Q. Can size of perm? Congruent? Isolables?

 - Let $f \in \mathbb{F}_q[x]^*$ be of degree d. Then f is computed by size $O(d \log q)$.

 - $f = \sum_{i=0}^{d} a_i x^i$

 (in $\mathbb{F}_q[x]^*$).

 - Size is $O(1)$.

 - $\text{deg} f = 0(1)$.

 Q: Do better? If no, take a guess why we are stuck.

- Let perm have size $O(n \cdot 2^n)$.

- If yes, then $P(x)$ is computed.

- If no, then $P(x)$ is complicated.

Q. Do better?

- Use recursion and relate larger cases to smaller cases?

- Use recursion and dynamic programming: store, don't recalculate.

- For $x_{i+1} \rightarrow x_{i+1} - x_i$.

- $O(n \cdot 2^n)$.
Q: Gaussian elimination or algebraic circuit?

Use division to eliminate!

requires "branching" in gaussian elimination
requires "zero testing" to halt early, need division zero

proof: case the cases you write, did by issue

check: entire proof when combined, nuke zero and non zero only

Q: det = a (e - ab)

\[
\begin{vmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{vmatrix}
= a \begin{vmatrix}
 e & f \\
 h & i
\end{vmatrix} - b \begin{vmatrix}
 d & f \\
 g & i
\end{vmatrix} + c \begin{vmatrix}
 d & e \\
 g & h
\end{vmatrix}
\]

\[
\begin{align*}
\text{det} &= a \left(e - ab - h + gf - ch - di \right) \\
&= a \left(e - ab - h + \frac{1}{a} \left(f - dc \right) \right)
\end{align*}
\]
Correctness:
- No empty
- No divider by zero

Complexity:
- $\text{poly}(n)$ size check or divide
- $\text{poly}(s, \log(\text{depth}))$ size check for divide

Note:
- Dot has dot size $O(n \cdot \log n)$, $n > 0$, $n < 2.373$ FMN expression.

Depth:
- The depth of a dot check is the length of the longest input/output path on unbounded fan-in the alloca $\text{poly}(n \cdot \log n)$.

Example:
- $x_1, \ldots, x_n \rightarrow x_1, \ldots, x_n \rightarrow \text{depth} \in \Omega(n)$

Note:
- Depth is a measure of parallel complexity, as in Fig. 2.

Note:
- All unbounded fan-in the alloca $\text{poly}(n \cdot \log n)$.

Strategy:
- A gate simulator 2

Note:
- Depth is preserved.

Note:
- If copying on our depth \Rightarrow
- The alloca variable system preserved in $\text{poly}(n \cdot \log n)$

Step:
- $\text{esym}(\text{shift, } \text{rep}) = \text{esym}^{\text{in}, \text{out}} - \text{esym}^{\text{in}, \text{in}} + x_n \cdot \text{esym}^{\text{in}, \text{out}, \text{out}}$

Conclusion:
- Clear.

Complexity:
- $O(n)$ depth
- $O(\text{work per layer})$
Q: do better?

\[f: F^n \rightarrow \mathbb{R} \quad \text{linear map}\]

\[\text{rank } = \text{max } i: \text{ it is invertible } \quad \Rightarrow \text{ is surjective}\]

Consider a set of linearly independent vectors \(\{v_i\}_{i=1}^n \) in \(F^n \):

\[L(x) = \sum_{i=1}^n (x - a_i) v_i \quad \text{where } L: (v_i - a_i) \leq 1, i=1, \ldots, n \]

Given a basis \(\{v_i\}_{i=1}^n \) for \(F^n \), the rank of the matrix associated with \(L \) is \(n \).

Q: \(O(1) \) depth decision?

\[\text{rank } = \text{size of decision}\]

- Symmetry

- \(O(1) \) size decision

- Symmetry

\[|\text{Bu-ori}| - \text{esym} \cdot \text{nd} \cdot \text{size of decision}\]

\[\text{esym} = |H_{ij} (x_i - x_j)| \]

\[\text{esym} \cdot \text{nd} \cdot \text{size of decision} \]

\[\text{rank} \] is non-homogeneous

\[\text{esym} \cdot \text{nd} \cdot \text{size of decision} \]

- Symmetry

- \(O(1) \) depth decision

- Symmetry

- \(O(1) \) depth decision

- Symmetry

- \(O(1) \) depth decision

- Symmetry

\[\text{rank} \] is same size as from linear expression

- Smaller known expression for parameters

- Symmetry

- \(O(1) \) depth decision

- Symmetry

\[\text{esym} \cdot \text{nd} \cdot \text{size of decision} \]

- Symmetry