```
cs598maf Alg. and Geom. Complexity Theory
Out: Thu., 2023-02-16
```


Problem Set \#2

All problems are of equal value.

1. (BCS 21.6) For $n \in \mathbb{N}$ let $\operatorname{SUM}_{n}:=\sum_{i=1}^{n} x_{i}$ and $\operatorname{PROD}_{n}:=\prod_{i=1}^{n} x_{i}$. Show that the families SUM and PROD are not polynomial-size projections of each other.
2. (BCS 21.12) Define $f_{n} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ to be 0 when n is not a power of 4 , and otherwise inductively define $f_{1}=x_{1}$, and

$$
\begin{aligned}
f_{n}=f_{n / 4}\left(x_{1} \ldots, x_{n / 4}\right) \times f_{n / 4}\left(x_{n / 4+1}, \ldots,\right. & \left.x_{n / 2}\right) \\
& +f_{n / 4}\left(x_{n / 2+1}, \ldots, x_{3 n / 4}\right) \times f_{n / 4}\left(x_{3 n / 4+1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Thus f_{n} is the polynomial computed by the complete binary tree with n leaves and alternating layers of \times and + . Show that the family $f=\left(f_{n}\right)_{n}$ is VF-complete, that is, $f \in \mathrm{VF}$ and every $g \in \mathrm{VF}$ is a polynomial-size projection of f.
3. Let p be a prime. Suppose that for some m and k, that the tensor rank of $m \times m$ matrix multiplication is at most m^{τ} over $\mathbb{F}_{p^{k}}$. Conclude that the exponent of matrix multiplication over the base field \mathbb{F}_{p} is at most τ.
Hint: use tools developed in problem set 1.
4. Consider the bilinear map $\mu: \mathbb{F}^{n} \times \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined by multiplying two univariate polynomials of degree $<n$ modulo x^{n}.
(a) Write down an expression for the structural tensor of μ.
(b) Show that the rank of μ is at most $2 n$ over any sufficiently large field.

Hint: interpolation.
(c) Show that the border rank of μ is at most n over any sufficiently large field.

