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Abstract
We present MegaPipe, a new API for efficient, scalable
network I/O for message-oriented workloads. The design
of MegaPipe centers around the abstraction of a channel –
a per-core, bidirectional pipe between the kernel and user
space, used to exchange both I/O requests and event noti-
fications. On top of the channel abstraction, we introduce
three key concepts of MegaPipe: partitioning, lightweight
socket (lwsocket), and batching.

We implement MegaPipe in Linux and adapt mem-
cached and nginx. Our results show that, by embracing a
clean-slate design approach, MegaPipe is able to exploit
new opportunities for improved performance and ease
of programmability. In microbenchmarks on an 8-core
server with 64 B messages, MegaPipe outperforms base-
line Linux between 29% (for long connections) and 582%
(for short connections). MegaPipe improves the perfor-
mance of a modified version of memcached between 15%
and 320%. For a workload based on real-world HTTP
traces, MegaPipe boosts the throughput of nginx by 75%.

1 Introduction
Existing network APIs on multi-core systems have diffi-
culties scaling to high connection rates and are inefficient
for “message-oriented” workloads, by which we mean
workloads with short connections1 and/or small mes-
sages. Such message-oriented workloads include HTTP,
RPC, key-value stores with small objects (e.g., RAM-
Cloud [31]), etc. Several research efforts have addressed
aspects of these performance problems, proposing new
techniques that offer valuable performance improve-
ments. However, they all innovate within the confines
of the traditional socket-based networking APIs, by ei-
ther i) modifying the internal implementation but leav-
ing the APIs untouched [20, 33, 35], or ii) adding new
APIs to complement the existing APIs [1, 8, 10, 16, 29].
While these approaches have the benefit of maintain-
ing backward compatibility for existing applications, the
need to maintain the generality of the existing API –
e.g., its reliance on file descriptors, support for block-

1We use “short connection” to refer to a connection with a small
number of messages exchanged; this is not a reference to the absolute
time duration of the connection.

ing and nonblocking communication, asynchronous I/O,
event polling, and so forth – limits the extent to which
it can be optimized for performance. In contrast, a clean-
slate redesign offers the opportunity to present an API that
is specialized for high performance network I/O.

An ideal network API must offer not only high perfor-
mance but also a simple and intuitive programming ab-
straction. In modern network servers, achieving high per-
formance requires efficient support for concurrent I/O so
as to enable scaling to large numbers of connections per
thread, multiple cores, etc. The original socket API was
not designed to support such concurrency. Consequently,
a number of new programming abstractions (e.g., epoll,
kqueue, etc.) have been introduced to support concurrent
operation without overhauling the socket API. Thus, even
though the basic socket API is simple and easy to use,
programmers face the unavoidable and tedious burden of
layering several abstractions for the sake of concurrency.
Once again, a clean-slate design of network APIs offers
the opportunity to design a network API from the ground
up with support for concurrent I/O.

Given the central role of networking in modern applica-
tions, we posit that it is worthwhile to explore the benefits
of a clean-slate design of network APIs aimed at achiev-
ing both high performance and ease of programming. In
this paper we present MegaPipe, a new API for efficient,
scalable network I/O. The core abstraction MegaPipe in-
troduces is that of a channel – a per-core, bi-directional
pipe between the kernel and user space that is used to ex-
change both asynchronous I/O requests and completion
notifications. Using channels, MegaPipe achieves high
performance through three design contributions under the
roof of a single unified abstraction:

Partitioned listening sockets: Instead of a single listen-
ing socket shared across cores, MegaPipe allows applica-
tions to clone a listening socket and partition its associ-
ated queue across cores. Such partitioning improves per-
formance with multiple cores while giving applications
control over their use of parallelism.

Lightweight sockets: Sockets are represented by file
descriptors and hence inherit some unnecessary file-
related overheads. MegaPipe instead introduces lwsocket,
a lightweight socket abstraction that is not wrapped in file-
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related data structures and thus is free from system-wide
synchronization.

System Call Batching: MegaPipe amortizes system call
overheads by batching asynchronous I/O requests and
completion notifications within a channel.

