## Quantum Information Refresher

## Starting Point

## Starting Point

Quantum Information theory is a generalization of probability theory where probabilities can be negative or even complex numbers

## Starting Point

Consider a system $S$ with $d$ distinguishable states, labeled $0, \ldots, d-1$ and an external observer $E$


Measurement The external observer $E$ can measure the state of $S$

Isolated Evolution The system $S$ can evolve without interacting with the external observer $E$

## Classical Physics

Initially the observer $E$ assigns a state to the system $S$
Classical physics models the state of the system
$S$ as a probability distribution over $d$ states, represented as a column vector

$$
s=\left(\begin{array}{c}
s_{0} \\
\vdots \\
s_{d-1}
\end{array}\right) \in \mathbb{R}^{d}
$$

$$
\sum_{\geq 0}+\cdots+s_{d-1}=1
$$

## Classical Physics

If the observer measures the system $S$, then $E$ obtains measurement outcome $i$ with probability $s_{i}$


State of the system gets updated to

$$
s=\left(\begin{array}{c}
s_{0} \\
\vdots \\
s_{d-1}
\end{array}\right) \longrightarrow s^{\prime}=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)_{i \text { ith coordinate }}
$$

## Classical Physics

If the observer measures the system $S$, then $E$ obtains measurement outcome $i$ with probability $s_{i}$


State of the system gets updated to

$$
s=\left(\begin{array}{c}
s_{0} \\
\vdots \\
s_{d-1}
\end{array}\right) \longrightarrow s^{\prime}=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)
$$

## Classical Physics

If the observer measures the system $S$, then $E$ obtains measurement outcome $i$ with probability $s_{i}$


State of the system gets updated to

$$
s=\left(\begin{array}{c}
s_{0} \\
\vdots \\
s_{d-1}
\end{array}\right) \longrightarrow s^{\prime}=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)
$$

Outcome state $i$ with probability one

## Classical Physics

If the system $S$ undergoes isolated evolution, then the state of the system $S$ gets updated via a multiplication by a stochastic matrix


$$
s=\left(\begin{array}{c}
s_{0} \\
\vdots \\
s_{d-1}
\end{array}\right) \longrightarrow \quad s^{\prime}=A\left(\begin{array}{c}
s_{0} \\
\vdots \\
s_{d-1}
\end{array}\right)
$$



Matrix is stochastic if all entries are non-negative and each column sum is one

## Quantum Physics

Initially the observer $E$ assigns a state to the system $S$

Quantum physics models the state of the system $S$ as a complex unit vector, represented as a column vector

$$
|\psi\rangle=\left(\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{d-1}
\end{array}\right) \in \mathbb{C}^{d} \quad\left|\alpha_{0}\right|^{2}+\cdots+\left|\alpha_{d-1}\right|^{2}=1
$$

## Quantum Physics

Quantum physics models the state of the system $S$ as a complex unit vector, represented as a column vector

The $d$ distinguishable states are represented by

$$
|\psi\rangle=\left(\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{d-1}
\end{array}\right) \in \mathbb{C}^{d}
$$

$$
|0\rangle=\left(\begin{array}{c}
1 \\
\vdots \\
0
\end{array}\right) \quad \ldots \quad \quad|d-1\rangle=\left(\begin{array}{c}
0 \\
\vdots \\
1
\end{array}\right)
$$

Also called "classical" or "basis" states

These vectors form an orthonormal basis for $\mathbb{C}^{d}$ called the standard basis

A general quantum state is a superposition of classical basis states

$$
|\psi\rangle=\alpha_{0}|0\rangle+\cdots+\alpha_{d-1}|d-1\rangle
$$

## Quantum Physics

Quantum physics models the state of the system $S$ as a complex unit vector, represented as a column vector

$$
|\psi\rangle=\left(\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{d-1}
\end{array}\right) \in \mathbb{C}^{d}
$$

The $d$ distinguishable states are represented by
Also called "classical" or "basis" states

$$
|0\rangle=\left(\begin{array}{c}
1 \\
\vdots \\
0
\end{array}\right) \quad \ldots \quad|d-1\rangle=\left(\begin{array}{c}
0 \\
\vdots \\
1
\end{array}\right)
$$

