High Performance
Network Stack

ECE/CS598HPN

Radhika Mittal

Tx Processing in the kernel

TCP

send msg
IP csum
_ IP route
qdisc_run IP filter
qdise_restcut
N net_fx_action
. ! «—
' dev_xmit

! : softirq to
hardware ; ' sntr free

h ; completion
queue

kernel
Memory

!
process [C{I |‘ .

Appli-
cation

user

Rx Processing in the kernel

! }
‘ | ;
- i i
. I . 1
. - softir !
W 3 L :
\ T » [P réuting :
NIC . rx_ring , interrupt ,
hardware ! ' scheduled 5
! ! tcp_v4 rcv !
I I 1
. g v i
! }
.- ! 0 socket backlog i
! 1
: ~ kernel :
! recv @
: recy buffer !
! » TCP :
T R .
! recv backlo process O—
i - g read;
|
|
|
|
|

Memory

Memory

Appli-
cation

user

Rx Processing in the kernel

driver kernel

! !
N i i
“.DMA : softirq P frowall !
N M > ' > ewa !
\ S i » IP routing :
NIC . rx_ring i Interrupt - ,
hardware ! - ' scheduled !
! ! tcp_v4 rcv !
.- ! socket backlog 5
: “ kernel :
! recv 5
: reev buffer !
! > TCP !
A N .
! recv_backlog process O , '
i read;
a i
device : :

Appli-
cation

user

What are some sources of
performance overheads?

MegaPipe: A New Programming
Interface for Scalable Network |/O

Sangjin Han, Scott Marshal,
Byung-Gon Chun, Sylvia Ratnasamy

OSDI'I2

Content borrowed from Sangjin’s OSDI talk

Two Types of Network VWorkloads

e Bulk Transfer
* Large files (HDFS)

* Message-oriented

* Short connections or small messages
(HTTE RPCs, DB, key-value stores, etc)

Two Types of Network VWorkloads

* Bulk Transfer
* Large files (HDFS)
* A half CPU core can saturate |0Gbps link

* Message-oriented

* Short connections or small messages

(HTTE RPCs, DB, key-value stores, etc)
* (CPU-intensive

BSD Socket APl Performance Issues

n_events = epoll wait(..); //waitforl/O readiness

for (..) {
new_fd =11’sten_fd) ; // new connection

bytes =|recv{fd2, buf, 4096); //new data for fd2

= |ssues with message-oriented workloads
= System call overhead -

BSD Socket APl Performance Issues

n_events = epoll wait(..); //waitforl/Oreadiness

for (..) {
new _fd = accept(listen_fd}; // new connection

bytes = recv(fd2, buf, 4096); //new data for fd2

= |ssues with message-oriented workloads
= System call overhead
= Shared listening socket -

BSD Socket APl Performance Issues

n_events = epoll wait(..); //waitforl/Oreadiness
for (..) {

[4

= accept(listen_fd); // new connection

bytes = recv(fd2, buf, 4096); //new datafor fd2

= [ssues with message-oriented workloads
= System call overhead
= Shared listening socket
= File abstraction overhead <=

Microbenchmarks: how bad?

RPC-like test on an 8-core Linux server (with epoll)

768 Clients Server 3. Number of cores

/ 2. Connection length

10 transactions

new TCP connection

|

request (64B)

|

response (64B)

_--f___-_--.'

%

Teardown

1. Message size

Microbenchmarks: how bad?

1. Small Messages Are Bad

EThroughput 1FCPU Usage
10 1 - 100
Y11

@ 8 - 80
o ~
2 X
2 - - 60 g,
5 :
= -
"En 4 - 40 -
—] =~
E Q
- 2 I - 20

0 . - l | , , . -0

128 256 512 2K 4K 8K | 16K

Low throughput Message Size (B) High overhead

Microbenchmarks: how bad?

2. Short Connections Are Bad

Throughput (1M transactions/s)

1.5 1

1.2 1

0.9

0.6

0.3

19x lower I I I
1 2 4 8 16 32 64 128

Number of Transactions per Connection

Microbenchmarks: how bad?

3. Multi-Core Will Not Help (Much)

1.5 1
Q . -7
2 |deal scaling
S 12 -
£ .7
.
< . .
g9 _” - Actual scaling
= -p
< 06 o’ =
. -
= =
(=¥
)
- I
=)
S
=
0 T T T T T T
4 5 6 7 8
of CPU Cores

MegaPipe Design

Focus: low-overnead and multi-core scalability.

