CS598 Embodied NLP

http://courses.grainger.illinois.edu/cs598jhr

Relevant Linguistic Concepts

Julia Hockenmaier

juliahmr@illinois.edu

Slides Version: 2/7/24

How does embodiment affect NLP?

Communication in/about the physical world requires the ability to map ("ground") linguistic references to the physical world

The environment we communicate in/about may be changing during a conversation

Different people/agents may perceive the same environment/situation differently. Successful communication requires communication partners to adapt to each other's perceptions.

How does embodiment affect NLP?

Physical and simulated environments and tasks vary a lot

Sensors and actuators of embodied agents vary a lot

In practical terms, we have much less environmentspecific training data for embodied tasks

What is "Embodiment"?

Avatars ("animated human figures") that simulate facial expressions/gestures (perhaps just as an interface to a dialog system)

Agents that operate in simulated 3D environments (this includes games)

Robots that operate in the real world

Relevant areas of linguistics:

The structure and meaning of...

- ... words (Morphology, Lexical Semantics)
- ... sentences (Syntax, Compositional Semantics)
- ... texts (Discourse syntax/semantics)
- ... conversations (Dialogue)

How do we study "meaning": "Truth-conditional/compositional" aspects: **Semantics** "Social" aspects: **Pragmatics**

Discourse: going beyond single sentences

On Monday, John went to Einstein's. He wanted to buy lunch. But the cafe was closed. That made him angry, so the next day he went to Green Street instead.

'Discourse':

Any linguistic unit that consists of multiple sentences

Speakers describe "some situation or state of the real or some hypothetical world" (Webber, 1983)

Speakers attempt to get the **listener** to construct a similar **model of the situation**.

Why study discourse?

For natural language understanding:

Most information is not contained in a single sentence. The system has to **aggregate** information across sentences, paragraphs or entire documents.

For natural language generation:

When systems generate text, that text needs to be easy to understand — it has to be **coherent**.

What makes text coherent?

Discourse

On Monday, John went to Einstein's. He wanted to buy lunch. But the cafe was closed. That made him angry, so the next day he went to Green Street instead.

'Discourse': Any linguistic unit that consists of multiple sentences

Speakers describe "some situation or state of the real or some hypothetical world" (Webber, 1983)

Speakers attempt to get the **listener** to construct a similar **model of the situation**.

Discourse models

An explicit representation of:

- the entities, events and states that a discourse talks about
- the relations between them (and to the real world).

This representation is often written in some form of logic.

What does this logic need to capture?

How can we understand discourse?

On Monday, John went to Einstein's. He wanted to buy lunch. But the cafe was closed. That made him angry, so the next day he went to Green Street instead.

Understanding discourse requires (among other things): 1) doing coreference resolution:

'the cafe' and *'Einstein's'* **refer to the same entity** *He* and *John* refer to the same person. *That* refers to *'the cafe was closed'*.

2) identifying discourse ('coherence') relations:

'He wanted to buy lunch' is the *reason* for *'John went to Bevande.'*

Discourse models should capture...

Entities (physical or abstract):

John, Einstein's, lunch, hope, computer science, ...

Eventualities (events or states):

- Events: On Monday, John went to Einstein's

involve entities, take place at a point in time

- States: It was closer. Water is a liquid.

involve entities and hold for a period of time (or are generally true)

Temporal relations between events/states

afterwards, during,

Rhetorical ('discourse') relations between propositions so, instead, if, whereas

Deixis and Referring Expressions 'the book' *'it'* 'this book' 'a book' *the book* 'my book' I'm reading' 'that one'

Some terminology

Deixis: how do we refer to entities/times/places etc. in a way that *depends on the current context*?

Referring expressions (*'this book'*, *'it'*) refer to some entity (e.g. a book), which is called the **referent**

Co-reference: two referring expressions that refer to the same entity **co-refer** (are co-referent). *I saw <u>a movie</u> last night. I think you should see <u>it</u> too!*

The referent is **evoked** in its first mention, and **accessed** in any subsequent mention.

Information status of entities

Every entity can be classified along two dimensions:

Hearer-new vs. hearer-old

Speaker assumes entity is (un)known to the hearer

Hearer-old: I will call <u>Sandra Thompson</u>.

Hearer-new: I will call a colleague in California (=Sandra Thompson)

Special case of hearer-old: hearer-inferrable

I went to the student union. The food court was really crowded.

Discourse-new vs. discourse-old:

Speaker introduces new entity into the discourse, or refers to an entity that has been previously introduced.

Discourse-old: I will call her/Sandra now.

Discourse-new: I will call my friend Sandra now.

Indefinite NPs

No determiner: *I like walnuts*. Indefinite determiner: *She sent her a beautiful goose* Numerals: *I saw three geese*. Indefinite quantifiers: *I ate some walnuts*. (Indefinite) *this*: *I saw this beautiful Ford Falcon today*

Indefinite NPs usually **introduce a new discourse entity**.