A general quantum state is a superposition of classical basis states

A quantum state of the form
$|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$ is called a qubit

## Dirac Notation

- Mathematically $|\psi\rangle$ is a column vector

> called "ket psi"

- The complex conjugate of $|\psi\rangle$ (which is a row vector) is denoted $\langle\psi|$

$$
|\psi\rangle=\binom{\alpha}{\beta} \quad\langle\psi|=\left(\alpha^{*}, \beta^{*}\right)=\alpha^{*}\langle 0|+\beta^{*}\langle 1|
$$

$\alpha^{*}$ denotes the complex conjugate of $\alpha$
$\langle 0|=(1,0)$ and $\langle 1|=(0,1)$

- Inner product between a column vector $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ and row vector $\langle\theta|=\gamma\langle 0|+\delta\langle 1|$ is

$$
\langle\theta \mid \psi\rangle
$$

## Dirac Notation

- Outer Product $|\psi\rangle\langle\theta|$ is a matrix
$\square$
- The matrix vector multiplication of Matrix $M=|\psi\rangle\langle\theta|$ and vector $|\phi\rangle$

- Every matrix $M$ with entries $\left\{M_{i j}\right\}$ can be written as

$$
M=\sum_{i j} M_{i j}|i\rangle\langle j|
$$

## Quantum Physics

Born's rule If the observer measures the system $S$, then $E$ obtains measurement outcome $i$ with probability $\left|\alpha_{i}\right|^{2}$


State of the system gets "collapsed" to $|i\rangle$

$$
|\psi\rangle=\left(\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{d-1}
\end{array}\right) \longrightarrow\left|\psi^{\prime}\right\rangle=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)_{i \text { ith coorininate }}
$$

## Quantum Physics

Born's rule If the observer measures the system $S$, then $E$ obtains measurement outcome $i$ with probability $\left|\alpha_{i}\right|^{2}$

State of the system gets "collapsed" to $|i\rangle$

$$
|\psi\rangle=\left(\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{d-1}
\end{array}\right) \longrightarrow\left|\psi^{\prime}\right\rangle=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)_{i \text { ith coordinate }}
$$



What happens if the observer measures again?

## Quantum Physics

Born's rule If the observer measures the system $S$, then $E$ obtains measurement outcome $i$ with probability $\left|\alpha_{i}\right|^{2}$

State of the system gets "collapsed" to $|i\rangle$

$$
|\psi\rangle=\left(\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{d-1}
\end{array}\right) \longrightarrow\left|\psi^{\prime}\right\rangle=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)_{i \text { iht coordinate }}
$$



Outcome state $i$ with probability one

## Quantum Physics

If the system $S$ undergoes isolated evolution, then the state of the system $S$ gets updated via a multiplication by a unitary matrix


$$
|\psi\rangle \longrightarrow\left|\psi^{\prime}\right\rangle=U|\psi\rangle
$$

$$
U \in \mathbb{C} d \times d
$$

A $d \times d$ complex matrix is unitary if $U^{-1}=U^{\dagger}$

## Quantum Physics

Equivalent definitions of a unitary matrix
$U \in \mathbb{C}^{d \times d}$

- $U^{-1}=U^{\dagger}$
- $U$ preserves the length of vectors
- $U$ preserves the inner product between vectors


## Quantum Physics

Equivalent definitions of a unitary matrix

$$
U \in \mathbb{C}^{d \times d}
$$

- Columns of $U$ form an orthonormal basis of $\mathbb{C}^{d}$
- Rows of $U$ form an orthonormal basis of $\mathbb{C}^{d}$
- $U$ maps one orthonormal basis of $\mathbb{C}^{d}$ to another


## Unitary Evolution of a Qubit



## Quantum vs Classical Bits

Is there an essential difference between a quantum bit and a classical bit? Does allowing negative or complex amplitudes make a discernible difference?

Example $|+\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \quad$ vs $\quad|-\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$


What happens when we measure these two states?

## Quantum vs Classical Bits



$$
\langle-\mid+\rangle
$$

In quantum mechanics, orthogonal states are perfectly distinguishable from one another

## Quantum vs Classical Bits

Unknown state $|\psi\rangle$ that is either $|+\rangle$ or $|-\rangle$
How could an observer tell the difference?

