LECTURE 15 (March 6th)

TODAY Witness - Preserving Error Reduction for QMA

<u>RECAP</u> Given a QMA verifier V satisfying with error probability at most $\frac{1}{3}$ there is a new verifier V' with error probability at most $2^{-\theta(n)}$ which uses the same witness as V

The idea is due to Marriott-Watrous who proposed the following algorithm for V'

2

Compute some function of a1, a2, ak

One can think of the above circuit V'as two measurements that alternate

 $[\pi^{3}] = [M_{2}] = [M_{1}] = [M_{2}] = [M_{1}] = [M_{2}]$ $[\pi^{3}] = [\pi^{3}] = [\pi^{$

In order to analyze this, we need a technical tool called Jordan's lemma that relates to angle between two subspaces

Angle between two subspaces

In 2-dimensions, we define angle between two lines (through origin)

θ

In 3-dimensions, we can define angle between two planes

In 4-dimensions, we have two angles between two 2-D subspaces

Let TT = projector on a subspace of C^{d}

i.e. if we take a vector 14> in C^d

TIU> = projection of IU> on the subspace

Note $\pi^2 = \pi$, so projecting again gives the same vector

Example If
$$TT = 10 \times 01$$
, then $TT |\psi\rangle = \langle 0 |\psi\rangle |0\rangle$
= projection of
 $1\psi\rangle$ on $10\rangle$

The question we are trying to answer:

Jordan's Lemma For any two projectors π_1 and π_2 in \mathbb{C}^d

(Proof in lecture notes

There exist a decomposition of \mathbb{C}^d into orthogonal 1- v 2-dimensional subspaces that are invariant under both Π_1 & Π_2

Moreover, inside each of these two-dimensional subspaces Π_1 and Π_2 are rank one projectors

{b, ... bd}

Or in other words, there is some basis s.t. both Π_1 of Π_2 look simultaneously block-diagonal in this basis a moreover each block is of size atmost 2.

Moreover,
$$\overline{T}_{1}$$
 when restricted to S_{i}
 $\overline{T}_{1|S_{i}} = |v_{i} \times v_{i}|$ for some $|v_{i} \ge S_{i}$
similarly, $\overline{T}_{2|S_{i}} = |w_{i} \times w_{i}|$ for some $|w_{i} \ge S_{i}$
One can define angles $\theta_{i} = \cos^{2}(|\langle v_{i}|w_{i} \ge 1\rangle)$ as the principal angles between
the subspaces

2

$$S_i = \text{span} \{ |v_i\rangle, |v_i^{\perp}\rangle \} = \text{span} \{ |w_i\rangle, |w_i^{\perp}\rangle \}$$
 for some vectors $|v_i^{\perp}\rangle \in |w_i^{\perp}\rangle$
orthogranal to $|v_i\rangle \in |w_i\rangle$
respectively

The lemma easily allow us to understand what happens in we apply 1777 It is clearly block-diagonal in the Jordan decomposition and inside each si

$$\pi_{1}\pi_{2}\pi_{1}|_{s_{i}} = |v_{i}Xv_{i}||w_{i}Xw_{i}||v_{i}Xv_{i}| = p_{i}|v_{i}Xv_{i}|$$

Mariott-Watrous Amplification Let V_x be the QMA verifier with error $\leq \frac{1}{2}$ We can assume that \forall proof $|\pi\rangle$, $\mathbb{P}[V_x \text{ accepts } |\pi\rangle] \in (0,1)$

 \oslash Accept if $a_i = a_{i+1}$ for at least half the indices i

Claim If
$$x \in L \implies \exists |\pi\rangle, \sqrt{x}$$
 accepts w.p. $\ge 1 - 2^{-0(n)}$

If
$$x \notin L \Rightarrow \forall 1\pi 7$$
, V_x accepts w.p. $\leq 2^{-\Theta(n)}$

Ly This is the original verifier Vx with 2/3 success probability

Note that acceptance probability of QMA verifier $V_x = \max eigenvalue of \pi_1 \pi_2 \pi_1$