They can refer to a specific entity or not:
 I'm going to buy a computer today.
 (unclear if the speaker has a particular computer in mind (e.g. his friends' old computer), or just any computer)
 CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 16

Definite NPs

The definite article (*the book*), Demonstrative articles (*this/that book, these/those books*), Possessives (*my/John's book*)

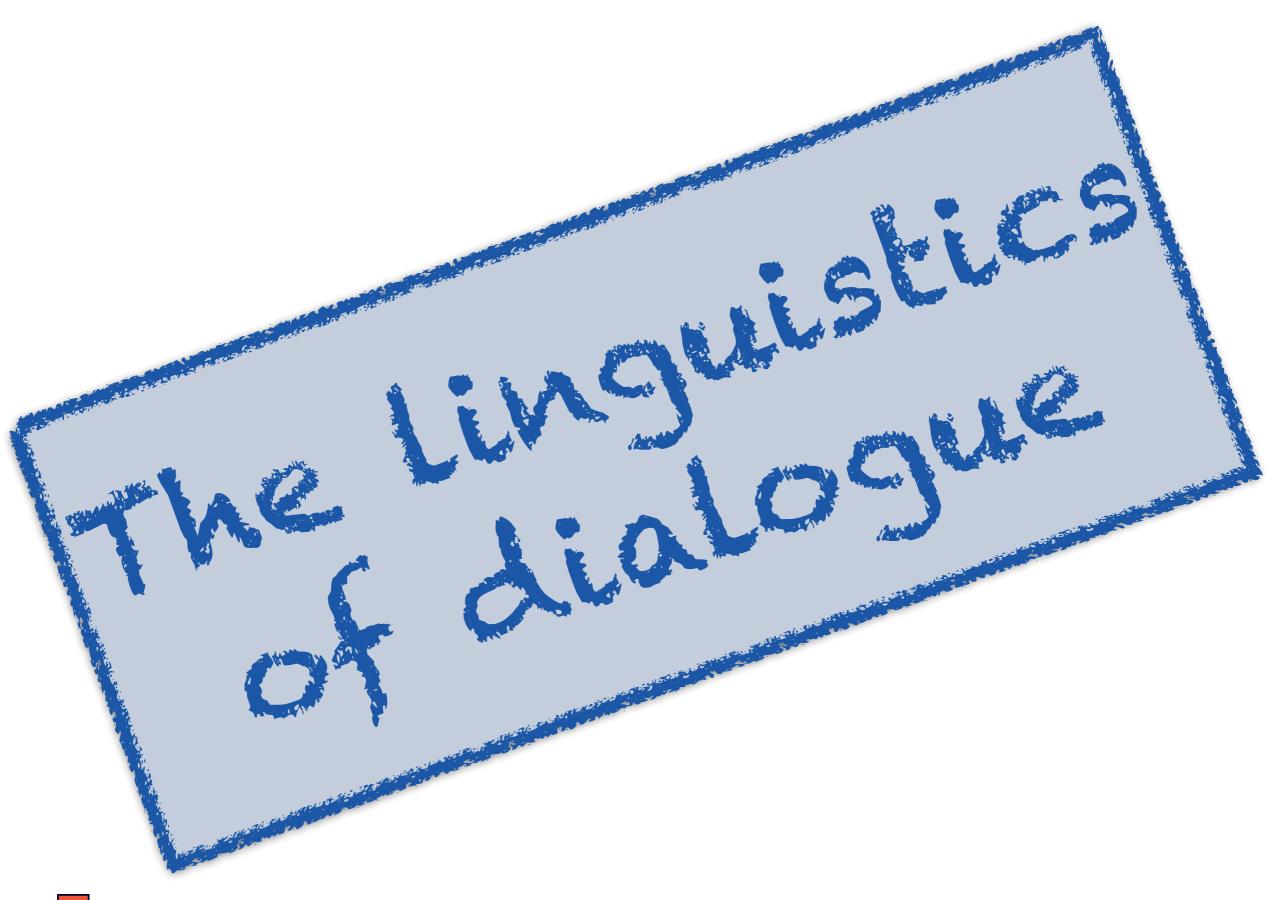
Definite NPs can also consist of **Personal pronouns** (*I*, *he*) **Demonstrative pronouns** (*this, that, these, those*) Universal quantifiers (*all, every*) (unmodified) proper nouns (John Smith, Mary, Urbana)

Definite NPs **refer to an identifiable entity** (previously mentioned or not)

Anaphoric pronouns

Anaphoric pronouns refer back to some previously introduced entity/discourse referent: *John showed Bob his car. He was impressed. John showed Bob his car. This took five minutes.*

The **antecedent** of an anaphor is the previous expression that refers to the same entity.


Scripts (e.g. Schank/Abelson, 1975)

A **script** is "a predetermined, stereotyped sequence of actions that define a well-known situation"

- **Stories** often invoke scripts (e.g. about restaurants, birthday parties, football games, etc.)
- Scripts take the views of particular players (roles):
- restaurant customer: enter sit order eat pay exit

A **plan** is a sequence of actions to realize a **goal** Scripts are "routinized plans"

A dialogue between a customer (C) and a travel agent (A)

C₁: ...I need to travel in May.

