TODAY QMA(2)

RECAP Def $L \in Q M A(2)$ if \exists verifier sit.

- if $x \in L \Rightarrow \exists$ a proof $|\pi\rangle \otimes|\psi\rangle$ s.t. Verifier accepts $x,|\pi\rangle \otimes|\psi\rangle$ with prob. $\geqslant 2 / 3$
- if $x \notin L \Rightarrow \forall$ proofs $|\pi\rangle \otimes|\psi\rangle$, Verifier accepts $x,|\pi\rangle \otimes|\psi\rangle$ with prob. $\leq 1 / 3$

Some Remarks

1 Amplification Usual method of amplification, i.e., the majority trick does not work for QMA (2)

Suppose Verifier does 100 repetitions and takes the majority
Completeness case Verifier recieves $\left|\psi_{1}\right\rangle^{\otimes 100} \otimes\left|\psi_{2}\right\rangle^{\otimes 100}$
$\mathbb{P}[$ Verifier succeds $] \geqslant 1-\exp (-100)$
since each trial is independent
Soundness case Merlins could give proofs of the form
$\left(\sum_{i} \alpha_{i}\left|\psi_{1,1}, \cdots \psi_{1,100}\right\rangle\right) \otimes\left(\sum_{i} \beta_{i}\left|\psi_{2,1} \cdots \psi_{2,100}\right\rangle\right)$
Can we show that the maximum is achieved by product states?

NOT CLEAR!

Suppose Verifier processes the register corresponding to the first copy of $\left|\psi_{1}\right\rangle \otimes\left(\psi_{2}\right\rangle$

This phenomena is called entanglement swapping-
\Longleftarrow The verifier makes a joint measurement which will entangle the two witnesses together and we have no guarantees on what the verifier does on entangled witnesses

Despite this, Harrow and Montanaro used more sophisticated ideas to show that error reduction is possible :

With poly (n) repetitions, one can make the success probability $\geqslant 1-2^{- \text {poly (n) }}$
Note This requires many copies of the witnesses. There is no known analog of Marriott-Watrous single-copy error reduction for QMA (2)
(2) $\operatorname{QMA}(k)=Q M A(2) \quad \forall 2 \leq k \leq p o l y(n)$ as shown by Harrow \& Montanaro

Note size of proofs increase by poly(n) factor in transforming a QMA (K) protocol to QMA(2) protocol
(3) Upper Bounds on QMA (2)

MA \subseteq QUA 2$) \subseteq$ NEAP \longrightarrow Exponential-sized witness $\&$ EXP Verifier
QMA \subseteq QMA(2) \subseteq NEXP
QM $\log =B Q P$ and it is unlikely that $3 S A T$ or $3 C O L$ has a QMA witness of sublinear size because of the Exponential Time Hypothesis

Short QMA(2) proofs for NP

Theorem 3 COL is in $Q M A(2)_{\log }$ with completeness 1 and soundness $1-\frac{1}{n^{6}}$
(Blier-Tapp) Note that amplifying the gap to constant will increase the size of proofs by $O\left(n^{6}\right)$ factor So, this does not say that $N P \subseteq Q M A(2) \log$

A similar result was shown by Aaronson, Beigi, Drucker, Fefferman and Sher who showed

$$
\begin{array}{r}
3 S A T \in Q M A(2) \\
\sqrt{n \text { polylog}(n)} \\
\text { with completeness } \geqslant 2 / 3 \\
\text { and soundness } \leq 1 / 3
\end{array}
$$

This is surprising because a similar result for QMA would imply a sub exponential algorithm for 3SAT

QMA(2) proofs for 3 COLORING

3-COLOR Given a graph, can its vertices be colored with 3-colors so that end points of all edges have different colors?

