TODAY Witness - Preserving Error Reduction for QMA
RECAP Given a QMA verifier V satisfying with error probability at most $1 / 3$ there is a new verifier V^{\prime} with error probability at most $2^{-\theta(n)}$ which uses the same witness as V

The idea is due to Marriott-Watrous who proposed the following algorithm for V^{\prime}
(1)

(2) Compute some function of $a_{1}, a_{2}, \ldots, a_{k}$

One can think of the above circuit V^{\prime} as two measurements that alternate

In order to analyze this, we need a technical tool called Jordan's lemina that relates to angle between two subspaces

Angle between two subspaces
In 2-dimensions, we define angle between two lines (through onegin)

In 3-dimensions, we can define angle between two planes

In 4-dimensions, we have two angles between two 2-D subspaces

Let $\pi=$ projector on a subspace of \mathbb{C}^{d}
i.e. if we take a vector $|\psi\rangle$ in \mathbb{C}^{d}
$\Pi|\psi\rangle=$ projection of $|\psi\rangle$ on the subspace
Note $\pi^{2}=\pi$, so projecting again gives the same vector
Example If $\pi=|v X v|$, then $\pi|\psi\rangle=\langle v \mid \psi\rangle|v\rangle$
$=$ projection of
$|\psi\rangle$ on $|v\rangle$

The question we are trying to answer:
given two projectors $\pi_{1} \& \pi_{2}$, how do they interact?

Jordan's Lemma For any two projectors π_{1} and π_{2} in \mathbb{C}^{d}
(Proof in lecture)
There exist a decomposition of \mathbb{C}^{d} into orthogonal 1- 8 2-dimensional subspaces that are invariant under both $\pi_{1} \& \pi_{2}$

Moreover, inside each of these two-dimensional subspaces Π_{1} and π_{2} are rank one projectors

$$
\left\{b_{1} \ldots b_{d}\right\}
$$

Or in other words, there is some basis st. both $\pi_{1} \& \pi_{2}$ look simultaneously block -diagonal in this basis a moreover each block is of size atmost 2 .

For any vector $|v\rangle$ in s_{i},

$$
\begin{aligned}
& \pi_{2}|v\rangle \in s_{i} \\
& \pi_{2}|v\rangle \in s_{i}
\end{aligned}
$$

Moreover, π_{1} when restricted to s_{i}
similarly, $\quad \pi_{2}\left|s_{i}=\left|w_{i} X w_{i}\right|\right.$ for some $\left.| w_{i}\right\rangle \in s_{i}$
One can define angles $\theta_{i}=\cos ^{-1}\left(\left|\left\langle v_{i} \mid w_{i}\right\rangle\right|\right)$ as the principal angles between (1)

$$
\left[0, \frac{\pi}{2}\right]
$$

$$
S_{i}=\operatorname{span}\left\{\left|v_{i}\right\rangle,\left|v_{i}^{\perp}\right\rangle\right\}=\operatorname{span}\left\{\left|w_{i}\right\rangle,\left|w_{i}^{\perp}\right\rangle\right\} \quad \text { for some vectors }\left|v_{i}^{\perp}\right\rangle Q\left|w_{i}^{\perp}\right\rangle
$$

$$
\underbrace{\Delta \omega_{\left|w_{i}\right\rangle}}_{\left|v_{i}\right\rangle} \text { Let } p_{i}=\cos ^{2} \theta_{i}=\left|\left\langle v_{i} \mid w_{i}\right\rangle\right|^{2}
$$ orthogonal to $\left(v_{i}\right)$ \& $\mid w_{i}$? respectively

The lemma easily allow us to understand what happens in we apply $\pi_{1} \pi_{2} \pi_{1}$
It is clearly block-diagonal in the Jordan decomposition and inside each s_{i}

$$
\pi_{1} \pi_{2} \pi_{1}|s_{i}=|v_{i} X \underbrace{v_{i}| | w_{i}} X \underbrace{w_{i}| | v_{i}} X v_{i}|=p_{i}| v_{i} X v_{i} \mid
$$

Mariott-Watrous Amplification Let V_{x} be the QMA verifier with error $\leq \frac{1}{3}$
We can assume that \forall proof $1 \pi\rangle, \mathbb{P}\left[V_{x}\right.$ accepts $\left.(\pi)\right] \in(0,1)$
New verifier $V_{x}{ }^{\prime}$
(1)