A₁: And, what day in May did you want to travel?

C₂: OK uh I need to be there for a meeting that's from the 12th to the 15th.

A₂: And you're flying into what city?

C₃: Seattle.

A₃: And what time would you like to leave Pittsburgh?

C₄: Uh hmm I don't think there's many options for non-stop.

A₄: Right. There's three non-stops today.

C₅: What are they?

A₅: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C6: OK I'll take the 5ish flight on the night before on the 11th.

A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight 115. C₇: OK.

A₇: And you said returning on May 15th?

C8: Uh, yeah, at the end of the day.

A8: OK. There's #two non-stops . . . #

C9: #Act. . . actually #, what day of the week is the 15th? A9: It's a Friday.

C₁₀: Uh hmm. I would consider staying there an extra day til Sunday.

A₁₀: OK...OK. On Sunday I have ...

A dialogue between a customer (C) and a travel agent (A)

C₁: ...I need to travel in May. A₁: And, what day in May did you want to travel? C₂: OK uh I need to be there for a meeting that's from the 12th to the 15th. A₂: And you're flying into what city? C₃: Seattle.

A dialogue is a conversation between two speakers that consists of a sequence of turns

Turn = an **utterance** by one of the two speakers

Turn-taking requires the ability to detect when the other speaker has finished **Multiparty dialogue**: A conversation among more than two speakers

From discourse to dialogue

Discourse:

The **speaker** communicates to an **absent**, **passive listener** (or audience), and attempts to get them to construct a similar model of the state of affairs.

The speaker does not receive any feedback from the audience.

Dialogue:

Both parties are **present** and **active** participants. They each bring **their own mental model** of the state of affairs. Communication succeeds if both parties understand each other's mental models (and perhaps even get their models to agree). Both parties provide feedback to each other.

Grounding in Dialogue

For communication to be successful, both parties have to know that they understand each other (or where they misunderstand each other)

 Both parties maintain (and communicate) their own beliefs about the state of affairs that they're talking about.

 Both parties also maintain beliefs about the other party's beliefs about the state of affairs.

— Both parties also maintain *beliefs about the other party's beliefs about their own beliefs*,... etc.

Common ground: The set of **mutually agreed beliefs** among the parties in a dialogue

Grounding in Dialogue

John: Cragons are scary!

Common Ground: {"John thinks dragons exist", "Mary knows that John thinks dragons exist", "John finds dragons scary"

"Mary knows that John finds dragons scary",}

If Mary replies:

What dragons?

-> Additions to Common Ground:

{"Mary doesn't think dragons exist",

"John knows that Mary doesn't think dragons exist", ...}

If Mary replies instead:

No, dragons are cute!

-> Additions to Common Ground:

{"Mary and John both think dragons exist",

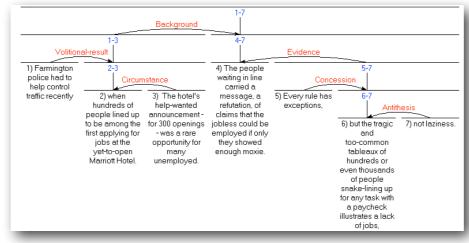
"Mary finds dragons cute."

"John knows that Mary finds dragons cute",

"Mary disagrees with John that dragons are scary",...}

Clark and Schaefer: Grounding

When two people communicate, they each contribute to the conversation by establishing and adding to the common ground.


B needs to provide evidence of understanding what A meant by

- Continued attention: B continues attending to A
- A relevant next contribution: ("so, what shall we do now?")
- Acknowledgement: B nods, says (uh-huh, yeah), gives assessment (great!)
- **Demonstration of understanding:** B paraphrases or reformulates A's contribution, or completes A's utterance
- **Display:** B repeats verbatim all or part of A's utterance

Without such evidence, A may not know if B understood what A meant to convey.

Discourse has structure

Rhetorical relations hold between parts of a discourse (e.g. as formulated in RST, or the PDTB):

Different parts of a discourse play **different functions** (e.g. as in Argumentative Zoning for scientific papers):

Category	Description	Example
AIM	Statement of specific research goal, or	"The aim of this process is to examine the role that
	hypothesis of current paper	training plays in the tagging process"
Own_Method	New Knowledge claim, own work:	"In order for it to be useful for our purposes, the
	methods	following extensions must be made:"
OWN_RESULTS	Measurable/objective outcome of own	"All the curves have a generally upward trend but
	work	always lie far below backoff (51% error rate)"