We implemented MegaPipe in Linux and adapted two
popular applications – memcached [3] and the nginx [37]
– to use MegaPipe. In our microbenchmark tests on an 8-
core server with 64 B messages, we show that MegaPipe
outperforms the baseline Linux networking stack between
29% (for long connections) and 582% (for short connec-
tions). MegaPipe improves the performance of a mod-
ified version of memcached between 15% and 320%.
For a workload based on real-world HTTP traffic traces,
MegaPipe improves the performance of nginx by 75%.

The rest of the paper is organized as follows. We ex-
pand on the limitations of existing network stacks in §2,
then present the design and implementation of MegaPipe
in §3 and §4, respectively. We evaluate MegaPipe with mi-
crobenchmarks and macrobenchmarks in §5, and review
related work in §6.

2 Motivation
Bulk transfer network I/O workloads are known to be in-
expensive on modern commodity servers; one can eas-
ily saturate a 10 Gigabit (10G) link utilizing only a sin-
gle CPU core. In contrast, we show that message-oriented
network I/O workloads are very CPU-intensive and may
significantly degrade throughput. In this section, we dis-
cuss limitations of the current BSD socket API (§2.1)
and then quantify the performance with message-oriented
workloads with a series of RPC-like microbenchmark ex-
periments (§2.2).

2.1 Performance Limitations

In what follows, we discuss known sources of inefficiency
in the BSD socket API. Some of these inefficiencies are
general, in that they occur even in the case of a single
core, while others manifest only when scaling to multiple
cores – we highlight this distinction in our discussion.

Contention on Accept Queue (multi-core): As explained
in previous work [20, 33], a single listening socket (with
its accept() backlog queue and exclusive lock) forces
CPU cores to serialize queue access requests; this hotspot
negatively impacts the performance of both producers
(kernel threads) enqueueing new connections and con-
sumers (application threads) accepting new connections.
It also causes CPU cache contention on the shared listen-
ing socket.

Lack of Connection Affinity (multi-core): In Linux, in-
coming packets are distributed across CPU cores on a flow

basis (hash over the 5-tuple), either by hardware (RSS [5])
or software (RPS [24]); all receive-side processing for the
flow is done on a core. On the other hand, the transmit-
side processing happens on the core at which the appli-
cation thread for the flow resides. Because of the serial-
ization in the listening socket, an application thread call-
ing accept() may accept a new connection that came
through a remote core; RX/TX processing for the flow
occurs on two different cores, causing expensive cache
bouncing on the TCP control block (TCB) between those
cores [33]. While the per-flow redirection mechanism [7]
in NICs eventually resolves this core disparity, short con-
nections cannot benefit since the mechanism is based on
packet sampling.

File Descriptors (single/multi-core): The POSIX stan-
dard requires that a newly allocated file descriptor be the
lowest integer not currently used by the process [6]. Find-
ing ‘the first hole’ in a file table is an expensive operation,
particularly when the application maintains many connec-
tions. Even worse, the search process uses an explicit per-
process lock (as files are shared within the process), lim-
iting the scalability of multi-threaded applications. In our
socket() microbenchmark on an 8-core server, the cost
of allocating a single FD is roughly 16% greater when
there are 1,000 existing sockets as compared to when there
are no existing sockets.

VFS (multi-core): In UNIX-like operating systems, net-
work sockets are abstracted in the same way as other file
types in the kernel; the Virtual File System (VFS) [27]
associates each socket with corresponding file instance,
inode, and dentry data structures. For message-oriented
workloads with short connections, where sockets are fre-
quently opened as new connections arrive, servers quickly
become overloaded since those globally visible objects
cause system-wide synchronization cost [20]. In our mi-
crobenchmark, the VFS overhead for socket allocation on
eight cores was 4.2 times higher than the single-core case.

System Calls (single-core): Previous work has shown
that system calls are expensive and negatively impact
performance, both directly (mode switching) and indi-
rectly (cache pollution) [35]. This performance overhead
is exacerbated for message-oriented workloads with small
messages that result in a large number of I/O operations.