(2) Accept if $a_{i}=a_{i+1}$ for at least half the indices i

Claim If $x \in L \Rightarrow \exists|\pi\rangle, V_{x}^{\prime}$ accepts w.p. $\geqslant 1-2^{-\theta(n)}$
If $x \notin L \Rightarrow \forall|\pi\rangle, V_{x}^{\prime}$ accepts w.p. $\leq 2^{-\theta(n)}$

Proof To apply Jordan's lemma, consider the two projectors

$$
\Pi_{1}=\underbrace{10^{a} \times 0^{a} \mid}_{\begin{array}{c}
\text { avxillary qubits } \\
\text { are all zeros }
\end{array}} \otimes \mathbb{I} \quad \& \quad \pi_{2}=V_{x}^{+}(\underbrace{10 \times 01 \otimes \mathbb{I})}_{\begin{array}{c}
\text { output } \\
\text { quit is } 0
\end{array}} V_{x} \begin{array}{c}
\begin{array}{c}
\text { original QMA } \\
\text { verifier } \\
\frac{1}{3} \text { with }
\end{array} \\
\text { error }
\end{array}
$$

Then, the circuit is

\rightarrow This is the original verifier V_{x} with $2 / 3$ success probability

Note that acceptance probability of QMA verifier $V_{x}=$ max eigenvalue of $\pi_{1} \pi_{2} \pi_{1}$
π_{2} just restricts the initial states to the form $|\pi\rangle \otimes\left|0^{a}\right\rangle$

We now apply Jordan's lemma to obtain 2-dimensional subspaces S_{1}, S_{2}, \ldots.. and 1 -dimensional subspaces T_{1}, T_{2}, \ldots.
and $\pi_{1}\left|s_{i}=\left|v_{i} X_{v_{i}}\right|\right.$

$$
\Pi_{2 \mid s_{i}}=\left|w_{i} x w_{i}\right| \quad \text { and } \quad p_{i}=\left|\left\langle v_{i} \mid w_{i}\right\rangle\right|^{2}
$$

Pictorially,

We claim that all the one dimensional blocks of π_{1} are zero otherwise we could choose a witness in T_{i} and achieve success probability 0 or 1 which contradicts our assumption

So, we can focus on the two dimensional subspaces s_{i} 's
As we have seen previously,

$$
\pi_{1} \pi_{2} \pi_{1}=\sum_{i} p_{i}\left|v_{i} X v_{i}\right|
$$

Thus, max eigenvalue of $\pi_{1} \pi_{2} \pi_{1}=$ maximum acceptance prob. of $V_{x}=\max _{i} p_{i}$

Analysis of new verifier V_{π}^{\prime}

Let us analyze what nappens when we give us input a vector $1 \Psi\rangle$ in the 2 -dimensional subspace $s_{i}=\operatorname{span}\left\{\left|v_{i}\right\rangle,\left|v_{i}{ }^{\perp}\right\rangle\right\}=\operatorname{span}\left\{\left|w_{i}\right\rangle,\left|w_{i}{ }^{\perp}\right\rangle\right\}$

Recall that $\pi_{1}\left|s_{i}=\left|v_{i} X v_{i}\right|\right.$ and $\Pi_{2}=\left|w_{i} X w_{i}\right|$ and applying either one we remain in the subspace S_{i}

Let us look at the case when input $=\left|v_{i}\right\rangle$ and we apply M_{2} first and then M_{2}

After applying $M_{2_{s_{i}}}=\left\{\left|w_{i} X w_{i}\right|,\left|w_{i}^{+} X w_{i}^{+}\right|\right\}$

After applying $M_{z} \mid s_{i}=\left\{\left|v_{i} X v_{i}\right|,\left|v_{i}^{+} X_{v_{i}}^{\perp}\right|\right\}$

Overall, if starting state was either $\left|v_{i}\right\rangle$ or $\left|v_{i}{ }^{\perp}\right\rangle$, we get

$$
\left|v_{i}^{-}\right\rangle \xrightarrow[p_{i}]{p_{i}}\left|w_{i}\right\rangle \xrightarrow{p_{i}}\left|v_{i}^{\perp}\right\rangle \xrightarrow[p_{i}]{p_{i}}\left|w_{i}^{\perp}\right\rangle \xrightarrow{\text { Red edges correspond to }} \text { "Accept" or "1" outcome }
$$

So, keep alterating between these four states by applying $M_{1} \& M_{2}$

Now, if $x \in L$, we know that $p_{i} \geqslant 2 / 3$ for some i and we provide $1 v_{i}$) as witness So, picture looks like

$$
\begin{gathered}
\text { Suppose we start from } \left.\mid v_{i}\right) \\
\mathbb{P}\left[\text { Obtaining }{ }^{\prime \prime} 11^{\prime \prime} \text { or " } 00 \text { " }\right] \geqslant 2 / 3 \\
>\rightarrow \rightarrow \rightarrow
\end{gathered}
$$

