All problems are of equal value.

1. Recall that in lecture we showed that the monomial \(x_1 \cdots x_n \) requires a \(\sum \land_d \sum \) formula of size \(\geq \frac{2^n}{d+1} \). We explore here some improvements to this result.

 (a) Let \(f \) be homogeneous of degree \(d \) over \(\mathbb{F}[x] \), with a \(\land \sum \) expression \(f = \sum_i \alpha_i \ell_i(x)^{d_i} \) where \(\deg \ell_i \leq 1 \), and there is no bound on the \(d_i \). Prove that we can assume without loss of generality that \(d_i = d \), and that the \(\ell_i \) are homogeneous linear polynomials.

 \textit{Hint: Use the binomial theorem.}

 (b) Using (1a), prove that the monomial \(x_1 \cdots x_n \) requires a \(\land \sum \) formula with \(r \geq \frac{2^n}{n+1} \).

2. Give an explicit polynomial on \(n \) variables that requires \(2^{\Omega(n)} \) size as a \(\land \sum \prod \) formula.

3. Prove that \(f = (\sum_i^n x_i y_i)^n \) has \(\land < \sum \leq \Omega(n) \).

4. Let \(f(\bar{x}, \bar{y}) \in \mathbb{F}[\bar{x}, \bar{y}] \) be a polynomial with the variable partition \(\bar{x}|\bar{y} \).

 (a) Prove that \(\text{coeff}_{\bar{y}|\bar{x}}(f) = \alpha_{\bar{y}} \cdot (\partial_{\bar{x}} f)_{\bar{x}=0} \), where \(\alpha_{\bar{y}} \) is a scalar that only depends on \(\bar{y} \), and prove that \(\alpha_{\bar{y}} \neq 0 \) in sufficiently large characteristic.

 That is, prove that by first differentiating \(f \) via \(\partial_{\bar{x}} \), and then setting all the variables in \(\bar{x} \) to zero, one can extract the corresponding coefficients in \(\bar{y} \).

 (b) Prove that \(\dim \text{coeff}_{\bar{y}|<\sum}(f) \leq \dim \land <\sum(f) \).