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Tx Processing in the kernel

TCP

send msg
IP csum
_ IP route
qdisc_run IP filter
qdise_restcut
N net_fx_action
. ! «—
' dev_xmit

! : softirq to
hardware ; ' sntr free

h ; completion
queue

kernel
Memory

!
process [ C{I |‘ .

Appli-
cation

user




Rx Processing in the kernel
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Rx Processing in the kernel
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What are some sources of
performance overheads?
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Two Types of Network VWorkloads

e Bulk Transfer
* Large files (HDFS)

* Message-oriented

* Short connections or small messages
(HTTE RPCs, DB, key-value stores, etc)



Two Types of Network VWorkloads

* Bulk Transfer
* Large files (HDFS)
* A half CPU core can saturate |0Gbps link

* Message-oriented

* Short connections or small messages

(HTTE RPCs, DB, key-value stores, etc)
* (CPU-intensive



BSD Socket APl Performance Issues

n_events = epoll wait(..); //waitforl/O readiness

for (..) {
new_fd =11’sten_fd) ; // new connection

bytes =|recv{fd2, buf, 4096); //new data for fd2

= |ssues with message-oriented workloads
= System call overhead -



BSD Socket APl Performance Issues

n_events = epoll wait(..); //waitforl/Oreadiness

for (..) {
new _fd = accept(listen_fd}; // new connection

bytes = recv(fd2, buf, 4096); //new data for fd2

= |ssues with message-oriented workloads
= System call overhead
= Shared listening socket -



BSD Socket APl Performance Issues

n_events = epoll wait(..); //waitforl/Oreadiness
for (..) {

[ 4

= accept(listen_fd); // new connection

bytes = recv(fd2, buf, 4096); //new datafor fd2

= [ssues with message-oriented workloads
= System call overhead
= Shared listening socket
= File abstraction overhead <=



Microbenchmarks: how bad?

RPC-like test on an 8-core Linux server (with epoll)
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Microbenchmarks: how bad?

1. Small Messages Are Bad
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Microbenchmarks: how bad?

2. Short Connections Are Bad

Throughput (1M transactions/s)
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Microbenchmarks: how bad?

3. Multi-Core Will Not Help (Much)
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MegaPipe Design

Focus: low-overnead and multi-core scalability.



MegaPipe: Overview

Problem Cause

Low
per-core
performance
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multi-core
scalability

Solution



Key Primitives

= Handle

= Similar to file descriptor
= But only valid within a channel

= TCP connection, pipe, disk file, ...

"= Channel
= Per-core, bidirectional pipe between user and kernel
= Multiplexes I/O operations of its handles



How channels help?
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|. 1/O Batching

" Transparent batching
= Exploits parallelism of independent handles

Application

MegaPipe User-Level Library

Read data from handle 6

New connection arrived

Accept a new connection

Write done to handle 5

Read data from handle 3

Read done from handle 6

Write data to handle 5

MegaPipe Kernel Module

)SDI1 2012

- MegaPipe API (non-batched)

Batched
system calls



How channels help?
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How channels help?
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2. Listening Socket Partitioning

= Per-core accept queue for each channel
= |[nstead of the globally shared accept queue

mp_register()

User

Kernel



2. Listening Socket Partitioning
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2. Listening Socket Partitioning

= Per-core accept queue for each channel
= |nstead of the globally shared accept queue

mp_accept() User
| [N [ |

Kernel

New connections




How channels help?
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How channels help?
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3. Light-weight Sockets

= Common-case optimization for sockets

= Sockets are ephemeral and rarely shared
= Bypass the VFS layer
= Convert into a regular file descriptor only when necessary

File descriptor lwsocket

A 4
TCP socket TCP socket




Evaluation: Microbenchmarks

= Throughput improvement with various message sizes
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Evaluation: Microbenchmarks

= Multi-core scalability
= with various connection lengths (# of transactions)
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Evaluation: Macrobenchmarks

" memcached
= [n-memory key-value store

= Limited scalability
= Object store is shared by all cores with a global lock

" nginx
= Web server

= Highly scalable
= Nothing is shared by cores, except for the listening socket



Evaluation: Macrobenchmarks

" memcached
= [n-memory key-value store

= Limited scalability
= Object store is shared by all cores with a global lock

" nginx
= Web server

= Highly scalable
= Nothing is shared by cores, except for the listening socket



Evaluation: memcached
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Throughput (1k requests/s)

Evaluation: memcached
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Evaluation: nginx

Throughput (Gbps)
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Conclusion

= Short connections or small messages:
= High CPU overhead
= Poorly scaling with multi-core CPUs

= MegaPipe
= Key abstraction: per-core channel

= Enabling three optimization opportunities:
= Batching, partitioning, Iwsocket

= 15+% improvement for memcached, 75% for nginx



Your thoughts?

* What did you like about the paper?
 What are some of its imitations’

*  What other sources of performance overhead remain?