In parallel with our work, the Affinity-Accept project
[33] has recently identified and solved the first two is-
sues, both of which are caused by the shared listening
socket (for complete details, please refer to the paper). We
discuss our approach (partitioning) and its differences in
§3.4.1. To address other issues, we introduce the concept
of lwsocket (§3.4.2, for FD and VFS overhead) and batch-
ing (§3.4.3, for system call overhead).
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Figure 1: (a) the negative impact of connection lifespan (with 64 B messages on eight cores), (b) message size (with ten transactions
per connection on eight cores), and (c) increasing number of cores (with 64 B messages and ten transactions per connection).

2.2 Performance of Message-Oriented Workloads

While it would be ideal to separate the aforementioned in-
efficiencies and quantify the cost of each, tight coupling in
semantics between those issues and complex dynamics of
synchronization/cache make it challenging to isolate indi-
vidual costs.

Rather, we quantify their compound performance im-
pact with a series of microbenchmarks in this work. As
we noted, the inefficiencies manifest themselves primar-
ily in workloads that involve short connections or small-
sized messages, particularly with increasing numbers of
CPU cores. Our microbenchmark tests thus focus on these
problematic scenarios.

Experimental Setup: For our tests, we wrote a pair
of client and server microbenchmark tools that emulate
RPC-like workloads. The client initiates a TCP connec-
tion, exchanges multiple request and response messages
with the server and then closes the connection.2 We re-
fer to a single request-response exchange as a transac-
tion. Default parameters are 64 B per message and 10
transactions per connection, unless otherwise stated. Each
client maintains 256 concurrent connections, and we con-
firmed that the client is never the bottleneck. The server
creates a single listening socket shared by eight threads,
with each thread pinned to one CPU core. Each event-
driven thread is implemented with epoll [8] and the non-
blocking socket API.

Although synthetic, this workload lets us focus on the
low-level details of network I/O overhead without inter-
ference from application-specific logic. We use a single
server and three client machines, connected through a
dedicated 10G Ethernet switch. All test systems use the
Linux 3.1.3 kernel and ixgbe 3.8.21 10G Ethernet device
driver [2] (with interrupt coalescing turned on). Each ma-
chine has a dual-port Intel 82599 10G NIC, 12 GB of
DRAM, and two Intel Xeon X5560 processors, each of

2In this experiment, we closed connections with RST, to avoid ex-
haustion of client ports caused by lingering TIME_WAIT connections.

which has four 2.80 GHz cores. We enabled the multi-
queue feature of the NICs with RSS [5] and FlowDirec-
tor [7], and assigned each RX/TX queue to one CPU core.

In this section, we discuss the result of the experi-
ments Figure 1 labeled as “Baseline.” For comparison,
we also include the results with our new API, labeled as
“MegaPipe,” from the same experiments.

Performance with Short Connections: TCP connection
establishment involves a series of time-consuming steps:
the 3-way handshake, socket allocation, and interaction
with the user-space application. For workloads with short
connections, the costs of connection establishment are not
amortized by sufficient data transfer and hence this work-
load serves to highlight the overhead due to costly con-
nection establishment.

We show how connection lifespan affects the through-
put by varying the number of transactions per connec-
tion in Figure 1(a), measured with eight CPU cores. Total
throughput is significantly lower with relatively few (1–8)
transactions per connection. The cost of connection estab-
lishment eventually becomes insignificant for 128+ trans-
actions per connection, and we observe that throughput in
single-transaction connections is roughly 19 times lower
than that of long connections!

Performance with Small Messages: Small messages re-
sult in greater relative network I/O overhead in compari-
son to larger messages. In fact, the per-message overhead
remains roughly constant and thus, independent of mes-
sage size; in comparison with a 64 B message, a 1 KiB
message adds only about 2% overhead due to the copying
between user and kernel on our system, despite the large
size difference.

To measure this effect, we perform a second mi-
crobenchmark with response sizes varying from 64 B to
64 KiB (varying the request size in lieu of or in addition to
the response size had almost the same effects). Figure 1(b)
shows the measured throughput (in Gbps) and CPU usage
for various message sizes. It is clear that connections with
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small-sized messages adversely affect the throughput. For
small messages (≤ 1 KiB) the server does not even satu-
rate the 10G link. For medium-sized messages (2–4 KiB),
the CPU utilization is extremely high, leaving few CPU
cycles for further application processing.

