LECTURE 11 (February 21)
TODAY Random Oracle Separation of BQP. Search from BPP search
RECAP Result $\exists N P^{0}$-search problem that is in $B Q P^{0}$
but not in BPPO why. over the choice of O

Yamakawa-Zhandry search problem Inverting a specific one-way function
Let Σ be an alphabet that we will choose to be \mathbb{F}_{q}^{n} where q is a prime power with $q=O\left(n^{2}\right)$
$0: \sum \rightarrow\{0,1\}$ be a random oracle
$C \leq \Sigma^{n}$ be a subspace of $\left(\mathbb{F}_{q}^{n}\right)^{n}$ that forms an error-correcting code with certain properties that we describe later

Problem Let $f: C \longrightarrow\{0,1\}^{n}$ be defined as

$$
\begin{aligned}
& f\left(c_{1} \ldots c_{n}\right)=\left(O\left(c_{1}\right), \ldots O\left(c_{n}\right)\right) \quad \begin{array}{l}
\text { Domain is the set of } \\
\text { codewords }
\end{array}
\end{aligned}
$$

Find a preimage of 0^{h}

Theorem Choosing C appropriately, why over choice of 0
(1) \rightarrow a quantum algorithm that can approximately prepare a uniform superposition over all solutions with poly(n) queries
ie. it can prepare the state

$$
\propto \quad \sum_{x \in f^{-}(0)}|x\rangle
$$

(2) any classical algorithm requires $2^{n^{c}}$ queries to find a pre-image

This problem is in NP given access to the oracle [Why?]
How to choose C? Assume that each symbol of the each codeword C is distinct
$\left.\begin{array}{l}\text { (1) List Recoverability: This will be helpfol in ensuring classical hardness } \\ \text { (2) Decoding from random errors in the dual code } \\ \begin{array}{l}\text { This will be helpful in designing } \\ \text { the quantum algorithm }\end{array}\end{array}\right\} \begin{aligned} & \text { Such codes } \\ & \text { exist }\end{aligned}$

Quantum Algorithm How to efficiently prepare the state

$$
|\psi\rangle \propto \sum_{c \in c: f(c)=0}|c\rangle \text { ? }
$$

Consider the following two states which can be efficiently prepared:

$$
\left|1_{c}\right\rangle \propto \sum_{c \in C}|c\rangle \quad \text { and } \quad\left|1_{p r e}\right\rangle \propto \sum_{x \in \Sigma^{n}: o(x)=0^{n}}|x\rangle
$$

Only supported
Only supported over O^{n} preimages on codewords and not just the domain $C \subseteq \Sigma^{n}$

If we could somehow take pointwise product of these two states and normalize it we would be done!

Instead we will apply QFT
Quantum Fourier Transform QFT Analogue of $H^{\otimes n}$ on larger alphabets

This is a unitary transformation that maps

$$
Q F T|x\rangle \longrightarrow \bigotimes_{i=1}^{n}\left(\left.\frac{1}{\sqrt{|\Sigma|}} \sum_{y_{i} \in \varepsilon} \omega_{p}^{\phi\left(x_{i} \cdot y_{i}\right)} \right\rvert\, y_{i}\right)
$$

Here, $x \in \Sigma^{n}$ where $\Sigma=\mathbb{F}_{q}^{n}$ where $q=p^{r}$ for prime p
amplitude in standard basis
Notation

$$
|f\rangle=\sum_{x} f(x)|x\rangle
$$

amplitude in Fourier basis
Then, we denote by $|\hat{f}\rangle=$ OFT $|f\rangle=\sum_{x} \hat{f}(x)|x\rangle$
Two very useful properties of QFT
(1) Pointwise product becomes convolution after QFT [Exercise]

$$
\begin{gathered}
|f \cdot g\rangle=\sum_{x} f(x) g(x)|x\rangle \\
|\widehat{f \cdot g}\rangle=Q F T|f \cdot g \cdot\rangle=\frac{1}{\sqrt{|\Sigma|^{n}}} \sum_{x} \hat{f} \star \hat{g}(x)|x\rangle \quad \text { where } \hat{f} \star \hat{g}(x)=\sum_{y+z=x} \hat{f}(y) \hat{g}(z)
\end{gathered}
$$

