TODAY QMA(2) wrapup
Complexity of Ground States of Local Hamiltonians

Detecting Mixed-state Entanglement and Complexity of QMA (2)

QMA(2) is connected to one of the most fundamental problems in quantum information:
Given a classical description of a quantum state, is it entangled or not?

There are two relevant formulations here
(1) Pure state entanglement If $|\psi\rangle=|\varphi\rangle \otimes|\theta\rangle$ or not ?

One can solve this by taking the partial trace of the first system and checking if we get a pure state or not

Takes poly (d) time classically if $|\psi\rangle \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}$
(2) Mixed state entanglement Given a density matrix P on two registers A and B, each of dimension d, determine if ρ is separable
ρ is separable if

$$
\begin{array}{ll}
\rho=\sum_{i} p_{i} \sigma_{i} \otimes \tau_{i} & \text { for } \sigma_{i}, \tau_{i} \text { density matrices in } \mathbb{C}^{d} \times \mathbb{C}^{d} \\
& \text { and }\left\{p_{i}\right\} \text { probability distribution }
\end{array}
$$

Separable states don't have entanglement but might have classical correlations E.g two coin tosses that are perfectly correlated similar to the EPR pair

How can we determine if ρ is separable?
In fact, this problem is NP-complete in the worst care (shown by Gurvits) Γ say in trace distance
What about approximations? i.e. Given ε, is ρ separable or ε-far from any separable state, promised that one is the case?

Is there an algorithm for this task?
We don't know: some conjecture that there is a $2^{0\left(\log ^{2} d\right)}$ time algorithm While others conjecture that exponential in d time is needed
(Some quasi-polynomial algorithms are known for approximation in other norms)

General belief is that detecting pure state entanglement is easy, but it is hard for mixed states

How is this related to QMA(2)?
\square Huge complexity class
Currently, we know $Q M A \subseteq Q M A(2) \subseteq N E X P$
We also know that QMA \subseteq EXP since one has to compute eigenvalues of $2^{m} \times 2^{m}$ matrix which can be done in poly $\left(2^{m}\right)$ time where $m=$ poly (n) is the number of quits

Recall that $\lambda_{\max }(M)=\max _{1 \Psi\rangle}\langle\Psi| M|\Psi\rangle$

If there was a $2^{O\left(\log ^{2} d\right)}=2^{O\left(m^{2}\right)}$ algorithm to decide if a state is separable or not, then one can solve the following problem in $2^{\text {poly }(m)}$ time

$$
\text { Find } \max _{|\psi\rangle \otimes|\theta\rangle}\langle\psi| \theta\langle\theta| M|\theta\rangle \otimes|\psi\rangle
$$

where we optimize only over separable states
This would imply that QMA(2) \subseteq EXP
It turns out that the separable states problem is connected to many fundamental questions in classical computer science such as the Unique Games Conjecture, optimizing over tensors, and so on

So, is $Q M A(2)=Q M A$ or $Q M A(2)=$ NEXP or something in between?
Very active developments in the last couple of years with mixed evidence?
(1) Is $Q M A(2)=Q M A$?

One natural approach for QMA verifier to simulate a $Q M A(2)$ protocol is to come up with a disentangler

Given any arbitrary QMA proof, map it to an (approximately) separable state

If such an object (with suitable parameters) existed, then $Q M A(z)=Q M A$

Consider the following disentangler :
(1) take a state on registers $R_{0}, R_{1}, \ldots . R_{N}$
(2) choose a register $i \in[N]$ at random
(3) output the state on R_{0} and R_{i}

Quantum DeFinetti Theorems imply that this is close to a separable state if $N=2^{n}$
Here input dimension is exponentially larger than the output dimension
If one could show that such a disentangler exists with input dimension being-quasi-polynomial in the output dimension, ie.

$$
\text { input-climension }=2^{\text {polylog (output-dimension })}
$$

and it can efficiently computed by a quantum algorithm, then $Q M A(2)=Q M A$
No Disentangler Conjecture of Watrous says that input-dimension must always be exponentially larger even for constant approximation
(2) Is $Q M A(2)=N E X P$? or $Q M A(2) \log ^{2}=N P$?

Recent work of Jeronimo and Wu showed that if one restricts the QMA(2) witnesses to only have positive amplitudes, then the resultingclass

$$
Q M A^{+}(2)=N E X P
$$

Some follow op work by Bassirian, Fefferman and Marwaha showed that the same is true for QMA

$$
\mathrm{QMA}^{+}=\operatorname{NEXP}
$$

Many interesting questions remain open :

- is there an oracle separation between QMA and QMA (2)?
- if the proofs have limited entanglement, what happens?

I hope you can answer some of them

Motivating question for the next few lectures
"Which local Hamiltonians have ground states (or low-energy states) that are simple?"

What do we mean by simple?
We want to capture states that have a simple entanglement structure e.g. tensor product of 1 or 2 -quit states

One of the most efficient ways we know is via tensor networks that we will introduce in the next lecture

For now, let's start with a more natural notion

Given an n-qubit state $|\psi\rangle$, $\operatorname{depth}(|\psi\rangle)=$ minimum depth of a circuit C such that $\left.C \mid 0)^{\otimes n} \approx 1 \psi\right\rangle$

Examples (1) Product state $\left|\Psi_{1}\right\rangle \otimes\left|\Psi_{2}\right\rangle \otimes \ldots \otimes\left|\Psi_{h}\right\rangle$ has depth $O(1)$ No entanglement
(2) CAT state $\frac{\left.\left|0^{n}\right\rangle+11^{n}\right\rangle}{\sqrt{2}}$ has depth $\Omega(\log n)$ Some entanglement

Sketch

If depth was d, the $i^{\text {th }}$ output quit only depends on 2^{d} input quits called the "light cone" and same for $j^{\text {th }}$ quit