- Before measuring, apply a unitary $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$

$$
H|+\rangle=\quad H|-\rangle=
$$

- Measuring the rotated state tell us what $|\psi\rangle$ was



## Quantum vs Classical Bits

Takeaway: Minus signs in the amplitude matter!
More precisely, relative phases between the classical basis states matter


On the other hand global phases don't matter

- There is no quantum process (unitary + measurement) that can distinguish $|\psi\rangle$ from $-|\psi\rangle$

Or in fact $|\psi\rangle$ from $e^{i \theta}|\psi\rangle$

- Because $U(-|\psi\rangle)=-U|\psi\rangle$ and measurements at the end destroy sign information, since we take absolute values of the amplitudes!


## Composite Quantum Systems

The state of a qubit is a unit vector in $\mathbb{C}^{2}$ which is also called the Hilbert space of the qubit

Hilbert space of two qubits is the tensor product space $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$

- $\mathbb{C}^{2}$ has orthonormal basis $\{|0\rangle,|1\rangle\}$
- Tensor product space $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$ is 4-dimensional with orthonormal basis
$|0\rangle \otimes|0\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) \begin{aligned} & 00 \\ & 01 \\ & 10\end{aligned}$
$|0\rangle \otimes|1\rangle=\left(\begin{array}{l|l}0 & 00 \\ 1 & 01 \\ 0 & 10 \\ 0 & 11\end{array}\right.$
$|1\rangle \otimes|0\rangle=\left(\begin{array}{lll}0 & 00 \\ 0 & 01 \\ 1 & 10 \\ 0 & 11\end{array}\right.$
$|1\rangle \otimes|1\rangle=\left(\begin{array}{l|l}0 & 00 \\ 0 & 01 \\ 0 & 10 \\ 1 & 11\end{array}\right.$

Shorthand
$|00\rangle=|0,0\rangle=|0\rangle|0\rangle=|0\rangle \otimes|0\rangle$

- This basis represents the classical states of two qubits


## Composite Quantum Systems

## Tensor Product of Vectors

If $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ and $|\theta\rangle=\gamma|0\rangle+\delta|1\rangle$ then the state of two qubits together is


## Composite Quantum Systems

- A two qubit state $|\psi\rangle$ is a unit vector in $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$

$$
|\psi\rangle=\sum_{i j} \alpha_{i j}|i\rangle \otimes|j\rangle \quad \sum_{i j}\left|\alpha_{i j}\right|^{2}=1
$$

- A general two-qubit states cannot be written as a tensor product

$$
|\psi\rangle \neq|\phi\rangle \otimes|\theta\rangle \quad \text { for one qubit states }|\phi\rangle,|\theta\rangle \in \mathbb{C}^{2}
$$

- States that cannot be written in tensor product form are called entangled. Otherwise, they are unentangled


## Composite Quantum Systems

- A two qubit state $|\psi\rangle$ is a unit vector in $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$

$$
|\psi\rangle=\sum_{i j} \alpha_{i j}|i\rangle \otimes|j\rangle \quad \sum_{i j}\left|\alpha_{i j}\right|^{2}=1
$$

- A general two-qubit states cannot be written as a tensor product

$$
|\psi\rangle \neq|\phi\rangle \otimes|\theta\rangle \quad \text { for one qubit states }|\phi\rangle,|\theta\rangle \in \mathbb{C}^{2}
$$

- States that cannot be written in tensor product form are called entangled. Otherwise, they are unentangled


## Composite Quantum Systems

- Example: $|E P R\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$ is entangled
$\square$
- Example: $|\psi\rangle=\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle$ is unentangled $\square$


## Composite Quantum Systems

- Taking inner products in $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ : let $|a\rangle,|b\rangle,|c\rangle,|d\rangle \in \mathbb{C}^{2}$

$$
(\langle a| \otimes\langle b|)(|c\rangle \otimes|d\rangle)=\langle a \mid c\rangle \cdot\langle b \mid d\rangle
$$

- Let $|\psi\rangle=\sum_{i j} \alpha_{i j}|i, j\rangle$ and $|\theta\rangle=\sum_{i j} \beta_{i j}|i, j\rangle$

$$
\langle\psi \mid \theta\rangle=
$$

## Measurements

Measuring a two qubit state $|\psi\rangle=\sum_{i j} \alpha_{i j}|i, j\rangle \in \mathbb{C}^{2} \otimes \mathbb{C}^{2}$