(2) QFT of uniform superposition over subspace C is uniform superposition over dual subspace C^{\perp}

$$
\frac{1}{\sqrt{|C|}} \sum_{x \in C}|x\rangle \xrightarrow{Q F T^{\otimes n}} \frac{1}{\sqrt{\left|C^{\perp}\right|}} \sum_{x \in C \perp}|x\rangle
$$

where $C^{\perp}=\{d \mid c \cdot d=0 \quad \forall c\}$

Back to the quantum algorithm How to efficiently prepare the state

$$
|\psi\rangle \propto \sum_{c \in c: f(c)=0}|c\rangle
$$

Consider the following two states :

$$
\left|1_{c}\right\rangle=\frac{1}{\sqrt{|c|}} \sum_{c \in c}|c\rangle \quad \text { and } \quad\left|1_{\text {pres }}\right\rangle \propto \sum_{x \in \sum^{n}: O(x)=0}|x\rangle
$$

We want to take pointwise product of $\left|1_{c}\right\rangle$ \& $\left|1_{p r}\right\rangle$ (and normalize) suppose we apply QFT, take convolution and apply inverse QFT Not a unitary or linear operation in general

$$
\begin{aligned}
& \left|1_{c}\right\rangle \otimes\left|1_{\text {pr }}\right\rangle \xrightarrow{Q F T^{\otimes n} \otimes Q F T^{\otimes n}}(\underbrace{\left.\sum_{z} \hat{1}_{c}(z) \mid z\right)}_{\text {unit. over } c^{\perp}}) \otimes\left(\sum_{e} \hat{1}_{\text {ore }}(e)|e\rangle\right) \\
& =\sum_{\substack{c \in C^{+} \\
e \in \Sigma^{n}}} \hat{1}_{c}(c){\widehat{1_{p r e}}(e)|c\rangle|e\rangle} \\
& \xrightarrow[|x\rangle|e\rangle \rightarrow|x\rangle|x+e\rangle]{U_{\text {add }}}=\sum_{\substack{c \in C^{\perp} \\
e \in \Sigma^{n}}} \hat{1}_{c}(c) \hat{1}_{\text {pr }}(e)|c\rangle|c+e\rangle
\end{aligned}
$$

Now $c \in C^{\perp}$ is a dual codeword and treating e as an error
Suppose we could correct the error, ie. $\forall c \in c^{\perp}$, Decode ${ }_{C \perp}(c+e)=c$
Making this a unitary $U_{\text {decode }}|c\rangle|c+e\rangle \longrightarrow \mid c$-Decode $\left.(c+e)\right\rangle|c+e\rangle$
If Decode was always correct, then
$\xrightarrow{\text { Udecode }} \sum_{\substack{c \in C^{+} \\ e \in \Sigma^{n}}} \hat{1}_{c}(c) \hat{i}_{\text {pres }}(e)|0\rangle|c+e\rangle=\sum_{z}(\underbrace{\sum_{c+e=z} \hat{1}_{c}(c) \hat{1}_{\text {pres }}(e)}_{=\hat{1}_{c} \star \hat{1}_{\text {pres }}(z)})|0\rangle \otimes|z\rangle$
Now we have managed to perform convolution in the Fourier space

Applying an inverse QFT

$$
\begin{array}{r}
\left.\xrightarrow{I \otimes\left(Q F T^{-1}\right)^{\otimes n}}=\sqrt{\left|\sum\right|^{n}} \sum_{z} 1_{c}(z) 1_{p r e}(z)|0\rangle \mid z\right) \\
\\
\propto \quad 10\rangle \otimes\left(\sum_{z \in c}|z\rangle\right) \\
Q f(z)=0^{n}
\end{array}
$$