Performance Scaling with Multiple Cores: Ideally,
throughput for a CPU-intensive system should scale lin-
early with CPU cores. In reality, throughput is limited by
shared hardware (e.g., cache, memory buses) and/or soft-
ware implementation (e.g., cache locality, serialization).
In Figure 1(c), we plot the throughput for increasing num-
bers of CPU cores. To constrain the number of cores, we
adjust the number of server threads and RX/TX queues
of the NIC. The lines labeled “Efficiency” represent the
measured per-core throughput, normalized to the case of
perfect scaling, where N cores yield a speedup of N.

We see that throughput scales relatively well for up to
four cores – the likely reason being that, since each pro-
cessor has four cores, expensive off-chip communication
does not take place up to this point. Beyond four cores,
the marginal performance gain with each additional core
quickly diminishes, and with eight cores, speedup is only
4.6. Furthermore, it is clear from the growth trend that
speedup would not increase much in the presence of ad-
ditional cores. Finally, it is worth noting that the observed
scaling behavior of Linux highly depends on connection
duration, further confirming the results in Figure 1(a).
With only one transaction per connection (instead of the
default 10 used in this experiment), the speedup with eight
cores was only 1.3, while longer connections of 128 trans-
actions yielded a speedup of 6.7.

3 MegaPipe Design
MegaPipe is a new programming interface for high-
performance network I/O that addresses the inefficiencies
highlighted in the previous section and provides an easy
and intuitive approach to programming high concurrency
network servers. In this section, we present the design
goals, approach, and contributions of MegaPipe.

3.1 Scope and Design Goals

MegaPipe aims to accelerate the performance of message-
oriented workloads, where connections are short and/or
message sizes are small. Some possible approaches to this
problem would be to extend the BSD Socket API or to
improve its internal implementation. It is hard to achieve
optimal performance with these approaches, as many op-
timization opportunities can be limited by the legacy ab-
stractions. For instance: i) sockets represented as files in-
herit the overheads of files in the kernel; ii) it is difficult
to aggregate BSD socket operations from concurrent con-
nections to amortize system call overheads. We leave opti-

mizing the message-oriented workloads with those dirty-
slate (minimally disruptive to existing API semantics and
legacy applications) alternatives as an open problem. In-
stead, we take a clean-slate approach in this work by de-
signing a new API from scratch.

We design MegaPipe to be conceptually simple, self-
contained, and applicable to existing event-driven server
applications with moderate efforts. The MegaPipe API
provides a unified interface for various I/O types, such as
TCP connections, UNIX domain sockets, pipes, and disk
files, based on the completion notification model (§3.2)
We particularly focus on the performance of network I/O
in this paper. We introduce three key design concepts of
MegaPipe for high-performance network I/O: partitioning
(§3.4.1), lwsocket (§3.4.2), and batching (§3.4.3), for re-
duced per-message overheads and near-linear multi-core
scalability.

3.2 Completion Notification Model
The current best practice for event-driven server pro-
gramming is based on the readiness model. Applica-
tions poll the readiness of interested sockets with se-

lect/poll/epoll and issue non-blocking I/O commands
on the those sockets. The alternative is the completion no-
tification model. In this model, applications issue asyn-
chronous I/O commands, and the kernel notifies the appli-
cations when the commands are complete. This model has
rarely been used for network servers in practice, though,
mainly because of the lack of socket-specific opera-
tions such as accept/connect/shutdown (e.g., POSIX
AIO [6]) or poor mechanisms for notification delivery
(e.g., SIGIO signals).

MegaPipe adopts the completion notification model
over the readiness model for three reasons. First, it allows
transparent batching of I/O commands and their notifi-
cations. Batching of non-blocking I/O commands in the
readiness model is very difficult without the explicit as-
sistance from applications. Second, it is compatible with
not only sockets but also disk files, allowing a unified in-
terface for any type of I/O. Lastly, it greatly simplifies the
complexity of I/O multiplexing. Since the kernel controls
the rate of I/O with completion events, applications can
blindly issue I/O operations without tracking the readiness
of sockets.