So, if we do k iterations, atleast $2 / 3 k$ of the times $a_{i}=a_{i+1}$ in expectation

$$
\Rightarrow \text { success probability is } \geqslant 1-2^{-\theta(n)}
$$

If $x \notin L \quad$ We want to show $\forall|\psi\rangle$ with all ancilla bits zero (ie. J $\|$) is in the subspace on which π_{1} projects)

$$
V_{x}^{\prime} \text { accepts with probability } \leq 2^{-\theta(n)}
$$

If $|\psi\rangle=\left|v_{i}\right\rangle$, then the probabilities of red and black edges get switched and the proof follows

Otherwise, one can write $|\psi\rangle=\Sigma \alpha_{i}\left|v_{i}\right\rangle$ and show that probability of " 11 " or " 00 " is still atmost $\leq \frac{1}{3}$, no matter the current state

One Application of Nitness-preserving Amplification

Classically we know that $N P_{\log }=P$ where $N P_{\text {log }}$ denote r the complexity class where witnesses are O (log input-size)

Witness preserving amplification allows one to show a similar characterization for QMA

$$
Q M A_{\log }=B Q P
$$

You will be asked to show this in the exercises. The proof relies on the fact that witness size does not increase (too much)

NEXT TIME Complete Problems for QMA

This is a Hernititian matrix and can be spectrally decomposed

$$
\pi_{1}+\pi_{2}=\sum \lambda_{i}\left|v_{i} X v_{i}\right|
$$

We shall show that $\left.\left\{\mid v_{i}\right)\right\}$'s can be partitioned into sets of size one and two where each set spans an invariant subspace

Take an eigenvector $\left|v_{i}\right\rangle$: then $\pi_{1}\left|v_{i}\right\rangle+\pi_{2}\left|v_{i}\right\rangle=\lambda_{i}\left|v_{i}\right\rangle$
(1) If $\pi_{2}\left|v_{i}\right\rangle \in \operatorname{span}\left(\left|v_{i}\right\rangle\right)$, then so is $\pi_{2}\left|v_{i}\right\rangle$

This gives a one-dimensional invariant subspace span $\left\{\left|v_{i}\right\rangle\right\}$
Note $\pi_{1}\left|v_{i}\right\rangle=\left|v_{i}\right\rangle$ or $\pi_{1}\left|v_{i}\right\rangle=0$ and same for π_{2}
(2) If $\pi_{1}\left|v_{i}\right\rangle \notin \operatorname{span}\left(\left|v_{i}\right\rangle\right)$, consider the 2 -dimensional subspace

$$
S=\operatorname{span}\left\{\left|v_{i}\right\rangle, \pi_{1}\left|v_{i}\right\rangle\right\}
$$

This is an invariant subspace for π_{1} since

$$
\pi_{1}\left(\alpha\left|v_{i}\right\rangle+\beta \pi_{1}\left|v_{i}\right\rangle\right)=\alpha \pi_{2}\left|v_{i}\right\rangle+\beta \pi_{2}^{2}\left|v_{i}\right\rangle=(\alpha+\beta) \pi_{1}\left|v_{i}\right\rangle \in S
$$

It is also invariant for π_{2} since

$$
\begin{aligned}
\pi_{2}\left(\alpha\left|v_{i}\right\rangle+\beta \pi_{1}\left|v_{i}\right\rangle\right)= & \alpha \underbrace{\pi_{2}\left|v_{i}\right\rangle}_{=\lambda_{i}\left|v_{i}\right\rangle}+\beta \pi_{2}\left|v_{i}\right\rangle \\
= & \alpha \pi_{1}\left|v_{i}\right\rangle \\
& +\beta \pi_{2}\left|v_{i}\right\rangle \\
& +\pi_{2}\left|\pi_{i}\right\rangle \\
= & \left(\alpha+\beta \lambda_{i}-\beta\right) \underbrace{\left.\pi_{2}\left|v_{i}\right\rangle-\pi_{2}\left|v_{i}\right\rangle\right)}_{\in S}
\end{aligned}
$$

Since π_{1} and π_{2} are both invariant for s, so is $\pi_{1}+\pi_{2}$
The vector orthogonal to $\left|v_{i}\right\rangle$ in S is also some other eigenvector $\left(v_{j}\right)$
It is also easy to check that π_{1} and π_{2} are rank-one projectors when restricted to S a