- Obtain classical outcome $(i, j) \in\{0,1\}^{2}$ with probability $\left|\alpha_{i j}\right|^{2}$
- Post-measurement state of $|\psi\rangle$ is $|i, j\rangle$



## Partial Measurements

Measuring the first qubit in a two qubit state $|\psi\rangle=\sum_{i j} \alpha_{i j}|i, j\rangle \in \mathbb{C}^{2} \otimes \mathbb{C}^{2}$

- Obtain classical outcome $i \in\{0,1\}$ with probability

$$
p_{i}=\left|\alpha_{i 0}\right|^{2}+\left|\alpha_{i 1}\right|^{2}
$$

- Post-measurement state of $|\psi\rangle$ is $\frac{1}{\sqrt{p_{i}}}\left(\alpha_{i 0}|i 0\rangle+\alpha_{i 1}|i 1\rangle\right)$



## RECAP

## Quantum Physics

Initially the observer $E$ assigns a state to the system $S$

Quantum physics models the state of the system $S$ as a complex unit vector, represented as a column vector

$$
\mathbb{C}^{d} \ni|\psi\rangle=\left(\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{d-1}
\end{array}\right)=\begin{gathered}
\alpha_{0}|0\rangle+\cdots+\alpha_{d-1}|d-1\rangle \\
\quad \text { where }\left|\alpha_{0}\right|^{2}+\cdots+\left|\alpha_{d-1}\right|^{2}=1
\end{gathered}
$$

## Quantum Physics

Born's rule If the observer measures the system $S$, then $E$ obtains measurement outcome $i$ with probability $\left|\alpha_{i}\right|^{2}$

State of the system gets "collapsed" to $|i\rangle$

$$
|\psi\rangle=\left(\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{d-1}
\end{array}\right) \longrightarrow\left|\psi^{\prime}\right\rangle=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)_{i \text { iht coordinate }}
$$



Outcome state $i$ with probability one

## Quantum Physics

If the system $S$ undergoes isolated evolution, then the state of the system $S$ gets updated via a multiplication by a unitary matrix


$$
|\psi\rangle \longrightarrow\left|\psi^{\prime}\right\rangle=U|\psi\rangle
$$

$$
U \in \mathbb{C}^{d \times d}
$$

A $d \times d$ complex matrix is unitary if $U^{-1}=U^{\dagger}$
All unitary operations are reversible

## Composite Quantum Systems

- A two qubit state $|\psi\rangle$ is a unit vector in $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$

$$
|\psi\rangle=\sum_{i j} \alpha_{i j}|i\rangle \otimes|j\rangle \quad \sum_{i j}\left|\alpha_{i j}\right|^{2}=1
$$

- A general two-qubit states cannot be written as a tensor product

$$
|\psi\rangle \neq|\phi\rangle \otimes|\theta\rangle \quad \text { for one qubit states }|\phi\rangle,|\theta\rangle \in \mathbb{C}^{2}
$$

- States that cannot be written in tensor product form are called entangled. Otherwise, they are unentangled
Example: $|E P R\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$ is entangled


## Measurements

Measuring a two qubit state $|\psi\rangle=\sum_{i j} \alpha_{i j}|i, j\rangle \in \mathbb{C}^{2} \otimes \mathbb{C}^{2}$

- Obtain classical outcome $(i, j) \in\{0,1\}^{2}$ with probability $\left|\alpha_{i j}\right|^{2}$
- Post-measurement state of $|\psi\rangle$ is $|i, j\rangle$



## Partial Measurements

Measuring the first qubit in a two qubit state $|\psi\rangle=\sum_{i j} \alpha_{i j}|i, j\rangle \in \mathbb{C}^{2} \otimes \mathbb{C}^{2}$

- Obtain classical outcome $i \in\{0,1\}$ with probability

$$
p_{i}=\left|\alpha_{i 0}\right|^{2}+\left|\alpha_{i 1}\right|^{2}
$$

- Post-measurement state of $|\psi\rangle$ is $\frac{1}{\sqrt{p_{i}}}\left(\alpha_{i 0}|i 0\rangle+\alpha_{i 1}|i 1\rangle\right)$



