑ simple counting argument shows that for most n-qubit states(LD)

r(n)

Cc(((y)) = 2

The same is true for classical boolean functions : most boolean functions on -bits

need circuits of size 2)

This motivates the question : can the complexity of synthesizing a quantum state be
reduced to the complexity of computing a boolean function

State synthesis problem Is there a quantum query algorithm ,
a polynomial p(n)

and an encoding schme that maps n-qubit states (4)
to a function Sp

: 50
,
1
***
-> 20 , 13 S. t. A makes poly(

queries to fy and outputs a good approximation to (1) ?

↑E=for
so

-

If the answer is yes , then in this sense state synthesis is no harder than computing
an appropriate boolean function

NEXTTIME State and Unitary Synthesis
⑤