MegaPipe: Overview

Problem Cause

Low
per-core
performance

Poor
multi-core
scalability

Solution

Key Primitives

= Handle

= Similar to file descriptor
= But only valid within a channel

= TCP connection, pipe, disk file, ...

"= Channel
= Per-core, bidirectional pipe between user and kernel
= Multiplexes I/O operations of its handles

How channels help?

User

Handles = [[[[

=37~ < 1/0 Batching

Channel mmp E

Kernel

|. 1/O Batching

" Transparent batching
= Exploits parallelism of independent handles

Application

MegaPipe User-Level Library

Read data from handle 6

New connection arrived

Accept a new connection

Write done to handle 5

Read data from handle 3

Read done from handle 6

Write data to handle 5

MegaPipe Kernel Module

)SDI1 2012

- MegaPipe API (non-batched)

Batched
system calls

How channels help?

Core 1 Core 2 Core 3
R 11 1

Nz

Shared accept queue

Z 1N\

New connections

How channels help?

Core 1 Core 2 Core 3
g 11 111

LY LA L,
Listening
—~ ¢v socket

n e
partitioning

New connections

2. Listening Socket Partitioning

= Per-core accept queue for each channel
= |[nstead of the globally shared accept queue

mp_register()

User

Kernel

2. Listening Socket Partitioning

= Per-core accept queue for each channel
" |nstead of the globally shared accept queue

mp_register()

User

2. Listening Socket Partitioning

= Per-core accept queue for each channel
= |nstead of the globally shared accept queue

mp_accept() User
| [N [|

Kernel

New connections

How channels help?

Core 1 Core 2 Core 3
g T

VFS iiDiiD DiD

How channels help?

Core 1 Core 2 Core 3
e 1l 111

. e HEENEN ‘_ Ligf;(tweight
socket

VES

3. Light-weight Sockets

= Common-case optimization for sockets

= Sockets are ephemeral and rarely shared
= Bypass the VFS layer
= Convert into a regular file descriptor only when necessary

File descriptor lwsocket

A 4
TCP socket TCP socket

Evaluation: Microbenchmarks

= Throughput improvement with various message sizes

120

|

100

|

80

|

60

40

|

20

Throughput Improvement (%)

of CPU Cores

Evaluation: Microbenchmarks

= Multi-core scalability
= with various connection lengths (# of transactions)

Baseline MegaPipe

8 7 8 7

7 7
="
2 6 6 -
2
o ‘, S T
= 4 >4—
]
b
g 3 3 1

2 2 -

] @ T] & T T | T T T |

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7

of CPU Cores # of CPU Cores

8

Evaluation: Macrobenchmarks

" memcached
= [n-memory key-value store

= Limited scalability
= Object store is shared by all cores with a global lock

" nginx
= Web server

= Highly scalable
= Nothing is shared by cores, except for the listening socket

Evaluation: Macrobenchmarks

" memcached
= [n-memory key-value store

= Limited scalability
= Object store is shared by all cores with a global lock

" nginx
= Web server

= Highly scalable
= Nothing is shared by cores, except for the listening socket

Evaluation: memcached

1050

900

750
600 O

A
450 - N i

|
.
0O

1

Throughput (1k requests/s)

150

0- MegaPipe
~0- Baseline

D 2ax
300 BT Global lock bottleneck

O | I I ! ! ! ! | I
1 2 3 4 5 6 7 8 9 10

Number of Requests per Connection

Throughput (1k requests/s)

Evaluation: memcached

1050
900
750
600
450
300
150

.
l...
.
.
.

| I ! [

4 8 16 32 64 128 256 o
Number of Requests per Connection

—> MegaPipe-FL
% Baseline-FL

0~ MegaPipe
~8- Baseline

Evaluation: nginx

Throughput (Gbps)

20

16

12

|

:Improvement
,of/
/
Yeg
/
,o’ /N
/ LA
x AT

o*/ ol

........

........

100

T
o0
()

T
AN
S

T
NN
S

T
[\
-

of CPU Cores

Improvement (%)

Conclusion

= Short connections or small messages:
= High CPU overhead
= Poorly scaling with multi-core CPUs

= MegaPipe
= Key abstraction: per-core channel

= Enabling three optimization opportunities:
= Batching, partitioning, Iwsocket

= 15+% improvement for memcached, 75% for nginx

Your thoughts?

* What did you like about the paper?
 What are some of its imitations’

* What other sources of performance overhead remain?