Dialogues have structure too

AO: Hello, how can I help you?	Greeting, Question
Co: Hi, thanks! I'd like to book a flight.	Greeting, Answer
C ₁ :I need to travel in May.	Constraint
A_1 : And, what day in May did you want to travel?	
C ₂ : OK uh I need to be there for a meeting that's from the 12th to the 15th	1.
A ₂ : And you're flying into what city?	
C ₃ : Seattle.	
A ₃ : And what time would you like to leave Pittsburgh?	
C_4 : Uh hmm I don't think there's many options for non-stop.	
A ₄ : Right. There's three non-stops today.	
C ₅ : What are they?	
A ₅ : The first one departs PGH at 10:00am arrives Seattle at 12:05 their ti	me. The second flight
departs PGH at 5:55pm, arrives Seattle at 8pm. And the last flight departs	s PGH at 8:15pm arrives
Seattle at 10:28pm.	
C6: OK I'll take the 5ish flight on the night before on the 11th.	
A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air	r flight 115.
C ₇ : OK.	
A ₇ : And you said returning on May 15th?	
C8: Uh, yeah, at the end of the day.	
A8: OK. There's #two non-stops #	
C ₉ : #Act actually #, what day of the week is the 15th? A ₉ : It's a Friday.	

Dialogues have structure too

Dialogues have (hierarchical) structure:

"Adjacency pairs": Some acts (first pair part) typically followed by (set up expectation for) another (second pair part):

Question \rightarrow Answer,

Proposal \rightarrow Acceptance/Rejection, etc.

Sometimes, a **subdialogue** is required

(e.g. for clarification questions):

A: I want to book a ticket for tomorrow

B: Sorry, I didn't catch where you want to go?

A: To Chicago

B: And where do you want to leave from?

•••

B: Okay, I've got the following options: ...

Speech Acts

Utterances correspond to actions by the speaker, e.g.

- Constative (answer, claim, confirm, deny, disagree, state)
 Speaker commits to something being the case
- Directive (advise, ask, forbid, invite, order, request)
 Speaker attempts to get the listener to do something
- Commissive (promise, plan, bet, oppose)
 Speaker commits to a future course of action
- Acknowledgment (apologize, greet, thank, accept apology)
 Speaker expresses an attitude re. listener with respect to a social action

In practice, much more fine-grained labels are often used, e.g: Yes-No Questions, Wh-Questions, Rhetorical Questions, Greetings, Thanks, Yes-Answers, No-Answers, Agreements, Disagreements, ... Statements, Opinions, Hedges, ...

Initiative

Who controls the conversation?

- Who asks questions?
- Who introduces new topics?

Human-human dialogue is typically **mixed initiative** where both parties take initiative at different points (But it is difficult to design mixed initiative dialogue systems)

Systems often assume a **user-initiative strategy**

(User asks questions, System responds)

