cs598maf Alg. and Geom. Complexity Theory
 Out: Thu., 2023-02-16

 Problem Set #2

 Prof. Michael A. Forbes
 Due: Wed., 2023-03-01 17:00

All problems are of equal value.

- 1. (BCS 21.6) For $n \in \mathbb{N}$ let $SUM_n := \sum_{i=1}^n x_i$ and $PROD_n := \prod_{i=1}^n x_i$. Show that the families SUM and PROD are not polynomial-size projections of each other.
- 2. (BCS 21.12) Define $f_n \in \mathbb{F}[x_1, \dots, x_n]$ to be 0 when n is not a power of 4, and otherwise inductively define $f_1 = x_1$, and

$$f_n = f_{n/4}(x_1, \dots, x_{n/4}) \times f_{n/4}(x_{n/4+1}, \dots, x_{n/2}) + f_{n/4}(x_{n/2+1}, \dots, x_{3n/4}) \times f_{n/4}(x_{3n/4+1}, \dots, x_n) .$$

Thus f_n is the polynomial computed by the complete binary tree with n leaves and alternating layers of \times and +. Show that the family $f = (f_n)_n$ is VF-complete, that is, $f \in VF$ and every $g \in VF$ is a polynomial-size projection of f.

3. Let p be a prime. Suppose that for some m and k, that the tensor rank of $m \times m$ matrix multiplication is at most m^{τ} over \mathbb{F}_{p^k} . Conclude that the exponent of matrix multiplication over the base field \mathbb{F}_p is at most τ .

Hint: use tools developed in problem set 1.

- 4. Consider the bilinear map $\mu : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}^n$ defined by multiplying two univariate polynomials of degree $< n \mod v$.
 - (a) Write down an expression for the structural tensor of μ .
 - (b) Show that the rank of μ is at most 2n over any sufficiently large field. *Hint:* interpolation.
 - (c) Show that the border rank of μ is at most n over any sufficiently large field.