
LECTURE 11 (February 21

Ay Random Oracle Separation of BQP-search from BPP search

RECAP Result - NP: search problem that is in BQPO
--

but not in BPPO whp . over the choice of U

Yamakawa-Zhandry search problem Inverting a specific one-way function

Let I be an alphabet that we will choose to beIs wherea is a prime
power with g = 0(72)

0 : = - 20.13 be a random oracle

C < I"be a subspace of (1")" that forms an error-correctino-code
S

with certain properties that we describe later

Problem) Let f : C -> 20 ,
13" be defined as

-(c , ... C) = (0(4) , ... - O((n) Domain is the set of
codewords

Find a preimage of or

Ieovem ChoosingC appropriately - whp over choice of O

111 7 a quantum algorithm that can approximately prepare a uniform
superposition over all solutions with poly(n) queries

i.e. it can prepare the state

x4(x7

xff- (0)

(2) any classical algorithm requires zi queries to find a pre-image

This problem is in NP given access to the oracle [Why ?]

# choose C ? Assume that each symbol of the each codeword c is distinct

0 Recoverability : This will be helpful in ensuring classical hardness

3② Decoding from random errors in the dual code
swillbehelpful

in designin
Suchi odes

Q



Quantum Algorithm How to efficiently prepare the state

14)a[/c> B
CEC : f(c) = 0

Consider the following two states which can be efficiently prepared :

116c[ik) and Apre) 2
-
E(X)

CEC x E2" : O(X) =04

Only supported Only supported over opreimages
on codewords but over the entire alphabet &"

and not just the domain CcE"

If we could somehow take pointwise product of these two states and normalize it
-

We world be done ! Not a linear operation

Instead we will apply QFT

Quantum Fourier Transform Analogue of HO" on larger alphabets

This is a unitary transformation that maps Here
,

④ P(xi -yi)
,y))

x = 1 "where I =H
WQFT(X) -See where a= p for prime p

- amplitude in standard basisL

Notation (f) = Ef(x)(x)-

↑ amplitude in Fourier basis

Then
,

we denote byIf) = QFT1f) = [ f(x) (*)

C

Two very useful properties of QFT
/

① Pointwise product becomes convolution after QFT (Exercise]

1 fog = [f(x)g(x)(x)
④R

(f) = QFT1 fog) = ***(x(x) where (x = [f(y)(z)
Y+z=X

& QFT of uniform superposition over subspace C is uniform superposition
+

over dual subspace C

I

I e

where Ct = Ed cod = 0 C3
②



Back to the quantum algorithm How to efficiently prepare the state

14)a[/c> S
CEC : f(c) = 0

Consider the following two states :

1= Ek) and lIpre) - & (x)

Xe [ " : O(x)= 0

We want to take pointwise product of 116 & (1pm) (and normalize

suppose we apply QFT · take convolution and apply inverse QFT
-

Not a unitary or linear operation in general

①I

106apre** (2)(a)(z))) & Epre(e)(e)
-

t

unif . over C

E=

sect
Eg Epre(e)(chle

2E En

add ~

Ipre(e)/C7/+e)= E tc (2)
| x)(e) -> |xblx+e) cect

2Eq

Now cect is a dual codeword and treatinge as an error

suppose we could correct the error
.
ie

.

cect
, Decode, (cte) = C

Making this a unitary Udecode (C)(c+e) -> 1 - Decodectel]IcteL

If Decode was always correct. then

1
Udecode 1 1

Sect 1 (C) 1(10)/te) = (ezz 1.) Ipre(e))10) * (z)-> C pre

2E qu -
= I, Ipre(z)

Now we have managed to perform convolution in the Forvier space

③



Applying an inverse QFT

#
- 1

I(qF+ (
-> =STE" 2 1, /2) <pre(z) 10) Iz

- 100) Exc1z7)
& f(z) = on

Now all this is assuming the ideal scenario where we can decode the dual code perfectly

[Why is the above not possible ? ]

In general ,
one can only decode it wh.p . under some type of error and implement

the above circuit with some error

What sort of errors ? The errors come from QFT of pre)

Itpreh -Ed :O= or

= (0) (0 ... (d
O(x, ) = 0

Since 0 : < + 20, 13 is a random oracle
, typically 42 of 1 is "colored" with o

What is the QFT of CScr(
iTo understand let us consider the Hadamard example agal i

. e. [ = <0 ,
13

If we have second 10

Now suppose we color each xtd0 , 13" ,
"RED" OR "BLUE" W .P . F each

and consider Q & Belle) where B depends on

Sept EECO ,13 the coloring
What do we get here ?

In the exercises
, you will be asked to show that

RED(BlE(18)e)l2) =

if e = o

E#coloring
2 En if to

Thus
,

we get something that looks like 10)+o T e
on average over

choice of RED/BLUE

Cupto signs)
④



Over the alphabet I , we get something similar ,
i

. e. typically

= 10)+ eto
e on average over

etE
choice of O

Cupto phases)

# M

ThUs QFTApre) = (10)+So e

~

Ipre(e)/C7/+e)Now
,
recall that we want to apply Udecode to E 1

,
(c)

cect

2Eq

One can think of QFT
*

"lipre] as a superposition over errors

If we measure each symbol of the error , with probability I we get e= o (no error

with probability I we get to be

a random shift

Overall
,
each coordinate of the codeword c is corrupted independently

And typically half of the coordinates are corrupted

If our code can corrupt such errors with high probability, we can
implement the above "ideal" algorithm approximately

concretely ,What we want

consider a random error e sampled as follows

#[c= 0=
for each coordinate

#(c
.