## Unitary Evolution on Composite Systems

Two qubit systems in isolation evolve via unitary matrices on $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$

- Tensor product of one-qubit unitaries $U, V$ :

> Applying $U$ to the first and $V$ to the second qubit corresponds to applying $U \otimes V$ to the larger system


## Unitary Evolution on Composite Systems

Two qubit systems in isolation evolve via unitary matrices on $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$

- Tensor product of one-qubit unitaries $U, V$ :

Applying $U$ to the first and $V$ to the second qubit corresponds to applying $U \otimes V$ to the larger system

- Matrix representation

$$
\begin{gathered}
U=\left(\begin{array}{ll}
u_{00} & u_{01} \\
u_{10} & u_{11}
\end{array}\right) \quad V=\left(\begin{array}{ll}
v_{00} & v_{01} \\
v_{10} & v_{11}
\end{array}\right) \\
\longrightarrow U \otimes V=\left(\begin{array}{ll}
u_{00} V & u_{01} V \\
u_{10} V & u_{11} V
\end{array}\right)
\end{gathered}
$$

## Unitary Evolution on Composite Systems

## General two-qubit unitaries are not product operators; they are entangling

- Example: CNOT acts on two qubits: for any $x \in\{0,1\}$

$$
\left.\begin{array}{l}
C N O T|x\rangle \otimes|0\rangle=|x\rangle \otimes|x\rangle \\
C N O T|x\rangle \otimes|1\rangle=|x\rangle \otimes|x \bigoplus 1\rangle \\
\substack{\text { Conget } \\
\text { qubit }} \\
\text { CNubit }
\end{array}\right)
$$

- Example: $|\psi\rangle=|+\rangle \otimes|0\rangle$

$$
C N O T|\psi\rangle=
$$

## No Cloning Theorem

Classical bits are easily copied. Quantum Information is different

- Informal Statement: "There is no quantum Xerox machine"
- Formally: There is no unitary $U$ acting on two qubits such that

$$
U|\psi\rangle \otimes \underset{\text { ancila }}{|0\rangle}=|\psi\rangle \otimes|\psi\rangle
$$

for all one qubit states $|\psi\rangle$

## No Cloning Theorem

## Proof: try to copy $|0\rangle$ vs $|+\rangle$

$\square$

## Mixed State

- Given two qubits in tensor product state $|\psi\rangle=|\phi\rangle \otimes|\theta\rangle$ what is the state of the first qubit?

$|\phi\rangle \otimes|\theta\rangle$
- How about when the two qubits are in an entangled state?

$$
\text { Example: }|E P R\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle \text { is entangled }
$$

- In this case the state of the first qubit is described by measuring the first qubit and describing the state of the second qubit after the measurement

State of first qubit: $|0\rangle$ with probability $1 / 2$
|1) with probability $1 / 2$

## Mixed State

- Mixed states can be represented by density matrices

Example: $\left|\psi_{0}\right\rangle$ with probability $p_{0}$

$$
\left|\psi_{1}\right\rangle \text { with probability } p_{1}
$$

$$
\} \rho=p_{0}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|+p_{1}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|
$$

- Different probability mixtures can give rise to the same density matrix

- No unitary or measurement can distinguish the mixture if the density matrices are the same
- One can define measurement and unitary evolution for density matrices (later)


## Exponentialty of Quantum Mechanics

- Nature is doing an incredible amount of work for us
- However, we can only access the exponential information stored in $|\psi\rangle$ in a limited way
$\theta \theta \theta$ (2) ()

$$
|\psi\rangle=\left(\begin{array}{c}
\alpha_{0} \ldots \\
\vdots \\
\alpha_{1} \ldots 1
\end{array}\right)
$$

- This leads to a fundamental tension in quantum information:


## Exponentialty vs Fragility of Quantum States

- This tension makes quantum information and computation subtle, mysterious and extremely interesting


## Supplementary Homework

If you don't have a background in quantum information

- Read first few chapters in Nielsen-Chuang
- Look at lecture notes and material for CS498QC: Introduction to Quantum Computing
- Supplementary homework from CS498QC to internalize notation and refresh linear algebra
 concepts