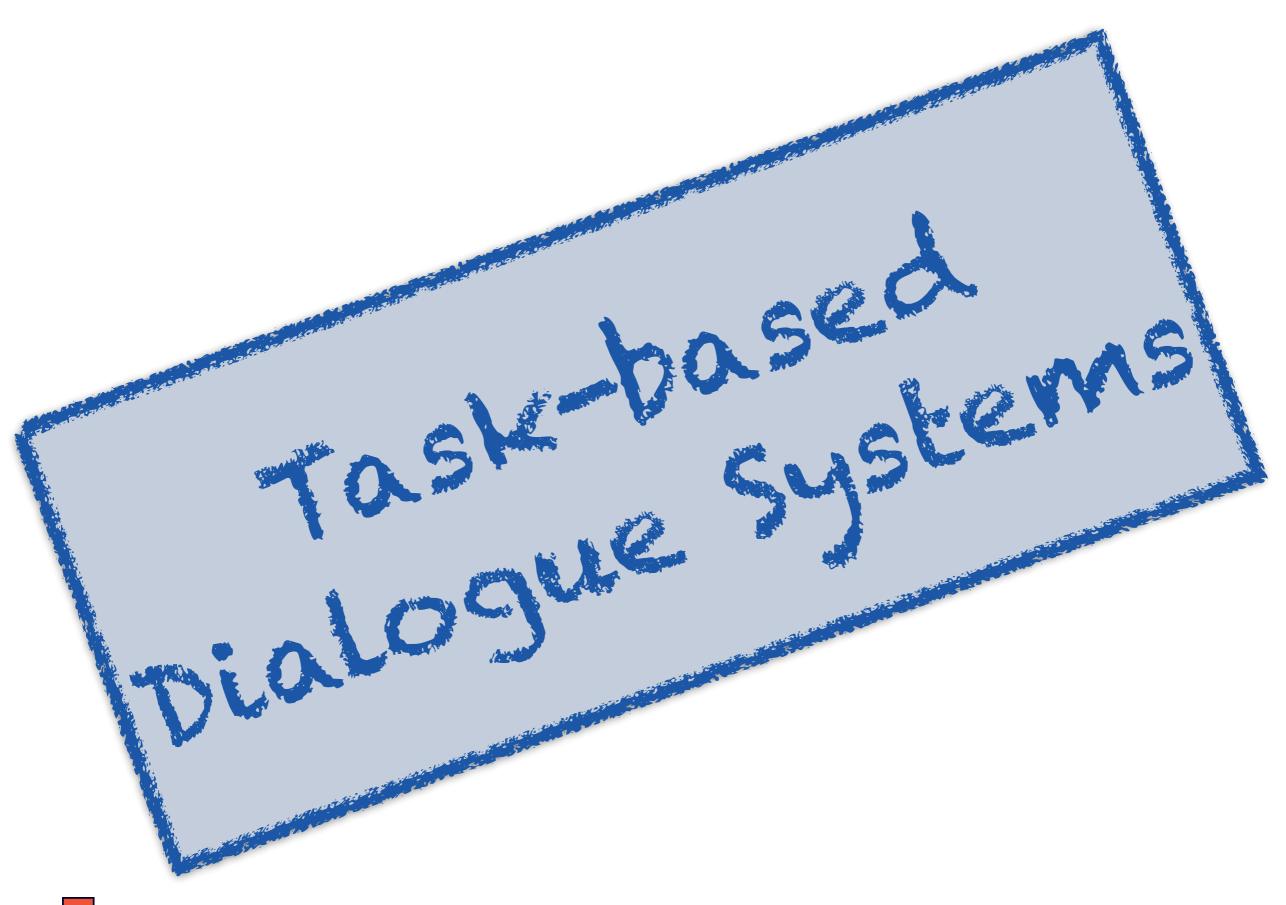
or a system-initiative strategy

(Only system can ask questions.

System-initiative systems can be very frustrating to use)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 31

Inference and implicature


A1: And, what day in May did you want to travel?C2: OK uh I need to be there for a meeting that's from the 12th to the 15th.

The customer (speaker) doesn't answer the question directly, but assumes the provided information allows the agent (hearer) to infer the requested information

(\rightarrow customer needs to travel on 11th/12th-15th/16th)

Hearers can draw these inferences ("**conversational implicatures**") because they assume speakers are being cooperative

Gricean maxims: rules that govern (cooperative) human communication. Here: "Be relevant!"

Dialogue systems

Systems that are capable of performing a **task-driven dialogue** with a human user.

Standard tasks:

Travel arrangements

Telephone call routing,

Customer support

Tutoring system

A travel dialog: Communicator

- S1: Hello. You've reached the [Communicator]. Tell me your full name
- U2: hi i'd like to fly to seattle tuesday morning
- S3: Traveling to Seattle on Tuesday, August eleventh in the morning. Your full name?
- U4: [John Doe]
- S5: Hello, [John], I'm glad to hear from you again. You can now ask me for help.
- S6: OK. Let's see I have a United flight departing Pittsburgh at ten forty five a.m. arriving into Seattle at one fifty seven p.m. Is that OK?
- U7: Yes
- S8: Will you return to Pittsburgh from Seattle?
- U9: no i will go to Los Angeles
- S10: Traveling to Los Angeles. on what date
- U11: Sorry can we go back to talk about the previous leg again
- S12: For the first leg, you are on a United flight 1446 departing Pittsburgh at ten forty five A.M. tomorrow, arriving in Seattle at one fifty seven P.M. Do you want to take that?
- U13: actually i want to leave on wednesday
- S14: a flight on wednesday.
- S15: I have a flight departing Pittsburgh at ten forty five a.m., arrives Seattle at one fifty seven p.m. Is that OK?

U16: Yes

Figure 19.1 The travel domain: a fragment from a successful conversation between a user (U) and the Communicator system (S) of Xu and Rudnicky (2000).

Call routing: ATT HMIHY

- S: How may I help you?
- U: can you tell me how much it is to tokyo?
- S: You want to know the cost of a call?
- U: yes that's right
- S: Please hold on for rate information.
- S: How may I help you?
- U: what's the area code for chicago?
- S: You want an area code.
- U: (silence)
- S: The area code for Chicago is 312.

Figure 19.2 The call routing/telephone information domain: two actual conversations between a user (U) and the AT&T How May I Help You (HMIHY) system (S) (Gorin et al., 1997).

