A quantum state on $n$ quoits lives in a $2^{n}$-dimensional space
This says that if we want to describe a physical system generically we will need to specify an exponential amount of information

But in practice we only care about a small corner of this exponential Hubert space, e.g., states computed by a poly-size circuits, ground states of physically relevant Hamiltonians

Tensor Networks are a very powerful tool to describe such states with fewer parameters

Basics of Tensor Networks

A tensor is an array of numbers with a bunch of indices
e.g. $\quad A_{i_{1}, i_{2}, i_{3}, i_{4}}$

We can view it as a vector $\sum A_{i, i_{2} i_{3} i_{4}}\left|i_{1}, i_{2}, i_{3}, i_{4}\right\rangle$
$O R$ as a matrix $/$ linear map $\sum A_{i_{1}, i_{2}, i_{3}, i_{n}}\left|i_{1} X i_{2}, i_{3}, i_{4}\right|$
OR

$$
\sum A_{i_{1} i_{2} i_{3} i_{4}}\left|i_{1}, i_{2} \times i_{3}, i_{4}\right|
$$

We are now going to represent tensors visually - a dot with a bunch of lines coming out of it

The tensor from before will be represented as


If we fix specific values, such as $i_{1}=1, i_{2}=2, i_{3}=3, i_{4}=2$
The tensor spits out the number $A_{1232}$

Viewing this tensor as a vector corresponds to the above view

One can also view this as a linear map


OR


We can do two operations on tensors to create new tensors
Tensor Product This just puts the two tensors together (This is the same as the outer


The number that this
tensor spits out is
$A_{i_{1} i_{2} i_{3}} \cdot B_{i_{4} i_{5} i_{6} i_{7}}$

Contraction This operation fuses two free legs



This is a tensor with 5 indices and on $i_{1}, i_{2}, i_{3}, i_{4}, i_{5}$ the value it spits out is

$$
\sum_{i} A_{i, i_{2} i} B_{i_{4} i_{5} i_{6} i}
$$

So we sum over all values taken by the index of the free legs

For a move complicated example


This is a tensor with 6 free indices and we sum over all possible internal labelings of the other edges

No matter how you put the initial tensors together you can check you get the same result

Such diagrams are called tensor networks

In-class Exercise Interpret the following tensor networks
1.

2.

3.

4. What is the identity operator tensor interpreted as a vector?
5. Give a picture of $M^{\wedge}$ given $M$
6. Prove that trace is cyclic using tensor networks

Some conventions One can follow some conventions that are probably not standard but useful

- Identity Matrix is just drawn as a line since


One can also go in the reverse direction and split a tensor


- Symmetric us Not symmetric (OR Hermitian us Non-Hermitian)

- Matrix vs Transpose (OR Conjugate Transpose)


So, symmetric matrices have the same transpose

- Projections vs Isometries


Schmidt Decomposition and Entanglement Entropy

For us the most relevant tensor network representation is the Schmidt decomposition To state what it is let us first recall singular value decomposition of matrices

Any matrix $\left.A=\underset{n \times m}{U \Lambda \Lambda_{n \times r}} \underset{r \times r \times m}{ }={ }_{r}\left[\|\left.\right|_{r \times m}\right]_{r}^{r}\right]_{r}[\overline{\bar{Z}}]$
where $U$ and $V$ have orthonormal columns and $\Lambda$ is a diagonal matrix of singular values $\sigma_{k}$
\# non-zero singular values $=r k(A)$
Writing $U=\sum_{k=1}^{r}\left|u_{k} X u_{k}\right|$ \& $\Lambda=\sum_{k=1}^{r} \sigma_{k}\left|u_{k} X v_{k}\right| \quad \& \quad V=\sum_{k=1}^{r}\left|v_{k} X v_{k}\right|$


We get $A=$ - $\langle n\rangle v=\sum_{k=1}^{r} \sigma_{k}\left|c_{k} x v_{k}\right|$

One can also view this matrix as a vector $|A\rangle$ in which case we can write it as

$$
|A\rangle=\sum_{k=1}^{r} \sigma_{k}\left|u_{k}\right\rangle \otimes\left|v_{k}\right\rangle \quad \text { This is called the Schmidt Decomposition } \begin{aligned}
& \text { across this wot }
\end{aligned}
$$

\# non-zero terms is called the $\underbrace{\text { Schmidt rank }}_{S R(|A\rangle)}$ and $\underbrace{\sum_{k=1}^{b} \sigma_{k}{ }^{2} \log \frac{1}{\sigma_{k}{ }^{2}}}_{S(|A\rangle)}$ is called entanglement entropy
For example, $\left|{c_{k}}_{k}\right\rangle\left|v_{k}\right\rangle$ has schmidt rank 1 and Entanglement entropy 0

$$
\frac{1}{\sqrt{D}} \sum_{k=1}^{D}|k\rangle \otimes|k\rangle \text { has Schmidt rank } D \text { and Entanglement entropy } \log (D)
$$

In general, $0 \leq S(\mid A)) \leq \log S R(|A\rangle)$, so if $S R$ or $S(A)$ is small, it means the state doesn't have a lot of entanglement

Consider a quantum state $|\psi\rangle=\sum_{i_{1} \ldots i_{n} \in[d]} \psi_{i_{1} i_{2} \ldots i_{n}}\left|i_{1} \ldots i_{n}\right\rangle$ on $N$ quits of d-dimension To describe a generic state we need $d^{n}$ numbers

Suppose we do a schmidt Decomposition by splitting it into first quit \& the rest E possible indices
$=d$ d possible indices
$\downarrow$ Repeat recursively


This is called a matrix product state \& $B$ is called the bond dimension
Total \# parameters needed to describe each tensor $\underbrace{}_{d} \underbrace{}_{d} \leq B$ For the entire MPS, we need $O\left(\operatorname{lnd} B^{2}\right)$ parameters

In general $B$ is exponential in $n$, but if $B$ is small, these quantum states have low entanglement $\Delta$ small description

One can also compute energy of such states in poly ( $n, d, B$ ) time classically by repeated matrix multiplication (exercise)

Characterizing which systems have such states is of great importance For instance, ground states of QMA-hard hamiltonians cannot be MPS (assuming QMA $\neq N P$ )

There are also higher dimensional generalizations (not on a line) called PEPS (projected entangled pair states) which we wont introduce

Recall our motivating question: what kind of local Hamiltonians have simple ground states (e.g. matrix product states)?

Let us look at Local Hamiltonian on a grid :
In 1-dimensions, there are $n$ quits arranged on a line and local Hamiltonian term acts on neighboring quoits

$\xrightarrow{H=\sum_{i} H_{i} \quad$| $H_{2}$ |
| :--- |$\quad$|  where each  0  and $H_{i} \preccurlyeq I$ |
| :--- |
| $H_{i} \text { acts non-trivially on }$ |
|  audit $i \& i+1$ |$}$

In 2-dimensions, quits are on a grid and $H_{i j}$ acts on two neighboring qubits ii in the


$$
H=\sum_{i j \sim e d g e} H_{i j}
$$

The area law conjecture says that any ground state $|\psi\rangle$ of a physically-relevant Local Hamiltonian has area law behavior, ie.

For any subset $A \leq[n]$ of quits, the entanglement entropy is proportional to the size of the boundary of $A$ (i.e. proportional to the area)
E.g. in 2-dimension: $\longrightarrow$ boundary of $A$

Area law behavior: entanglement entropy $=O_{d}(1)$
In general, entanglement entropy could be as large as $\sim|A| \log d \sim n \log d$

One can make even stronger conjecture that the ground state has a MPS description

NEXT TIME More on this and a proof

