cs598maf Alg. and Geom. Complexity Theory

Out: Mon., 2023-03-06

Problem Set #3

Prof. Michael A. Forbes

Due: Wed., 2023-03-22 17:00

All problems are of equal value.

- 1. Recall that in lecture we showed that the monomial $x_1 \cdots x_n$ requires a $\sum^r \bigwedge^d \sum$ formula of size $\geq \frac{2^n}{d+1}$. We explore here some improvements to this result.
 - (a) Let f be homogeneous of degree d over $\mathbb{F}[\overline{x}]$, with a $\sum^r \bigwedge \sum$ expression $f = \sum_{i=1}^r \alpha_i \ell_i(\overline{x})^{d_i}$ where deg $\ell_i \leq 1$, and there is no bound on the d_i . Prove that we can assume without loss of generality that $d_i = d$, and that the ℓ_i are homogeneous linear polynomials. *Hint:* Use the binomial theorem.
 - (b) Using (1a), prove that the monomial $x_1 \cdots x_n$ requires a $\sum_{n=1}^r \bigwedge \sum_{n \in \mathbb{N}} formula$ with $r \geq \frac{2^n}{n+1}$.
 - (c) Consider the following variant of the partial derivative measure, where we only consider derivatives of *exactly* a given order, dim $\partial^{=k}(f) = \dim\{\partial^{\overline{a}}_{\overline{x}}f\}_{\deg \overline{x}^{\overline{a}}=k}$.
 - i. Prove an upper bound for dim $\partial^{=k}(\ell^d)$ for deg $\ell \leq 1$.
 - ii. Prove a lower bound for dim $\partial^{=k}(x_1 \cdots x_n)$.
 - iii. By optimizing over k, prove that $x_1 \cdots x_n$ requires a $\sum_{k=1}^{r} \bigwedge \sum_{k=1}^{r} formula with r \ge \Omega\left(\frac{2^n}{\sqrt{n}}\right)$.

Hint: Use an estimate to binomial coefficients seen in lecture.

- 2. Give an explicit polynomial on n variables that requires $2^{\Omega(n)}$ size as a $\prod \sum \prod$ formula.
- 3. Prove that $f = (\sum_{i=1}^n x_i y_i)^n$ has dim $\partial^{<\infty}(f) \ge 2^{\Omega(n)}$.
- 4. Let $f(\overline{x}, \overline{y}) \in \mathbb{F}[\overline{x}, \overline{y}]$ be a polynomial with the variable partition $\overline{x}|\overline{y}$.
 - (a) Prove that $\operatorname{coeff}_{\overline{y}|\overline{x}^{\overline{a}}}(f) = \alpha_{\overline{a}} \cdot (\partial_{\overline{x}}^{\overline{a}}(f))|_{\overline{x} \leftarrow \overline{0}}$, where $\alpha_{\overline{a}}$ is a scalar that only depends on \overline{a} , and prove that $\alpha_{\overline{a}} \neq 0$ in sufficiently large characteristic. That is, prove that by first differentiating f via $\partial_{\overline{x}}^{\overline{a}}$, and then setting all the variables in \overline{x} to zero, one can extract the corresponding coefficients in \overline{y} .
 - (b) Prove that dim **coeff** $_{\overline{u}|\overline{x}^{<\infty}}(f) \leq \dim \partial^{<\infty}(f)$.