A tutorial dialogue: ITSPOKE

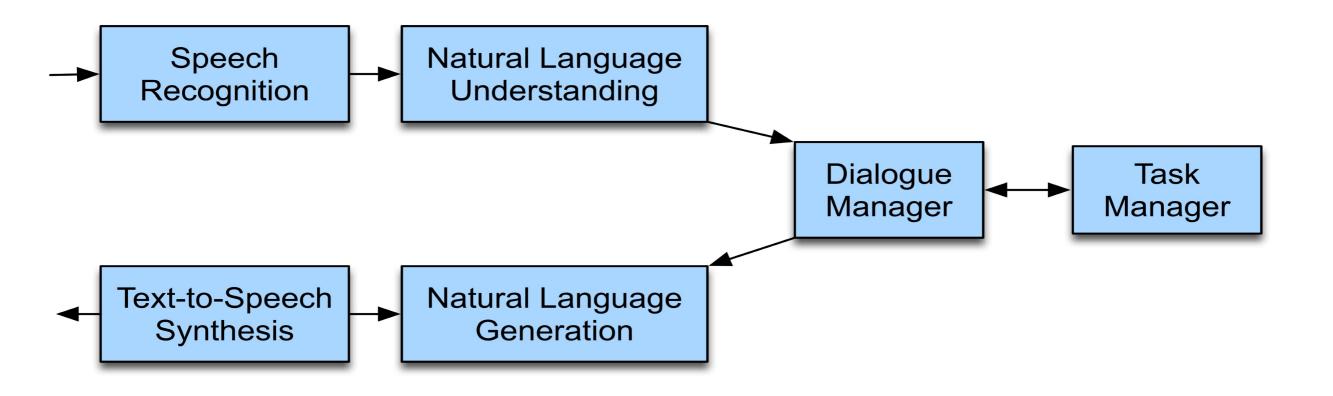

- S: I didn't understand. What force acts on all objects within close proximity to earth?
- U: uh the force of gravity
- S: Fine. Besides the Earth's gravitational force, are there any other forces acting on the person, keys, and elevator after the release?
- U: *no*
- S: Yep. Thus, keep in mind that after the release, the only force on the person, keys, and elevator is the force of gravity. If gravity is the only force acting on an object, will it be moving or staying still?
- U: it will be moving
- S: Fine. Not only are the person, keys, and elevator moving, they have only gravitational forces on them. When an object is falling and has only gravitational force on it, it is said to be in what?
- U: *freefall*

Figure 19.3 The tutoring domain: part of an actual conversation between a student user (U) and the ITSPOKE system (S) of (Litman and Silliman, 2004), based on the Why2-Atlas text-based tutoring system (?).

GUS: State of the art in 1977

- GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you want to go ?
- Client: I want to go to San Diego on May 28
- GUS: What time do you want to leave?
- Client: I must be in San Diego before 10 am
- GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am?
- Client: What is the next flight ?
- GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am
- Client: I'll take the first one
- GUS: In what name should I make a reservation, please?
- Client: Dan Bobrow
- GUS: I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28 from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.
- GUS: What date do you want to return on ?
- Client: On Friday in the evening.
- GUS: Would you like the flight that leaves at 7.45 pm ?
- Client: That's fine.
- GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you for calling. Goodbye

Dialogue System Architecture

Dialogue Manager

Controls the architecture and structure of dialogue

- -Takes input from ASR (speech recognizer) and NLU components
- -Maintains some sort of internal state
- -Interfaces with Task Manager
- Passes output to Natural Language Generation/ Text-to-speech modules

Task-driven dialog as slot filling

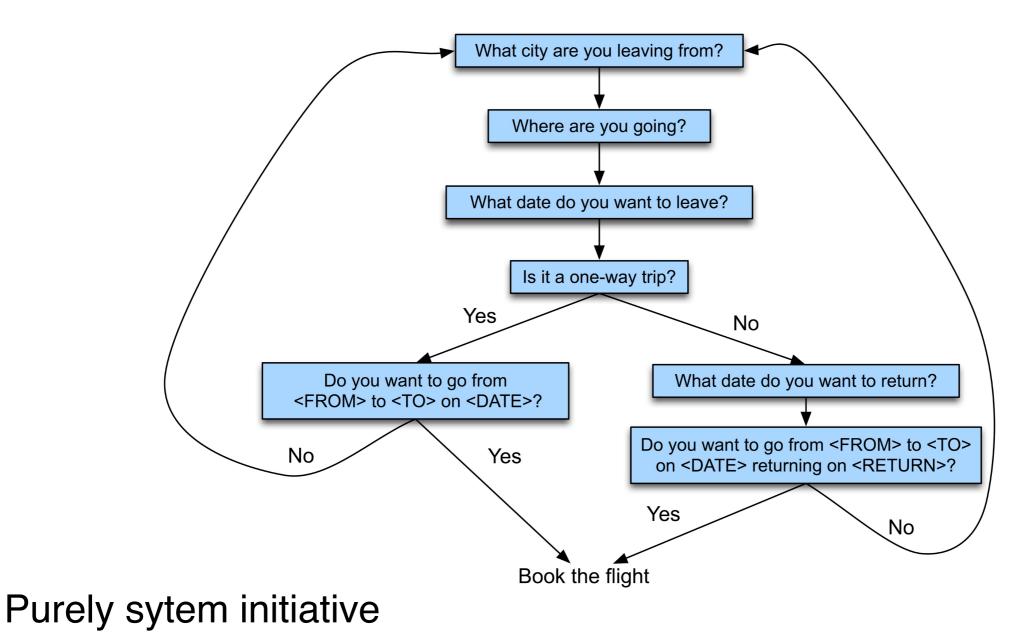
If the purpose of the dialog is to complete a specific **task** (e.g. book a plane ticket), that task can often be represented as a **frame** with a number of **slots** to fill.

