Smart (Programmable) NICs

ECE/CS598HPN

Radhika Mittal

FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism

Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, Simon Peter

NSDI'22

Some of the content has been taken from Rajath's NSDI talk.

Motivation

- Software network stacks (including kernel bypass)
 have high CPU overhead.
 - Specifically evaluated Linux TCP and TAS

Motivation

- Existing TCP offload engines have limited flexibility (slow upgrade cycles).
 - Specifically evaluated Chelsio Terminator TOE

Motivation

 Software network stacks (including kernel bypass) have high CPU overhead.

 Existing TCP offload engines have limited flexibility (slow upgrade cycles).

How to get both flexibility and performance?

FlexTOE

 Flexible TCP offload on SoC-based smartNICs with network processors.

Key challenges

- SoC based SmartNICs have large number of wimpy cores with limited memories.
 - Parallel architecture geared towards stateless offloads.

TCP connections require stateful sequential (in-order) processing.

Netronome Agilio (NFP-4000)

Netronome Agilio (NFP-4000)

Each FPC island has 12 FPCs (flow processing cores).

- Each FPC is an independent 32 bit core at 800MHz.
- Each core supports up to 8 hardware threads.
- Lacks support for floating point operations or timers.

Small amount of memory.

Netronome Agilio (NFP-4000)

Each FPC island has 12 FPCs (flow processing cores).

- Each FPC is an independent 32 bit core at 800MHz.
- Each core supports up to 8 hardware threads.
- Lacks support for floating point operations or timers.

Small amount of memory.

NVIDIA (Mellanox) BlueField DPU

ARM cores

Bluefield DPU 2: 8 64bit cores (upto 2GHz)

Bluefield DPU 3: 16 64bit cores (upto 3GHz) released in April 2021

NVIDIA (Mellanox) BlueField DPU

Programmable datapath accelerator

16 cores, 256 threads for massive parallelism

Programmed through NVIDIA's DOCA interface.

NVIDIA (Mellanox) BlueField DPU

8MB L2 cache 16MB L3 cache

16GB on-baord RAM (DDR)

Key challenges

- SoC based SmartNICs have large number of wimpy cores with limited memories.
 - Parallel architecture geared towards stateless offloads.

TCP connections require stateful sequential (in-order) processing.

FlexTOE's approach

- Decouple control plane from datapath.
- Modularity: fine-grained modules keep private state and communicate explicitly
- Fine-grained parallelism: Modules may be replicated, sharded, execute out-of-order

 One-shot data-path offload: Payload is never buffered on the NIC

SmartNIC Host Control-plane Data-path Application Segment Generation & Interface Mgmt. **Transmission** Connection Control PCle Loss Detection & Recovery **Congestion Policy** Payload Transfer Application / libTOE **Application Notification POSIX Sockets** Flow Scheduling

Data-path: per-packet transport logic for established connections

Control-plane: policy, management and infrequent recovery code-paths

• **libTOE library:** provides POSIX sockets to the application with kernel-bypass

Baseline

Parallel TCP Processing Example: Transmit (TX)

TCP requires processing in-order for loss detection

but ...

Data-parallel modules have varying processing times and may reorder segments

Assign sequence number on data-path ingress \rightarrow reorder segments on egress

Other design and implementation aspects

- No buffering in NIC, but not zero-copy.
 - Send and receive buffers maintained in libTOE (POSIX-compliant).
- Transmissions triggered when app sends more data or when data is acked.
- On-NIC datapath takes care of retransmission due to duplicate acks.
- On-NIC datapath also generates acks (with ECN bits or timestamp information).
- On-NIC datapath collects relevant stats and reports them to on-host control plane (used for congestion control).
- On-host control plane handles rate/window adjustment (congestion control logic) and retransmissions due to timeouts.
- On-NIC datapath enforces per-flow rates using timing wheel (Carousel).
- Build specialized caches at different levels based NFP-4000's memory architecture.

Timing Wheel in Carousel

Time slots from "now" till "horizon". All packets in the "now" slot get dequeued. O(1) insertion and deletion.

Other design and implementation aspects

- No buffering in NIC, but not zero-copy.
 - Send and receive buffers maintained in libTOE (POSIX-compliant).
- Transmissions triggered when app sends more data or when data is acked.
- On-NIC datapath takes care of retransmission due to duplicate acks.
- On-NIC datapath also generates acks (with ECN bits or timestamp information).
- On-NIC datapath collects relevant stats and reports them to on-host control plane (used for congestion control).
- On-host control plane handles rate/window adjustment (congestion control logic) and retransmissions due to timeouts.
- On-NIC datapath enforces per-flow rates using timing wheel (Carousel).
- Build specialized caches at different levels based NFP-4000's memory architecture.

Enabling flexibility

• Support for XDP (eXpress Data Path) modules implemented in eBPF.

eBPF

- Allows running verified code supplied by a user-space application in the kernel.
- eBPF programs are invoked when certain hooks are triggered (e.g. a system call, a network event, etc).

Source: https://www.infoq.com/articles/gentle-linux-ebpf-introduction/

XDP

 Uses eBPF to provide support for bare-metal processing of raw packets at the lowest point in the stack.

Enabling flexibility

 Support for XDP (eXpress Data Path) modules implemented in eBPF.

- Use it to implement common datacenter features
 - Tracing, statistics, profiling
 - Connection firewalling
 - VLAN encapsulation/decapsulation
 - TCPDump.

Evaluation: tail latency

Memcached latency distribution across different stack combinations

FlexTOE achieves the lowest median and tail latencies

Evaluation: throughput

Memcached throughput, varying number of server cores

FlexTOE saves up to 81% CPU cycles versus Chelsio and 50% versus TAS

Even though latency difference is small between FlexTOE and TAS, why do we see a more significant throughput improvement?

Evaluation: factor analysis

Evaluation: on BlueField

Speedup = improvement in throughput

Your thoughts?

What did you like about the paper?

What were its limitations?

What are some other applications of smart NICs?

Other applications of SmartNICs

- Offloading distributed applications
 - iPipe, SIGCOMM' 19
- Caching for key-value stores
 - IncBricks, ASPLOS' 17
- Load balancing / request steering
 - RPCValet, ASPLOS' 19
 - A Case for Informed Request Scheduling at the NIC, HotNets' 19
- Remote memory calls, HotNets'20
- Network functions (using FPGA-based smartNICS)
 - ClickNP, SIGCOMM'16
 - FlowBlaze, NSDI'19
- •