Let G be the graph on n vertices
Arthur hopes that Merlin will provide $|\psi\rangle \otimes|\psi\rangle$ where

$$
\left.|\psi\rangle=\frac{1}{\sqrt{h}} \sum_{v \in V \uparrow \uparrow}|v| \text { vertex, } O(\log n)\right\rangle \text { qubits } \quad \text { O(1) qubits }
$$

Size of proof is $O(\log n)$
Now if Merlin provides 2 copies of this state $|\psi\rangle$ to Arthur

$$
|\psi\rangle \otimes|\psi\rangle=\left(\frac{1}{\sqrt{h}} \sum_{v_{1}}\left|v_{1}\right\rangle|\operatorname{color}(v)\rangle\right) \otimes\left(\frac{1}{\sqrt{h}} \sum_{v_{2}}\left|v_{2}\right\rangle\left|\operatorname{color}\left(v_{2}\right)\right\rangle\right)
$$

Arthur wants to check that the coloring is a valid 3cowRING so, he measures the four registers and obtains

$$
\left(v_{1}, \operatorname{color}\left(v_{1}\right)\right),\left(v_{2}, \operatorname{color}\left(v_{2}\right)\right) \text { for }
$$

vertices v_{1} and v_{2} sampled independently and uniformly
COLORING
TEST $\left\{\begin{array}{l}\text { If } v_{1} \neq v_{2} \text { are not neighbours, Arthur accepts. } \\ \text { If } v_{1} \& v_{2} \text { are neighbours, Arthur accepts if } \operatorname{color}\left(v_{1}\right) \neq \operatorname{color}\left(v_{2}\right) \quad \text { happens } \\ \text { ow rejects } \\ \text { If } v_{2}=v_{2}, ~ A r t h o r ~ a c c e p t s ~ i f ~ \\ \text { with probability } \geqslant \frac{1}{n^{2}}\end{array}\right.$

What is the completeness and soundness of this proof system?

- If G was 3 -colorable, then Merlin can use a valid 3-coloring and Arthur will accept with probability 1
- If G was not 3 -colorable, then for any coloring there is at least one edge that violates the coloring constraint.

If Merlin sends $|\psi\rangle \otimes|\psi\rangle$ where $|\psi\rangle$ is of the form we said, then the probability that Arthur samples a violated edos is at least $\frac{2}{n^{2}}$

So, he will accept with probability at most $1-\frac{2}{n^{2}}$

So, there is $\frac{1}{\text { poly (n) }}$ gap between completeness and soundness assuming Merlin provides state of the form we said

In general, Merlin could provide $|\varphi\rangle \otimes|\theta\rangle$ for arbitrary $|\psi\rangle$ and $|\theta\rangle$ which need not be of the form $\left.\left.\frac{1}{\sqrt{n}} \sum_{v} \right\rvert\, v\right)|c o l o r(v)\rangle$
For example, a cheating Merlin could remove the vertices that correspond to improperly colored edges, which will cause Arthur to always accept

To handle this, we need to check that the proof given by Merlin satisfies
(1) $|\varphi\rangle=|\theta\rangle$ This will be checked by the SWAP test
(2) $|\varphi\rangle=\frac{1}{\sqrt{n}} \sum_{v}|v\rangle\left|\beta_{v}\right\rangle$ This will be checked by a uniformity test
(3) COLORING test from before

Arthur can pick one of the 3 tests at random and apply it to the given witness $|\varphi\rangle \otimes|\theta\rangle$ If the test fails, Arthur will reject with an inverse polynomial gap

SWAP Test

State after controlled SWAP $=\frac{|0\rangle|\varphi\rangle|\theta\rangle-|1\rangle|\theta\rangle|\varphi\rangle}{\sqrt{2}}$
If we apply H, we get $=\frac{1+\rangle|\varphi\rangle|\theta\rangle-1-\rangle|\theta\rangle|\varphi\rangle}{\sqrt{2}}$

$$
\left.=|0\rangle\left(\frac{|\varphi\rangle|\theta\rangle-|\theta\rangle|\varphi\rangle}{2}\right)+\|\right\rangle\left(\frac{|\varphi\rangle|\theta\rangle+|\theta\rangle|\varphi\rangle}{2}\right)
$$

