Network Interface Cards

ECE/CS598HPN

Radhika Mittal

Network Interface Card (NIC)

- Physical layer processing
- Some link layer processing
- Direct Memory Access (DMA) for copying data.
- Mechanism to trigger interrupts.

Modern NICs do much more than this

NIC Features: Protocol Offload

- TCP Segmentation offload
 - Split a large outgoing packet into MTU-sized packets and assign appropriate headers.
- Checksum Offload
 - TCP / UDP / IPv4 checksum computation.
- Large Receive Offload
 - Combine multiple MTU-sized packets for the same connection into a single large packet.

NIC Features: Packet Steering

- Receive Side Scaling
 - Load balance incoming packets across different queues.
 - Hash of packet header fields mapped to queue index.
 - Can pick which queue corresponds to which index.
- Flow Director
 - Maintain explicit mapping between packet header fields and queue.
 - Other actions including dropping and incrementing counters.

• SR-IOV (Single Root I/O Virtualization)

• Provides the hardware abstraction of a 'virtual function' (VF).

 Multiple 'virtual functions' mapped to a single physical function.

VMM maps a virtual function space to a specific VM.

Virtual Ethernet Bridge and Classifier

- SR-IOV (Single Root I/O Virtualization)
 - Share a single physical port across multiple VMs.
- VMDq (Virtual Machine Device Queues)
 - Sort packets across VM specific queues based on MAC address and VLAN tags.
 - Round-robin across VM queues.
- VT-d (Virtualization technology for directed I/O)
 - DMA support for VMs, manage interrupts for VMs, protection and isolation across VMs for I/O operations.

NIC Features: Tunneling

- Examples:
 - VXLAN:

• NVGRF:

- Offload encapsulation/decapsulation.
- Ability to parse tunneled information.

Limitations

- Lack of flexibility and fine-grained control.
 - E.g.TSO offload can be useless without VXLAN support.
 - Even minor fixes can take years.
- Resource constraints.
 - Limited memory (packet buffers, flow table size, etc).
 - E.g. Flow Director allows only 8K flow entries.

SoftNIC: A Software NIC to Augment Hardware

Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, Sylvia Ratnasamy

SoftNIC Design Goals

- Programmability and extensibility
- Application performance isolation
- Backwards Compatibility

Architecture

Packet Processing Example

Resource Scheduling

Allocate both processor and bandwidth resources.

C1, C3: high priority, 1 Gbps

C2, C4: low priority, no limit

Per VM: 5 Gbps limit

Implementation

- Over DPDK.
- Dedicate a small number of cores to SoftNIC.
 - Multi-core scaling achieved by associating each SoftNIC core with different set of queues.
 - Requires peers to ensure packets from same flow go to the same queue.
- Supports different packet I/O interfaces at vports for userspace / kernel-bypass applications and kernel.
 - Implement a kernel driver, requiring no modification to kernel.
- Polling to check for packets from vport and pport.
- Batching to amortize software processing overheads.

Evaluation

- If NICS do not understand tunneling format, cannot support TSO for "inner" TCP frames.
- SoftNIC can be used to augment the TSO/LRO feature in these cases.

- NIC supports a limited number of "rate-limiters" few hundreds.
 - There may be thousands of flows.
- SoftNIC can be used to implement a scalable rate limiter.

- Flow Director directs packets with specific header fields to specific queues.
 - Can only support 8K entries.
- SoftNIC can support almost unlimited flow entries using system memory.

- Scaling legacy applications: send packets to different cores based on hash of packet header fields.
- RSS (NIC feature) is too limiting.
- SoftNIC can be used to provide such scaling.

Your thoughts?

- What did you like about the paper?
- What are its limitations?
- Other ways of achieving flexible NIC offload?

Next few classes

- Host SDN and network virtualization in multi-tenant datacenters.
- Two case-studies:
 - Google (SNAP)
 - Microsoft (AccelNet)
- Other forms of programmable NICs
 - FPGA-based NICs (AccelNet)
 - NICs with general-purpose compute (FlexTOE)

Update in schedule

- Nov 16th: no class; optional reading on course website.
- Student presentations on Nov 18th and Nov 30th
 - Present a relevant paper of your choice
 - A paper that is related to the topics we covered, but not part of your reading list (can select a paper from the "optional" list).
 - 6 minute presentation with 2mins for Q/A.
 - What problem is the paper trying to solve?
 - How does it solve it at a high-level / what's the key idea?
 - Key result.
 - Watch out for an email with a sign-up sheet.
 - Select a slot and a paper of your choice on a first-come-first serve basis.