3.3 Architectural Overview
MegaPipe involves both a user-space library and Linux
kernel modifications. Figure 2 illustrates the architecture
and highlights key abstractions of the MegaPipe design.
The left side of the figure shows how a multi-threaded
application interacts with the kernel via MegaPipe chan-
nels. With MegaPipe, an application thread running on
each core opens a separate channel for communication
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Figure 2: MegaPipe architecture

between the kernel and user-space. The application thread
registers a handle (socket or other file type) to the chan-
nel, and each channel multiplexes its own set of handles
for their asynchronous I/O requests and completion noti-
fication events.

When a listening socket is registered, MegaPipe inter-
nally spawns an independent accept queue for the chan-
nel, which is responsible for incoming connections to the
core. In this way, the listening socket is not shared by all
threads, but partitioned (§3.4.1) to avoid serialization and
remote cache access.

A handle can be either a regular file descriptor or a
lightweight socket, lwsocket (§3.4.2). lwsocket provides
a direct shortcut to the TCB in the kernel, to avoid the
VFS overhead of traditional sockets; thus lwsockets are
only visible within the associated channel.

Each channel is composed of two message streams: a
request stream and a completion stream. User-level appli-
cations issue asynchronous I/O requests to the kernel via
the request stream. Once the asynchronous I/O request is
done, the completion notification of the request is deliv-
ered to user-space via the completion stream. This process
is done in a batched (§3.4.3) manner, to minimize the con-
text switch between user and kernel. The MegaPipe user-
level library is fully responsible for transparent batching;
MegaPipe does not need to be aware of batching.

3.4 Design Components

3.4.1 Listening Socket Partitioning

As discussed in §2.1, the shared listening socket causes
two issues in the multi-core context: i) contention on the
accept queue and ii) cache bouncing between RX and TX
cores for a flow. Affinity-Accept [33] proposes two key
ideas to solve these issues. First, a listening socket has
per-core accept queues instead of the shared one. Second,
application threads that call accept() prioritize their lo-
cal accept queue. In this way, connection establishment
becomes completely parallelizable and independent, and

all the connection establishment, data transfer, and appli-
cation logic for a flow are contained in the same core.

In MegaPipe, we achieve essentially the same goals
but with a more controlled approach. When an appli-
cation thread associates a listening socket to a channel,
MegaPipe spawns a separate listening socket. The new lis-
tening socket has its own accept queue which is only re-
sponsible for connections established on a particular sub-
set of cores that are explicitly specified by an optional
cpu_mask parameter.3 After a shared listening socket is
registered to MegaPipe channels with disjoint cpu_mask
parameters, all channels (and thus cores) have completely
partitioned backlog queues. Upon receipt of an incom-
ing TCP handshaking packet, which is distributed across
cores either by RSS [5] or RPS [24], the kernel finds a
“local” accept queue among the partitioned set, whose
cpu_mask includes the current core. On the application
side, an application thread accepts pending connections
from its local queue. In this way, cores no longer contend
for the shared accept queue, and connection establishment
is vertically partitioned (from the TCP/IP stack up to the
application layer).

We briefly discuss the main difference between our
technique and that of Affinity-Accept. Our technique
requires user-level applications to partition a listening
socket explicitly, rather than transparently. The downside
is that legacy applications do not benefit. However, ex-
plicit partitioning provides more flexibility for user appli-
cations (e.g., to forgo partitioning for single-thread appli-
cations, to establish one accept queue for each physical
core in SMT systems, etc.) Our approach follows the de-
sign philosophy of the Corey operating system, in a way
that “applications should control sharing” [19].

Partitioning of a listening socket may cause poten-
tial load imbalance between cores [33]. Affinity-Accept
solves two cases of load imbalance. For a short-term load
imbalance, a non-busy core running accept() may steal
a connection from the remote accept queue on a busy
CPU core. For a long-term load imbalance, the flow group
migration mechanism lets the NIC to distribute more
flows to non-busy cores. While the current implementa-
tion of MegaPipe does not support load balancing of in-
coming connections between cores, the techniques made
in Affinity-Accept are complementary to MegaPipe. We
leave the implementation and evaluation of connection
load balancing as future work.