$\mathbb{P}[$ output quit is 1$]=\frac{1}{4} \||\varphi\rangle|\theta\rangle+|\theta\rangle|\varphi\rangle \|^{2}$
$\left.=\frac{1}{4}(\||\varphi\rangle \mid \theta)\left\|^{2}+\right\||\theta\rangle|\varphi\rangle \|^{2}+2|\langle\varphi \mid \theta\rangle|^{2}\right)$
$=\frac{1}{4}\left(2+2|\langle\varphi \mid \theta\rangle|^{2}\right)$
$=\frac{1}{2}+\frac{|\langle\varphi \mid \theta\rangle|^{2}}{2}$
If $|\varphi|=|\theta\rangle$, test always outputs 1
If $|\varphi\rangle$ and $|\theta\rangle$ are orthogonal, test outputs 1 with probability $\frac{1}{2}$
One can repeat this

Uniformity Test We can assume that the state is (approximately) of the form $|\varphi\rangle \otimes \mid \varphi$) otherwise SWAP test would reject

Arthur now wants to check if $|\psi\rangle$ is of the form $\left.\left.\frac{1}{\sqrt{n}} \sum \right\rvert\, v\right) /$ color $\left.(v)\right\rangle$
First note that one can check if a state is an equal superposition or not by using the Quantum Fourier Transform over $\mathbb{Z} / \bmod r \mathbb{Z}$

$$
\left.\begin{array}{rl}
\text { QFT } T_{r}|x\rangle \longrightarrow \frac{1}{\sqrt{r}} \sum_{y=0}^{r-2} \omega_{r}^{x-y}|y\rangle \quad \text { where } x, y \in[0, r-1] \\
\text { are integers and }
\end{array}\right] \begin{aligned}
& \omega_{r}=e^{2 n i / r} \text { is the } r^{\text {th }} \\
& \text { root of unity }
\end{aligned}
$$

Note that $\operatorname{QFT}_{r}^{+}\left(\frac{1}{\sqrt{r}} \sum_{y=0}^{r-1}|y\rangle\right)=|0\rangle$
(1) Arthur applies QFT 3 to the second register and measures If outcome is not 10 , he accepts
(2) If outcome was 10>, Arthur then applies $Q F T_{n}$ to the first register and measures If outcome is 10), he accepts

Let's see what happens for a properly formatted state

$$
\begin{array}{r}
\frac{1}{\sqrt{n}} \sum_{v}|\nu\rangle|c o l o r(v)\rangle \xrightarrow{\mathbb{I} \otimes Q F T_{3}} \frac{1}{\sqrt{n}} \sum_{v}|\nu\rangle \otimes\left(\frac{1}{\sqrt{3}}|0\rangle+\frac{1}{\sqrt{3}} \omega_{3}^{\text {color }(v)}|1\rangle+\frac{1}{\sqrt{3}} \omega_{3}^{2 \operatorname{color}(v)}\right) \\
=\frac{1}{\sqrt{3 n}} \sum_{v}|v\rangle|0\rangle+|\perp\rangle \\
\longrightarrow \text { second register } \\
\text { orthogonal to }|0\rangle
\end{array}
$$

If we measure the second register, w.P. $2 / 3$ we get non-zero and accept
If the outcome was 10\rangle, our state becomes $\frac{1}{\sqrt{n}} \sum_{V}|v\rangle \otimes|0\rangle$
Now applying QFT to the first register and measuring gives 10) always

If all three tests pass, then the state is of the right form approximately (One can make this quantitative but we are not going to do it here)

So, to cheat Merlins must use a state where one of the tests fail and choosingthe tests at random, there is some chance for Arthur to detect it which creates a $1 /$ poly (n) gap between completeness and soundness

NEXT TIME Detecting Entanglement and Complexity of Ground States