= z) =2)H #zE EXO3 independently

There we want a decoding algorithm Decode
,
sit

# [fcect : Decade, ((+2) = c) = 1 - 2 -
Ok

⑤



- owerBound for Classical Algorithms

For this
,

we need another property of the code

0 Recoverability : This will be helpful in ensuring classical hardness

J

suppose we fix S
, Se ...., S: 8 where IsilE 2

and consider codewords (e &"where c ,
eS

ce'
GE Sp

Then. such codewords should be E 21

To simplify the argument we will assume that the algorithm is non-adaptive
i. e. it decides at the beginning all queries it is going to make

The proof works also for adaptive algorithms with a small modification of the

argument

J

Assume that the algorithm outputsa ..... In as a preimage of 0 " with 2 queries
There we may assume that algorithm queries 0(4) ,

O((z)
. ...
O(n) (Why ?]

So
,
the picture looks like this for the first coordinate

the algorithm queries s
, for the second it queries S2

ST
and so on where each 1Sil = 2

In picturee. M

/
// //- * algorithm makes

k Y·
where denotes the queries

-

/ //S# Note that (2) = 20t and<S

314
There are at most 2 codewords consistent with
One of these is the output

# [any of these is a preimage of 0 "] =

-M - k
= 2

- c . k

2:2

⑥



Near-term Quantum Advantage

Yz-search problem is in BQP" provable quantum advantage o we can instantiate

not in BPpU 3 with a cryptographic hash function

& in NPO 3 verifiable in poly-time by classical algorithms

But the problem is that the quantum circuit to solve it can't be implemented on

current quantum devices which are noisya limited to small-depth computation

Near-term experiments are based on random circuit or boson sampling

Random Circuit Sampling
RandonQuantum E

Given a random quantum circuit obtained from a "simple" family , sample
from the output distribution

Boson sampling

protons * 08 Gi mose sample from output
distribution of boson

sampling experiment
Random beamsplitters

These are near-tern ,
we have some evidence of quantum advantage , although there is

still a lot we don't know but not verifiable easily

Holy grail = Provable quantum advantage + Near-term + Verifiable

Now we are goi to focus on Random circuit sampling& consider what evidence~

n&
of quantum advantage do we have

.
We won't cover boson sampling here

Note : Both these tasks are practically useless (except fornicybe generating randomness]
but for now we want to demonstrate quantum advantage experimentally

Marning : This is a rapidly evolving field and we are only going to talk about some
initial results.

Practically, it is not clear whether the evidence is robust in the presence of
noise and whether we have effectively demonstrated quantum advantage
since these experiments are hard to scalea Verify

·



sampling from the output distribution of a quantum circuit is #P-hard
↳ as hard as counting
number of solutions

SAT-formula of a SAT formula

4

!= Eesa(4(x)
↳ output qubit

# [Output is 1] = Etisfyingassignments
2π

This seems promising but we need simpler classes of guantum circuits
and need that this is robust to errors & noise

which exact sampling is not

Dream objecture There exists a simple family of quantum circuits sit
.

approximating Ky/C16")12 for most outcomes y e50 , 13 "
is #P-hard when C is drawn at random

This ignores noise in the quantum circuit which is also something
one has to take into account

In order to do this
,

we need the notion of postselectiona the complexity class
postBQP

RostBQP - postselection bits PE 20, 13
Poly(M

- output bit A#itI
A problem is in postBQP if ( IP) post selection bits = 0 ....0) > 2

Poly

(2) IP (A is correct /P = 0 ... 07 > E

We are conditioning on an event of exponentially small probability

This is not physically viable but is a very powerful theoretical tool

Postselection gives a lot of computational power
special state

->
SAT formula 4

NP E postBQP (p) = 6 Fe(21 /q(XK) + 55/abort E

↳ = 0 .

01/
If we postselect on 2"P qubit being-1 R

unnormalized (4) =

Eq +ElaborSee

②



If 4 is unsatisfiable measuring first register gives about

otherwise in the worst-case 4 has a single satisfying assignment x
*

so the unnormalized state is

(i + 15 labora

E * (
*

> + Nor labotthe

IP (We measure x
*

] > 0 . 99

We can define the classical version postBPP similarly and the above also works
for post BPP

Theorem postBQP = PP -> problems where random algorithms
do slightly better than random guessing

postBQP -
> PP follows from just minor modifications to the BQP =PP

proof we saw earlier

The other direction is non-trivial and was shown by Aaronson

We are not going to cover the proof in the lecture but I might
try to make an exercise out of it

Theorem postBQP = postBPP => PH collapses to the third level

Proof follows from a bunch of known complexity results
which I don't expect everyone to know ,

so we are going
to take it for granted

Now the punchline is , you can take a simple quantum circuit class C

for example ,

IQP circuits which look like H*DH* where D is

a diagonal unitary in the computational basis

These circuits are way less powerful than BQP but if we give
then the power of postselection , they become as powerful as postBQP

④



Theorem postIQP = postBQP

Now
- if there was an exact classical sampler to sample from output distribution

for an IQP circuit
,
then we could classically post select and

postBPP = postIQP =POstBQP = PH collapses

These circuits cannot solve many problems but for the specific problems
they solve ,

a classical computer could not solve then unless PH

collapses

Creats &We have shown existence which says in the worst-case

sampling from an IQP circuit is hard classically
but if it was a single pathological case ,

it may not

be useful experimentally

Can we say that on average this task is hard ?

& Again the above assumes exact sampler which is again
not experimentally feasible

Can we say that this is still hard if the classical

sampler samples from a distribution that is E-close

in total variation distance ?

⑳