The task is completed if all necessary slots are filled.

This assumes a "domain ontology":

A knowledge structure representing possible user intentions for the given task

The Frame


A frame is set of slots, each to be

filled with information of a given type, and
associated with a question to the user

Slot	Туре	Question
ORIGIN	city	What city are you leaving from?
DEST	city	Where are you going?
DEP-DATE	date	What day would you like to leave?
DEP-TIME	time	What time would you like to leave?
AIRLINE	line	What is your preferred airline?

Finite-state dialogue managers

Represent dialog structure as a finite state diagram

NLU with frame/slot semantics

But if we map user utterances to frames, we can detect which slots are filled or remain to be filled:

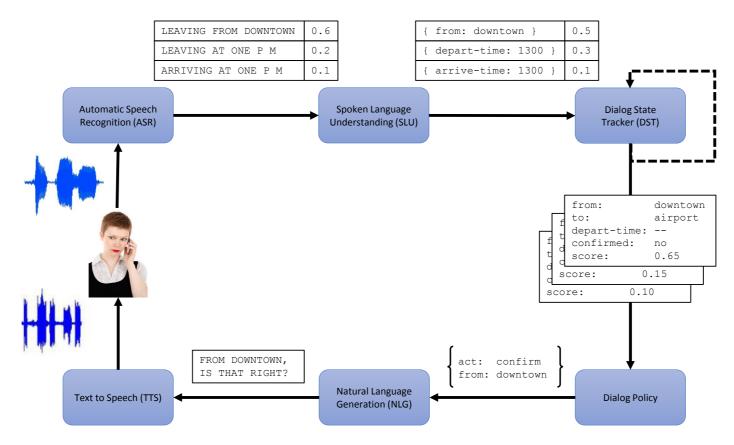
Show me morning flights from Boston to SF on Tuesday.

The system needs to identify the flight frame and fill in the correct slots:

SHOW: FLIGHTS: ORIGIN: CITY: Boston DATE: Tuesday TIME: morning DEST: CITY: San Francisco This allows for mixed-initiative dialogue systems.

Information-State and Dialogue Acts

If we want dialogue systems to allow the user to take the initiative, it needs to be able to...


- ...Decide when the user has asked a question, made a proposal, rejected a suggestion
- ...Ground a user's utterance, ask clarification questions, make new suggestions

This implies that:

Conversational agent needs sophisticated models of interpretation and generation

- In terms of speech acts and grounding
- Needs more sophisticated representation of dialogue context than just a list of slots (even if the goal is still to fill a frame)

The Dialogue-State Architecture

Speech Recognition: Transcribe the spoken user utterance
Language Understanding: Extract slots from the utterance
Dialogue State Tracking: Maintain current state of dialogue
Dialogue Policy: What should the system say next?
Natural Language Generation: Produce an utterance to return.
Text-to-Speech: Convert the utterance to audio signal.

Dialogue Acts

Domain specific ontology, consisting of

- Dialog Act Labels (Intent)
 Functions of an utterance
- Dialog Act Contents
 Slots that can be filled in an act

Tag	Sys	User	Description
HELLO(a = x, b = y,)	\checkmark	\checkmark	Open a dialogue and give info $a = x, b = y,$
INFORM(a = x, b = y,)	\checkmark	\checkmark	Give info $a = x, b = y,$
REQUEST(a, b = x,)	\checkmark	\checkmark	Request value for a given $b = x,$
REQALTS(a = x,)	χ	\checkmark	Request alternative with $a = x,$
CONFIRM(a = x, b = y,)	\checkmark	\checkmark	Explicitly confirm $a = x, b = y,$
CONFREQ(a = x,, d)	\checkmark	χ	Implicitly confirm $a = x,$ and request value of d
SELECT $(a = x, a = y)$	\checkmark	χ	Implicitly confirm $a = x,$ and request value of d
AFFIRM(a = x, b = y,)	\checkmark	\checkmark	Affirm and give further info $a = x, b = y,$
NEGATE(a = x)	χ	\checkmark	Negate and give corrected value $a = x$
DENY(a = x)	χ	\checkmark	Deny that $a = x$
BYE()	\checkmark	\checkmark	Close a dialogue

	Utterance	Dialogue act	Dial
U:	Hi, I am looking for somewhere to eat.	<pre>hello(task = find,type=restaurant)</pre>	Diai
S :	You are looking for a restaurant. What	<pre>confreq(type = restaurant, food)</pre>	with
TT	type of food do you like?		and
U:		<pre>inform(food = Italian, near=museum)</pre>	anu
C	museum.		
S :	Roma is a nice Italian restaurant near	<pre>inform(name = "Roma", type = restaurant,</pre>	
	the museum.	food = Italian, near = museum)	
U:	Is it reasonably priced?	<pre>confirm(pricerange = moderate)</pre>	
S :	Yes, Roma is in the moderate price	affirm(name = "Roma", pricerange =	
	range.	moderate)	
U:	What is the phone number?	request(phone)	
S :	The number of Roma is 385456.	<pre>inform(name = "Roma", phone = "385456")</pre>	
U:	Ok, thank you goodbye.	bye()	

Dialogue annotated with dialogue acts and slot information

From Slots to Dialogue States

The **domain** of a slot-based dialogue system is defined by a set of **slots** and **possible slot values**, often given in a **database**.

