Properties of QMA \& Error Reduction

RECAP QMA L is in QMA if \exists poly-size uniform quantum circuit family $\left\{V_{n}\right\}_{n}$ (Verifier) s.t.
$x \in L \Rightarrow \exists$ proof $|\pi\rangle \in\{0,1\}^{\text {poly }(|x|)}, \quad \mathbb{P}[V$ accepts $|x\rangle|\pi\rangle] \geqslant \frac{2}{3} \quad$ (completeness)
$x \notin L \Longrightarrow \forall$ proofs $|\pi\rangle \in\left\{0,13^{\text {poly }(|x|)}, \mathbb{P}[V\right.$ accepts $|x\rangle|\pi\rangle] \leqslant \frac{1}{3}$ (soundness)
If the proof 1π) is classical (ie. a computational basis state) the class is QCMA
POVM A POVM $M_{1} \ldots M_{k}$ is a set of operators satisfying

$$
M_{i} \geqslant 0 \text { and } \sum_{i=1}^{k} M_{i}=I
$$

$\mathbb{P}\left[\right.$ Measuring $i^{\text {th }}$ operator on $\left.|\pi\rangle\right]=\operatorname{Tr}\left[M_{i} \mid \pi X \pi\right]=\langle\pi| M_{i}|\pi\rangle$

A special case of POVM $\{M, I-M\} \rightarrow$ Note that they sum to I

Any eigenvector $|v\rangle$ of M with eigenvalue λ is also an eigenvector of $I-M$ with eigenvalue $1-\lambda$

So, one can diagonalize M and I-M in the same basis

$$
\begin{gathered}
M=\sum_{i} \lambda_{i}\left|v_{i} X v_{i}\right| \\
\text { Then } I-M=\sum_{i}\left(1-\lambda_{i}\right)\left|v_{i} X v_{i}\right|
\end{gathered}
$$

Naimark's Dilation Theorem Every PoVM can be expressed as a projective measurement (ie. projection on subspaces) on a system tensored with some ancillary space.

$$
\begin{aligned}
& \text { For instance, Measure } 1 \pi) \text { with POUM }\{M 1, I-M\} \\
& \text { or } \\
& \left.\qquad \begin{array}{r}
\text { Measure }|\pi\rangle \otimes\left|0^{a}\right\rangle \text { with projectors }\left\{\pi_{2}, \Pi_{0}\right\} \text { where } \\
\pi_{1}=|1 \times 1| \otimes \mathbb{I} \\
\pi_{0}=|0 \times 0| \otimes \mathbb{I}
\end{array}\right\} \text { measures if the } 1^{\text {st }} \text { quit is } 1 \text { or } 0
\end{aligned}
$$

Let us revist QMA and reframe the problem of decinding if an input is in a QMA language in terms of POVMs

For example, $\mathbb{P}[$ Verifier accepts $1 \pi\rangle$ on input $x]=\| \pi_{1} U\left(|\pi\rangle|0\rangle^{\infty a}\right) \|^{2}$

$$
\begin{aligned}
& =\langle\pi| \underbrace{\left\langle 0^{a}\right|\left(U^{+} \pi_{1} \cup\right)\left|0^{a}\right\rangle}_{M_{1}=\text { POVM element }}|\pi\rangle \\
& =\operatorname{Tr}\left[M_{1}|\pi X \pi|\right]=\langle\pi| M_{1}|\pi\rangle
\end{aligned}
$$

Suppose that Merlin wanted Arthor to accept
What would be the best proof (IT) for Merlin to choose?
$\mathbb{P}[$ Verifier accepts $|\pi\rangle]=\langle\pi| M_{1}|\pi\rangle$
So, to maximize choose $|\pi\rangle=\operatorname{argmax}\langle\pi| M_{1}|\pi\rangle$
If spectral decomposition of $M_{1}=\sum \lambda_{i}\left|v_{i} X v_{i}\right|$
Then, choose $|\pi\rangle=\max$ eigenvector $\left|v^{\star}\right\rangle$
Then, $\mathbb{P}\left[V(x \mid\right.$ accepts $|\pi\rangle]=$ max eigenvalue $=\lambda^{*}$

Lemma If $L \in Q M A$, then \exists efficient POVM M_{1} sit.

$$
\begin{aligned}
& \text { if } x \in L \Rightarrow \text { max. eigenvalue of } M_{1} \geqslant 2 / 3 \\
& \text { if } x \notin L \Rightarrow \text { max. eigenvalue of } M_{1} \leq 1 / 3
\end{aligned}
$$

Since max eigenvalue of $2^{\text {poly (n) }} \times 2^{\text {poly (n) }}$ matrix can be computed in $2^{\text {poly }(n)}$ time this implies that

$$
\text { QM } \subseteq \text { EXP }
$$

In fact, QMA \subseteq PSPACE as well (exercise)

Error Reduction in QMA

Recall that error of $B Q P$ algorithm can be made exponentially small
This also means that exact error threshold does not matter ($\frac{2}{3}$ vs any constant $\frac{1}{2}+\varepsilon$)

Here, we will show an analogous result for QMA
Lemma If $L \in Q M A$, then a quantum verifier V s.t.