 TT_2 just restricts the initial states to the form $|\pi > \otimes |0^{\circ}>$

 (\mathcal{G})

We now apply Jordan's lemma to obtain 2-dimensional subspaces S₁, S₂,.... and 1-dimensional subspaces T₁, T₂,....

and $T_{1|s_i} = |v_i X v_i|$ $T_{z|s_i} = |w_i X w_i|$ and $\rho_i = |\langle v_i | w_i \rangle|^2$

Pictorially,

We claim that all the one dimensional blocks of π_1 are zero otherwise we could choose a witness in π_i and achieve success probability 0 or 1 which contradicts our assumption

So, we can focus on the two dimensional subspaces Si's

As we have seen previously,

$$\Pi_1 \Pi_2 \Pi_1 = \sum_{i} p_i |v_i \times v_i|$$

Thus, max eigenvalue of $\Pi_1 \Pi_2 \Pi_1 = \max \operatorname{maximum} \operatorname{acceptance} \operatorname{prob.} \operatorname{of} V_x = \max p_i$

Analysis of new Verifier Vx

Let us analyze what happens when we give us input a vector 14 in the 2-dimensional subspace $S_i = \text{span } \{1v_i\}, 1v_i^+ \} = \text{span } \{1w_i\}, 1w_i^+ \}$

Recall that $\pi_{2} = |v_i X v_i|$ and $\pi_{2} = |w_i X w_i|$ and applying either one we remain $|v_i|_{S_i}$ in the subspace S_i

Let us look at the case when input =
$$|v_i\rangle$$
 and we apply
 $|w_i\rangle = M_2$ first and then M_2
 $|v_i\rangle = \int_{-\infty}^{\infty} |w_i X w_i| \int_{-\infty}^{\infty} |w_i X w_i|^2$

$$|v_{i}\rangle \xrightarrow{P_{i}} |w_{i}\rangle \xrightarrow{P_{i}} Accept state (a_{i}'s = 1)$$

$$|v_{i}\rangle \xrightarrow{P_{i}} |w_{i}\rangle \xrightarrow{P_{i}} Accept state (a_{i}'s = 1)$$

$$|v_{i}\rangle \xrightarrow{P_{i}} |w_{i}\rangle \xrightarrow{P_{i}} Reject state (a_{i}'s = 0)$$

$$|probabilities post-measurement state$$

After applying
$$M_{alsi} = \{ |v_i X v_i|, |v_i^+ X v_i^{\perp} | \}$$

 $|w_i^{\perp} \rangle \xrightarrow{P_i}_{P_i} |v_i^{\perp} \rangle \rightarrow \text{Accept state } (a_i^{\prime} s = 1)$
 $|w_i^{\perp} \rangle \xrightarrow{P_i}_{P_i} |v_i^{\perp} \rangle \rightarrow \text{Reject state } (a_i^{\prime} s = 0)$
 $P_i^{\perp} \qquad P_i^{\perp} \qquad P_i$

Overall, if starting state was either $|v_i\rangle$ or $|v_i^{\perp}\rangle$, we get $|v_i\rangle = \frac{p_i}{1} |w_i\rangle = \frac{p_i}{1} |v_i\rangle$ Red edges correspond to

 $|v_{i}\rangle \xrightarrow{P_{i}} |w_{i}\rangle \xrightarrow{P_{i}} |v_{i}\rangle$ $|v_{i}\rangle \xrightarrow{P_{i}} |w_{i}^{\perp}\rangle \xrightarrow{P_{i}} |v_{i}^{\perp}\rangle$ $|v_{i}\rangle \xrightarrow{P_{i}} |w_{i}^{\perp}\rangle \xrightarrow{P_{i}} |v_{i}^{\perp}\rangle$ Red edges correspond to "Accept" or "1" outcome

so, keep alterating between these four states by applying M1 & M2

Now, if $x \in L$, we know that $p_i > \frac{2}{3}$ for some i and we provide $|v_i\rangle$ as witness So, picture looks like

$$|v_{i}^{\prime}\rangle \xrightarrow{2_{i_{3}}} \xrightarrow{2_$$

So, if we do k iterations, at least $\frac{2}{3}$ k of the times $a_i = a_{i+1}$ in expectation \Rightarrow success probability is $\ge 1 - 2^{-\theta(n)}$