The **goal** of a dialogue is to find one entity (e.g. a restaurant) in this database or to perform a specific action (e.g. booking a table at a restaurant at a particular time) that satisfies the **constraints** the user specifies

Restaurant domain (for recommendations, reservations,...) **Slots**: Restaurant Name, Address, Cuisine, Price, Ratings,... [attributes] **Slot values:** these attributes for any given restaurant

Informable slots:

Attributes that can be used to constrain the search **Requestable slots:** Users can ask the value of these slots.

NB: Slots can be informable *and* requestable (cuisine, ratings), or just requestable (e.g. phone number)

Henderson, Machine Learning for Dialogue State Tracking. https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44018.pdf

Dialogue States

The dialogue state consists of all the information given so far (including user-specified constraints on the slots)

- User: I'm looking for a cheaper restaurant inform(price=cheap)
- System: Sure. What kind and where?
- User: Thai food, somewhere downtown inform(price=cheap, food=Thai, area=centre)
- System: The House serves cheap Thai food
- User: Where is it?

inform(price=cheap, food=Thai, area=centre); request(address)

System: The House is at 106 Regent Street

Slot filling and dialogue act labeling

Given a **user utterance**,

Hello, I'd like an Italian somewhere near the museum

the system needs to identify...... the dialogue act label (e.g. INFORM)[this is a sequence classification task]

... the **slots** that are being **filled/constrained** food=Italian, near=museum [this can be framed as a sequence **labeling** task]

Dialogue Policy

The system needs to decide what **dialogue act (type + slots)** to realize in its next utterance

argmax_{Act} P(Act | State, History, Confidence, Cost)

The probability of the next act may depend on the current dialogue state, the dialogue history (the last utterances), the confidence the system has (e.g. in the ASR transcription), or the cost of making a mistake (e.g. when booking a flight)

Systems also need to decide when to confirm or reject input

- Explicit confirmation: "Did you say you want Italian?"
- Implicit confirmation:
 - "How expensive should this Italian restaurant be?"
- **Rejection**: "Sorry, I didn't understand what you just said"

Surface realization

Given a dialogue act

the system needs to generate an utterance

But there may be many possible candidates, e.g Au Midi is in Midtown and serves French Food. There is a French Restaurant in Midtown called Au Midi

Surface realization

Given a dialogue act

the system needs to generate an utterance

But there may be many possible candidates, e.g.: Au Midi is in Midtown and serves French Food. There is a French Restaurant in Midtown called Au Midi

These utterances contain the **particular slot values** we are looking for.

Surface realization

Our training data won't contain these sentences, but it might contain instances for other restaurants, e.g.

LeBec Fin is in Center City and serves French Food. There is a Cuban Restaurant in Rittenhouse Square called Alma de Cuba

We can **delexicalize** the training data as follows: NAME is in NEIGHBORHOOD and serves CUISINE Food. There is a CUISINE Restaurant in NEIGHBORHOOD called NAME

Now a seq2seq model can be trained on this data, and the slots can be filled in via rules.

Chatbots vs Dialogue Systems

Chatbots: Chitchat, often used for entertainment, originally as testbed for clinical therapy

Dialogue Systems: Typically to perform specific tasks (e.g. customer service, reservations, etc., smart devices, cars, etc.)

A computer therapist?

Computer: TELL ME MORE ABOUT YOUR FAMILY

Human: My mother takes care of me.

Computer: WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU

Human: My father.

Computer: YOUR FATHER

Human: You are like my father in some ways.

Computer: WHAT RESEMBLANCE DO YOU SEE

Human: You are not very aggressive but I think you don't want me to notice that.

Computer: WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE

Human: You don't argue with me.

Computer: WHY DO YOU THINK I DON'T ARGUE WITH YOU

Human: You are afraid of me. Weizenbaum (1966), ELIZA.

ELIZA as a FST cascade

Human: You don't argue with me. Computer: WHY DO YOU THINK I DON'T ARGUE WITH YOU

- 1. Replace you with I and me with you:
 - I don't argue with you.
- 2. Replace <...> with Why do you think <...>:

Why do you think I don't argue with you.

Current Chatbots

Retrieval-based approaches:

Mine large corpora of human-human dialogues

Given a user utterance, find an utterance in the corpus that is most similar to this utterance.

Return either this utterance itself, or the response to it

Neural approaches (seq2seq models, LLMs) Trained on large corpora of human-human dialogues May require beam search or other training objectives,

and reinforcement learning (incl. RLHF) or adversarial training to optimize for maintaining a longer conversation

Can be combined with retrieval: Retrieval-Augmented Generation (RAG))