Proof The idea is as before : the majority trick
If $V_{\text {old }}$ is a verifier with error $1 / 3$
Consider a new verifier that takes $k=\theta(n)$ copies of the proof (17)

Let us call this new verifier V and say that $\mid \pi$) has $m=$ poly (n) quits
Then, if $x \in L \Rightarrow \exists$ proof $|\pi\rangle^{\Delta k}$ s.t. $\left.\mathbb{P}[V(x) \text { accepts } \mid \pi)^{\Delta k}\right]$

$$
=\mathbb{P}\left[\operatorname{MAJ}\left(z_{1}, \ldots z_{k}\right)=t\right]
$$

Note that since $1 \pi\rangle^{\otimes k}$ is a product state, $z_{1} \ldots z_{k}$ are independent $\{0,1\}$ random variables with $\mathbb{E}\left[z_{i}\right] \geqslant 2 / 3$

$$
\text { So, } \mathbb{P}\left[\sum_{i=1}^{k} z_{i} \geqslant 0.51 \mathrm{k}\right]=1-2^{-\theta(k)}=1-2^{-\theta(n)} \quad \text { (Completeness holds) }
$$

What about soundness?

We want to argue that
if $x \notin L \Rightarrow \forall$ all proofs $|\pi\rangle \in\left(\left(\mathbb{C}^{2}\right)^{\otimes m}\right)^{\otimes k}, \mathbb{P}[V(x)$ accepts $|\pi\rangle] \leq 2^{-\theta(n)}$
If $|\pi\rangle=|\pi\rangle^{\otimes k}$, then $\mathbb{P}\left[V(x)\right.$ outputs $z_{1} \ldots . z_{k}$ on $\left.|\pi\rangle^{\otimes k}\right]$
$=\prod_{i=1}^{k} \mathbb{P}\left[V_{\text {old }}(x)\right.$ outputs z_{i} on $\left.|\pi\rangle\right]$
so distribution of each bit z_{i} is independent and we also know that $\mathbb{P}\left[z_{i}=1\right] \leq \frac{1}{3}$ always so, $\mathbb{E}\left[\# z_{i}\right.$'s that are 1$] \leqslant \frac{n}{3}$ and hence the $\mathbb{P}\left[\operatorname{maj}\left(z_{1} \ldots z_{k}\right)=1\right]=2^{-\theta(n)}$

The same also works if $|\pi\rangle=\left|\pi_{1}\right\rangle \otimes \cdots \cdots\left|\pi_{k}\right\rangle$ because bits are still independent (although not iud)

In the general case, the subtlety is that Merlin could cheat and not give the verifier a product state

In this case it is not obvious the majority argument goes through since the measurement outcomes are not independent

In fact, we are going to show that entangled proofs are only worse
To analyze this, let M_{1} be the POVM element corresponding to $V(x)$ accepts a given proof $|\pi\rangle \in\left(\mathbb{C}^{2}\right)^{\infty m}$
$M_{0}=I-M_{0}$ be POVM element corresponding to reject
Then, given a possibly entangled proof $|\pi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes m k}$,
$\mathbb{P}\left[V(x)\right.$ produces outcome $\left.z_{1}, \ldots z_{k}\right]$
$=\langle\Pi| M_{z_{1}} \otimes M_{z_{2}} \otimes \ldots \otimes M_{z_{k}}|\pi\rangle$
Let us decompose $M_{1}=\sum \lambda_{i}\left|i X_{i}\right|$ and $M_{0}=\sum\left(1-\lambda_{i}\right)\left|i X_{i}\right|$
where $\{|i\rangle\}$ are the eigenvectors (Note that $|i\rangle$ is not a standard basis vector)
Let us denote $\lambda_{i, 1}=\lambda_{i}$ and $\lambda_{i, 0}=1-\lambda_{i} \Rightarrow$ Note: $\lambda_{i, 0}+\lambda_{i, 1}=1$

Then, $\mathbb{P}\left[V(x)\right.$ measures $\left.z_{1}, \ldots z_{k}\right]$

$$
\begin{aligned}
& =\langle\pi|\left(\sum_{i_{1}} \lambda_{i_{1}, z_{1}} \mid i_{1} x_{i_{1}}\right) \otimes(\cdots) \cdots(\pi\rangle \\
& =\langle\pi| \sum_{i_{1}, i_{k}} \lambda_{i_{1}, z_{1}} \lambda_{i_{2}, z_{2}} \ldots \lambda_{i_{k}, z_{k}}\left|i_{1} \ldots i_{k} \times i_{1} \ldots i_{k}\right||\pi\rangle \\
& =\sum_{i_{1}, i_{k}} \lambda_{i_{1}, z_{1}} \lambda_{i_{2}, z_{2}} \ldots \lambda_{i_{k}, z_{k}}\langle\pi| i_{1} \ldots i_{k} \times i_{1} \ldots i_{k}|\pi\rangle \\
& =\sum_{i_{1}, \ldots i_{k}} \lambda_{i_{1}, z_{1}} \cdots \lambda_{i_{k}, z_{k}} \mid\left\langle\left.\pi\left(i_{1} \ldots i_{k}\right\rangle\right|^{2}\right.
\end{aligned}
$$