Now all this is assuming the ideal scenario where we can decode the dual code perfectly
[Why is the above not possible?]
In general, one can only decode it whip. under some type of error and implement the above circuit with some error

What sort of errors? The errors come from QFT of I Ipre $>$

$$
\left|1_{\text {pres }}\right\rangle \propto \sum_{x \in \mathcal{E}^{n}: O(x)=0^{n}}^{|x\rangle}=\left(\sum_{\substack{x, \in \Sigma \\ O\left(x_{1}\right)=0}}|x\rangle\right) \otimes() \sum^{\ldots .}\binom{\sum_{x_{n} \in \mathcal{E}}|x\rangle}{ O\left(x_{n}\right)=0}
$$

Since $0: \Sigma \rightarrow\{0,1\}$ is a random oracle, typically $1 / 2$ of Σ is "colored" with 0 What is the QFT of $\left(\sqrt{\frac{2}{|\Sigma|}} \sum_{\substack{x, \in \varepsilon \\ O(x)=0}}|x\rangle\right)$?

To understand let us consider the Hadamard example again, i.e. $\Sigma=\{0,1\}^{n}$
If we have $\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle \xrightarrow{H^{\otimes n}}|0\rangle^{\otimes n}$

Now suppose we color each $x \in\{0,1\}^{h}$. "RED" OR "BLUE" w.p. $1 / 2$ each and consider $\frac{1}{\sqrt{|R E D|}} \sum_{x \in R E D}|x\rangle \xrightarrow{H^{\otimes n}} \sum_{e \in\{0,1\}^{h}} \beta(e)|e\rangle$ where β depends on What do we get here? the coloring

In the exercises, you will be asked to show that

$$
\mathbb{E}_{\substack{\text { RED/BLUE } \\
\text { coloring }}}\left[|\beta(e)|^{2}\right]=\left\{\begin{array}{cc}
\frac{1}{2} & \text { if } e=0^{n} \\
\frac{1}{2} \cdot \frac{1}{2^{n}-1} & \text { if } e \neq 0^{n}
\end{array}\right.
$$

Thus, we get something that looks like $\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}} \sum_{e \neq 0} \frac{1}{\sqrt{2^{n}-1}}|e\rangle$ on average over \quad choice of $R E D \mid B L U E$ (upton signs)

Over the alphabet Σ, we get something similar, ie. typically

$$
\begin{aligned}
\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}} \sum_{\substack{e \neq 0}} \frac{1}{\sqrt{|2|-1}}|e\rangle \quad \begin{array}{l}
\text { on average over } \\
\text { choice of } 0 \\
\text { (unto phases) }
\end{array}
\end{aligned}
$$

Thus, $Q F T^{\otimes n}\left|1_{\text {pere }}\right\rangle=\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}} \sum_{\substack{e \neq 0 \\ e \in \mathcal{E}}} \frac{1}{\sqrt{|\Sigma|-1}}|e\rangle\right)^{\otimes n}$

Now, recall that we want to apply $U_{\text {decode }}$ to $\sum_{c \in C^{\perp}} \hat{1}_{c}(c) \hat{1}_{\text {pre }}(e)|c\rangle|c+e\rangle$ $e \in \varepsilon^{n}$
One can think of $Q F T^{\otimes n}\left|1_{\text {pre }}\right\rangle$ as a superposition over errors
If we measure each symbol of the error, with probability $\frac{1}{2}$ we δ get $e=0$ (no error)
with probability $\frac{1}{2}$ we get e to be
a random shift
Overall, each coordinate of the codeword c is corrupted independently
And typically half of the coordinates are corrupted
If our code can corrupt such errors with high probability, we can implement the above "ideal" algorithm approximately

Concretely, what we want
Consider a random error sampled as follows

$$
\begin{array}{ll}
\mathbb{P}\left[e_{i}=0\right]=\frac{1}{2} & \text { for each coordir } \\
\mathbb{P}\left[e_{i}=z\right]=\frac{1}{2(|\Sigma|-1)} & \forall z \in \Sigma \backslash\{0\}
\end{array} \quad \text { independently }
$$