If $d<\frac{\log n}{1000}$, then the light cones are disjoint
This will imply that measuring $i^{\text {th }}$ qubit does not affect the $j^{\text {th }}$ quit which is not true for the CAT state
(3) Random quantum state has depth $2^{\Omega(n)}$ Maximal amount of entanglement

One can consider states with superpoly (n) depth as complicated phases of matter with complex entanglement

Now a fascinating answer to our question from before would be "all physically relevant Hamiltonians"
because for states with thousands of particles, if their complexity was exponential the universe wouldn't be old enough to prepare them by physical processes that are simulatable by a quantum computer

This would mean that all physically-velevant Hamiltonians have low-energy states that are simple

This would be a huge breakthrough in many-body physics and we will see some results motivated by this question in the next few lectures

- Quantum PCP Conjecture
- Tensor Networks
- Area Laws

Classical PCP Theorem

Recall the Local Hamiltonian Problem

$$
\begin{aligned}
& \text { Given } H=\frac{1}{m} \sum_{i=1}^{m} H_{i} \text { where } H_{i} \text { are } k \text {-local and } 0 \leqslant H_{i} \leqslant I \\
& \text { Determine if } \lambda_{\min }(H) \leq a \text { or } \lambda_{\min }(H) \geqslant a+1 / p o l y(n) \text { where } n=\# \text { quits }
\end{aligned}
$$

This tells us that estimating ground energy of local Hamiltonian upto $\pm \frac{1}{\text { poly(n) }}$ precision is a QMA-hard problem

What happens if we want a coarser approximation say with constant error?
We don't have an answer to this problem yet, but we have an amazing answer to the classical analog of this question

To state what it says, let $\varphi=\left(x_{i_{1}} \vee x_{i_{2}} \vee x_{i_{3}}\right) \wedge(\ldots-)$ be a 3 SAT formula We saw that one can define a diagonal Hamiltonian

$$
H=\frac{1}{m} \sum_{i=1}^{m} H_{i}
$$

such that for any basis state $\mid x)$ where $x \in\{0,1\}^{n}$,
$\langle x| H_{i}|x\rangle= \begin{cases}0 & \text { if } x \text { satisfies clause } i \\ 1 & \text { otherwise }\end{cases}$

This means that $\lambda_{\min }(H)=0$ if φ is a satisfiable formula

$$
\text { and } \lambda_{\min }(H) \geqslant \frac{1}{m} \text { if } \varphi \text { is unsatisfiable }
$$

Moreover, $\lambda_{\min }(H)=1-\operatorname{MAXSAT}(\varphi)$
where $\operatorname{MAXSAT}(\varphi)=$ maximum fraction of clauses
satisfiable by any given assignment

From this, it is obvious that determining ground energy of this 3SAT Hamiltonian with $\frac{1}{2 m}$ precision is NP -complete :
decide if $\lambda_{\text {min }}(H)=0$ or $\lambda_{\min }(H) \geqslant \frac{1}{2 m}$
Equivalently: $\operatorname{MAXSAT}(\varphi)=1$ or $\operatorname{MAXSAT}(\varphi) \leq 1-\frac{1}{2 m}$
The PCP Theorem gives a robust version of this statement
PCP Theorem $\forall \varepsilon>0$ and any 3SAT instance φ,
deciding if $\operatorname{MAXSAT}(\varphi)=1$ or $\operatorname{MAXSAT}(\varphi) \leq 7 / 8+\varepsilon$ is $N P$-hard
A uniformly random assignment satisfies $7 / 8$ fraction of clauses on average so deciding if

$$
\operatorname{MAXSAT}(\varphi)=1 \text { or } \operatorname{MAXSAT}(\varphi) \leq 7 / 8 \text { is trivial }
$$

So, the problem goes from NP-hard to trivial and even approximating it to a factor 718 is hard

As the name suggests, the proof relies on the idea of a probabilistically checkable proof
Def Let $L \in N P$. We say L has a probabilistically checkable proof if
\exists randomized poly-time verifier that queries O (1) bits of the proof sit.
(1) $x \in L \Longrightarrow \exists$ proof π s.t. $\mathbb{P}[V$ accepts $(x, \pi)] \geqslant 2 / 3$
(2) $x \notin L \Rightarrow \forall$ proofs $\pi \quad \mathbb{P}[V$ accepts $(x, \pi)] \leq 1 / 3$

A PCP is a proof that can be spot-checked. By reading a constant number of bits we can verify its correctness with confidence

The proof-checking formulation of the PCP theorem is then the statement "every language $L \in N P$ has a probabilistically checkable proof"

This is one of the major breakthroughs in complexity and the proof is remarkable We will not be able to cover it here but the basic idea is the followingFor a languge like 3SAT, the PCP proof consists of encoding a satisfying assignment using a carefully designed error-correcting code that enables easy verification

To translate this statement back to the MAXSAT approximation, one must convert the checks performed by a PCP verifier into a 3SAT formula, using similar ideas to the Cook-Levin theorem which encodes the computational history of the verifier into a 3SAT formula

Quantum PCP Conjecture

The quantum PCP conjecture is similar where replace NP with QMA and 3SAT with K-Local Hamiltonian problem

Quantum PCP Conjecture

\exists a family of k-Local Hamiltonians, one for each quit size n

$$
H=\frac{1}{m} \sum_{i=1}^{m} H_{i} \text { where } m=\operatorname{poly}(n)
$$

such that deciding if $\lambda \min (H) \leq a$ or $\lambda_{\min }(H) \geqslant a+\varepsilon$ is $Q M A$-hard for universal constants $k, a, \varepsilon>0$.

Note $b-a=\varepsilon>0$ is a constant here as opposed to inverse polynomial