Let us define a new povm $O=\left\{\left|i_{1} \ldots i_{k}\right\rangle\right\}$

$$
\text { Then, above }=\sum_{i_{1} \ldots i_{k}} \lambda_{i, z_{1}} \ldots \lambda_{i_{k}, z_{k}} \mathbb{P}\left[0 \text { measures } i_{1} \ldots i_{k} \text { on }|\Pi\rangle\right]
$$

We make one more observation

$$
\begin{aligned}
& \sum_{z_{1} \ldots z_{k} \in\{0,1\}^{k}} \lambda_{i, z_{1}} \cdots \\
&= \lambda_{i_{k}, z_{k}} \\
&\left.=\sum_{z_{1}} \lambda_{i_{1}, z_{1}}\right)\left(\sum_{z_{2}} \lambda_{i_{2}, z_{2}}\right) \cdots\left(\sum_{z_{k}} \lambda_{i_{k}, z_{k}}\right)=1
\end{aligned}
$$

Thus, given a fixed i, \ldots, i_{k} this also forms a probability distribution
Overall one can write,

$$
\mathbb{P}\left[V(x) \text { outputs } z_{1} \ldots z_{k}\right]=\sum_{i_{1} \ldots i_{k}} \mathbb{P}\left[\begin{array}{c}
0 \underset{\sim}{\text { outputs }} \\
\text { on }|\pi\rangle
\end{array} i_{1} \ldots i_{k}\right] \cdot \mathbb{P}\left[z_{1} \ldots z_{k} \mid i_{1} \ldots i_{k}\right]
$$

Thus, we can think of the distribution of $z_{1} \ldots z_{k}$ as follows
(1) First sample hidden variables $i, \ldots i_{k}$ by measuring $|\pi\rangle$ with 0 This distribution depends on $|\pi\rangle$
Call this distribution $P_{1 \pi}$)
(2) sample $z_{1} \ldots z_{k}$ conditioned on $i_{1} \ldots i_{k}$ where $\mathbb{P}\left[z_{1} \ldots z_{k} \mid i_{1} \ldots i_{k}\right]$ are fixed and don't depend on $\mid \pi$)
Now, $\mathbb{P}\left[\right.$ maj $\left.\left(z_{1} \ldots z_{k}\right)=1\right]=\mathbb{E}_{\left.i_{1} \ldots i_{k \sim} P P_{\pi}\right\rangle}[\underbrace{\mathbb{P}\left[\operatorname{maj}\left(z_{1} \ldots z_{k}\right)=1 \mid i_{1} \ldots i_{k}\right.}]]$
this number does not depend on which $|\pi\rangle$ we choose

What $|\pi\rangle$ do we choose to maximize this probability?
choose the outer distribution $P_{(\pi)}$ to be the one which puts all the weight on the largest value

In other words, $\quad P_{1 \pi\rangle}\left(i_{1}^{A} \ldots i_{k}^{*}\right)=1$ for some fixed $i_{1}^{\prime} \ldots \dot{i}_{k}^{*}$
Recall that $P_{(\pi\rangle}\left(i_{1} \ldots i_{k}\right)=\left.\left|\langle\pi| i_{1} \ldots i_{k}\right)\right|^{2}$
we can see that this means that the proof $\pi=\left|i_{1}^{*}, \ldots . \dot{i}_{k}^{*}\right\rangle$

$$
=\left|i_{1}^{*}\right\rangle \otimes \ldots .\left|i_{k}^{*}\right\rangle
$$

Thus, the maximuin success probability is achieved when Merlin gives a tensor product proof and we already saw that in this case $\mathbb{P}[m a j=1]$ is $2^{-\theta(n)}$, so we are done

Amplification with a single copy of the proof
One curious aspect of the proof above is that the size of the proof increases by a factor of the number of repetitions since Merlin needs to provide k-copies of the proof

This issue does not arise if the proof was classical since Arthur can make copies of the proof but if the proof was quantum, Arthur can not make copies because of the No-cloning theorem

Is there a way to amplify using a single copy of the proof?
Theorem Single copy of proof suffices for error reduction in QMA
(Marriott-Watrous)

What can we do with a single copy of the proof?

The output bit is classical and can be copied

Can we just run the circuit again? For instance,

Not at all clear what this circuit would do since the first measurement destroys the proof

How about uncomputing first ?

If the final state at (1) is close to $|\pi\rangle \otimes\left|0^{a}\right\rangle$ we could repeat

Again not at all clear why this would be the case because of the intermediate measurement

The Mariott-Watrous algorithm shows that the state at (1) could somehow be reused

In particular, Marriott \& Watrous showed that the following algorithm works
(1)

(2) Compute some function of all classical output bits to compute the answer
next time Marriott - Watrous Algorithm e