Then, we want a decoding algorithm Decode ${ }_{c} \perp$ s.t.

$$
\mathbb{P}_{e}\left[\forall c \in C^{\perp}: \text { Decode }_{c^{\perp}}(c+e)=c\right]=1-2^{-\theta(n)}
$$

Lower Bound for Classical Algorithms

For this, we need another property of the code
(1) List Recoverability: This will be helpfol in ensuring classical hardness

Suppose we fix $S_{1}, S_{2}, \ldots, S_{n} \leq \Sigma$ where $\left|s_{i}\right| \leq 2^{\sqrt{h}}$
and consider codewords $c \in \Sigma^{n}$ where $c_{1} \in S_{1}$

$$
\begin{gathered}
c_{2} \in S_{2} \\
\vdots \\
c_{h} \in S_{n}
\end{gathered}
$$

Then, \# such codewords should be $\leq 2^{n^{3 / 4}}$

To simplify the argument we will assume that the algorithm is ron-adaptive i.e. it decides at the beginning all queries it is going to make

The proof works also for adaptive algorithms with a small modification of the argument

Assume that the algorithm outputs $c_{1} \ldots . . c_{n}$ as a preimage of 0^{n} with $2^{\sqrt{n}}$ queries Then. we may assume that algorithm queries $O\left(c_{1}\right), O\left(c_{2}\right), \ldots O\left(c_{n}\right)$ [why?]

So, the picture looks like this for the first coordinate the algorithm queries S_{1}, for the second it queries S_{2} and so on where each $\left|S_{i}\right| \leq 2^{\sqrt{n}}$

In picture,

Where denotes the queries algorithm makes

Note that $|\Sigma|=2^{o\left(n^{2}\right)}$ and

There are at most $2^{n^{3 / 4}}$ codewords consistent with One of these is the output $\mathbb{P}_{O}\left[\right.$ any of these is a preimage of $\left.0^{n}\right]=2^{n^{3 / 4}} \cdot 2^{-n}=2^{-c \cdot n}$

Near-term Quantum Advantage
$\left.\begin{array}{r}y Z \text {-search problem is in } B Q P^{0} \\ \text { not in BPD }\end{array}\right\} \begin{array}{r}\text { provable quantum advantage } u \text { we can instantiate } \\ \text { with a cryptographic }\end{array}$ with a cryptographic hash function
\& in NPO $\}$ verifiable in poly-time by classical algorithms
But the problem is that the quantum circuit to solve it can't be implemented on current quantum devices which are noisy \& limited to small-depth computation

Near-term experiments are based on random circuit or boson samplingRandom Circuit Sampling-

Given a random quantum circuit obtained from a "simple" family, sample from the output distribution

Boson sampling

Random beamsplitters

Sample from output distribution of boson sampling experiment

These are near-term, we have some evidence of quantum advantage, although there is still a lot we don't know but not verifiable easily

$$
\text { Holy -grail }=\text { Provable quantum advantage }+ \text { Near-term }+ \text { Verifiable }
$$

Now we are going to focus on Random circuit Sampling \& consider what evidence of quantum advantage do we have. We wan't cover boson sampling here

Note: Both these tasks are practically useless (except for maybe generating randomness) but for now we want to demonstrate quantum advantage experimentally

Warning: This is a rapidly evolving field and we are only going- to talk about some initial results.

Practically, it is not clear whether the evidence is robust in the presence of noise and whether we have effectively demonstrated quantum advantage since these experiments are hard to scale \& verify

Sampling from the output distribution of a quantum circuit is \# P-hard
\rightarrow as hard as counting number of solutions of a SAT formula

$$
\mathbb{P}[\text { output is } 1]=\frac{\# \text { satisfying assignments }}{2^{n}}
$$

This seems promising but we need simpler classes of quantum circuits and need that this is robust to errors \& noise which exact sampling is not