 $\frac{\text{If } x \notin L}{V_x} \quad \text{We want to show } \forall |\psi\rangle \text{ with all ancilla bits zero (i.e. } |\psi\rangle \text{ is in the subspace} on which } \\ \text{on which } T_1 \text{ projects}) \\ \text{Note that this} \\ V_x' \text{ accepts with probability} \leq 2^{-\Theta(n)} \\ \text{Subspace is} \\ \text{Spanned by} \\ |v_1\rangle, |v_2\rangle, \dots$

If 14> = 1v;>, then the probabilities of red and black edges get switched and the proof follows

Otherwise, one can write $|\psi\rangle = \sum \alpha_i |v_i\rangle$ and show that probability of "11" or "00" is still atmost $\leq \frac{1}{3}$, no matter the current state

One Application of Witness-preserving Amplification

Classically we know that NP_{log} = P where NP_{log} denotes the complexity class where witnesses are O(log input-size)

Witness preserving amplification allows one to show a similar characterization for QMA

 $QMA_{log} = BQP$

You will be asked to show this in the exercises. The proof relies on the fact that witness size does not increase (too much)

NEXT TIME Complete Problems for QMA

Consider the matrix $\pi_1 + \pi_2$

This is a Hermitician matrix and can be spectrally decomposed

$$\pi_{1+}\pi_{2} = \Sigma \lambda_{i} |\nu_{i} X \nu_{i}|$$

We shall show that {lv:>}'s can be partitioned into sets of size one and two where each set spans an invariant subspace

Take an eigenvector $|v_i\rangle$: then $\Pi_1|v_i\rangle + \Pi_2|v_i\rangle = \lambda_i|v_i\rangle$

If $\pi_1 |v_i\rangle \in \text{span}(|v_i\rangle)$, then so is $\pi_2 |v_i\rangle$

This gives a one-dimensional invariant subspace span { 1v:>}

Note
$$\pi_1 |v_i\rangle = |v_i\rangle$$
 or $\pi_1 |v_i\rangle = 0$

and same for T_2

2 If $\pi_1|v_i\rangle \not\in \text{span}(|v_i\rangle)$, consider the 2-dimensional subspace

$$S = span \{ |v_i \rangle, T_1 |v_i \rangle \}$$

This is an invariant subspace for π_1 since

$$\Pi_{1}\left(\alpha|\nu_{i}\rangle + \beta \Pi_{1}|\nu_{i}\rangle\right) = \alpha \Pi_{1}|\nu_{i}\rangle + \beta \Pi_{1}^{2}|\nu_{i}\rangle = (\alpha + \beta) \Pi_{1}|\nu_{i}\rangle \in S$$

It is also invariant for T_z since

$$\Pi_{z} (\alpha | \upsilon_{i} \rangle + \beta \Pi_{1} | \upsilon_{i} \rangle) = \alpha \Pi_{z} | \upsilon_{i} \rangle + \beta \Pi_{z} \Pi_{1} | \upsilon_{i} \rangle$$

$$= \lambda_{i} | \upsilon_{i} \rangle - \Pi_{1} | \upsilon_{i} \rangle$$

Since
$$\Pi_1$$
 and Π_2 are both invariant for S, so is $\Pi_1 + \Pi_2$.
The vector orthogonal to $|v_i\rangle$ in S is also some other eigenvector $|v_j\rangle$.
It is also easy to check that Π_1 and Π_2 are rank-one projectors when restricted to S \square

$$= (\alpha + \beta \lambda_i - \beta) \mathcal{T}_2 | v_i \rangle$$

+
$$\beta \pi_2 (\lambda_i | v_i \rangle - \pi_2 | v_i \rangle)$$

=
$$\alpha \pi_1(v_i)$$