Dream Conjecture There exists a simple family of quantum circuits s.t. approximating $\left.|\langle y| C| 0^{n}\right\rangle\left.\right|^{2}$ for most outcomes $\left.y \in\left\{0_{1}\right)\right\}^{h}$ is \# P-hard when C is drawn at random

This ignores noise in the quantum circuit which is also something one has to take into account

In order to do this, we need the notion of postselection \& the complexity class postBQP

Post BQP

A problem is in postBQP if (1) $\mathbb{P}[$ postselection bits $=0 \cdots 0] \geqslant 2^{-p o l y(n)}$
(2) $\mathbb{P}[A$ is correct $\mid P=0 \cdots 0] \geqslant \frac{2}{3}$

We are conditioning on an event of exponentially sinall probability
This is not physically viable but is a very powerful theoretical tool Postelection dives a lot of computational power

$$
\begin{array}{r}
\left.N P \subseteq \text { post } \left.B Q P \quad|\Psi\rangle=\sqrt{1-\varepsilon}\left(\frac{1}{\sqrt{2^{n}}} \sum_{x \in\left\{0,13^{n}\right.}|x\rangle|\varphi(x)\rangle\right)+\sqrt{\varepsilon} \right\rvert\, \text { abort }\right\rangle|1\rangle \\
L=0.01 / \sqrt{2^{n}}
\end{array}
$$

If we postselect on $2^{\text {nd }}$ quit being 1,

$$
\text { unnormalized } \left.\left.|\psi\rangle=\frac{\sqrt{1-\varepsilon}}{\sqrt{2^{n}}} \sum_{x: \varphi(x \mid=1}|x\rangle+\sqrt{\varepsilon} \right\rvert\, \text { abort }\right\rangle
$$

If φ is unsatisfiable measuring first register gives abort
Otherwise in the worst-case φ has a single satisfying assignment x^{*} so the unnormalized state is

$$
\begin{aligned}
&\left.\frac{\sqrt{1-\varepsilon}}{\sqrt{2^{n}}}\left|x^{*}\right\rangle+\sqrt{\varepsilon} \text { (abort }\right\rangle \\
&\left.\left.\approx \frac{1}{\sqrt{2}^{n}}\left|x^{*}\right\rangle+\frac{0.01}{\sqrt{2^{n}}} \right\rvert\, \text { abort }\right\rangle \\
& \mathbb{P}\left[\text { we measure } x^{*}\right] \geqslant 0.99
\end{aligned}
$$

We can define the classical version post BPP similarly and the above also works for post BPP

Theorem post BQP $=P P \rightarrow$ problems where random algorithms do slightly better than random guessing
post $B Q P \subseteq P P$ follows from just minor modifications to the $B Q P \subseteq P P$ proof we saw earlier

The other direction is non-trivial and was shown by Aaronson
We are not going to cover the proof in the lecture but I might try to make an exercise out of it

Theorem post $B Q P=$ post $B P P \Longrightarrow P H$ collapses to the third level
Proof follows from a bunch of known complexity results which I don't expect everyone to know, so we are going to take it for granted

Now the punchline is, you can take a simple quantum circuit class C
for example, $I Q P$ circuits which look like $H^{\otimes n} D H^{\otimes n}$ where D is a diagonal unitary in the computational basis

These circuits are way less powerful than $B Q P$ but if we give them the power of postselection, they become as powerful as postBQP

Theorem postIQP $=$ postBQP
Now, if there was an exact classical sampler to sample from output distribution for an IQP circuit, then we could classically postselect and

$$
\text { post } B P P=\text { post } Q P=\text { post BQP } \Rightarrow \mathrm{PH} \text { collapse }
$$

These circuits cannot solve many problems but for the specific problems they solve, a classical computer could not solve them unless PH collapses

Caveats (1) We have shown existence which says in the worst-case sampling from an IQP circuit is hard classically but if it was a single pathological case, it may not be useful experimentally

Can we say that on average this task is hard?
(2) Again the above assumes exact sampler which is again not experimentally feasible

Can we say that this is still hard if the classical sampler samples from a distribution that is ε-close in total variation distance?