3.4.2 lwsocket: Lightweight Socket

accept()ing an established connection is an expensive
process in the context of the VFS layer. In Unix-like op-

3MegaPipe currently does not support runtime reconfiguration of
cpu_mask after it is initially set, but we believe that this is easy to add.
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erating systems, many different types of open files (disk
files, sockets, pipes, devices, etc.) are identified by a file
descriptor. A file descriptor is an integer identifier used
as an indirect reference to an opened file instance, which
maintains the status (e.g., access mode, offset, and flags
such as O_DIRECT and O_SYNC) of the opened file. Multi-
ple file instances may point to the same inode, which rep-
resents a unique, permanent file object. An inode points to
an actual type-specific kernel object, such as TCB.

These layers of abstraction offer clear advantages. The
kernel can seamlessly support various file systems and file
types, while retaining a unified interface (e.g., read() and
write()) to user-level applications. The CPU overhead
that comes with the abstraction is tolerable for regular disk
files, as file I/O is typically bound by low disk bandwidth
or high seek latency. For network sockets, however, we
claim that these layers of abstraction could be overkill for
the following reasons:

(1) Sockets are rarely shared. For disk files, it is com-
mon that multiple processes share the same open file or
independently open the same permanent file. The layer
of indirection that file objects offer between the file ta-
ble and inodes is useful in such cases. In contrast, since
network sockets are rarely shared by multiple processes
(HTTP socket redirected to a CGI process is such an ex-
ception) and not opened multiple times, this indirection is
typically unnecessary.

(2) Sockets are ephemeral. Unlike permanent disk-backed
files, the lifetime of network sockets ends when they are
closed. Every time a new connection is established or torn
down, its FD, file instance, inode, and dentry are newly al-
located and freed. In contrast to disk files whose inode and
dentry objects are cached [27], socket inode and dentry
cannot benefit from caching since sockets are ephemeral.
The cost of frequent (de)allocation of those objects is ex-
acerbated on multi-core systems since the kernel main-
tains the inode and dentry as globally visible data struc-
tures [20].

To address the above issues, we propose lightweight
sockets – lwsocket. Unlike regular files, a lwsocket is iden-
tified by an arbitrary integer within the channel, not the
lowest possible integer within the process. The lwsocket
is a common-case optimization for network connections;
it does not create a corresponding file instance, inode, or
dentry, but provides a straight shortcut to the TCB in the
kernel. A lwsocket is only locally visible within the asso-
ciated MegaPipe channel, which avoids global synchro-
nization between cores.

In MegaPipe, applications can choose whether to fetch
a new connection as a regular socket or as a lwsocket.
Since a lwsocket is associated with a specific channel,

one cannot use it with other channels or for general sys-
tem calls, such as sendmsg(). In cases where applications
need the full generality of file descriptors, MegaPipe pro-
vides a fall-back API function to convert a lwsocket into
a regular file descriptor.

3.4.3 System Call Batching
Recent research efforts report that system calls are expen-
sive not only due to the cost of mode switching, but also
because of the negative effect on cache locality in both
user and kernel space [35]. To amortize system call costs,
MegaPipe batches multiple I/O requests and their comple-
tion notifications into a single system call. The key obser-
vation here is that batching can exploit connection-level
parallelism, extracting multiple independent requests and
notifications from concurrent connections.

Batching is transparently done by the MegaPipe user-
level library for both directions user → kernel and kernel
→ user. Application programmers need not be aware of
batching. Instead, application threads issue one request at
a time, and the user-level library accumulates them. When
i) the number of accumulated requests reaches the batch-
ing threshold, ii) there are not any more pending comple-
tion events from the kernel, or iii) the application explic-
itly asks to flush, then the collected requests are flushed to
the kernel in a batch through the channel. Similarly, appli-
cation threads dispatch a completion notification from the
user-level library one by one. When the user-level library
has no more completion notifications to feed the applica-
tion thread, it fetches multiple pending notifications from
kernel in a batch. We set the default batching threshold
to 32 (adjustable), as we found that the marginal perfor-
mance gain beyond that point is negligible.

3.5 API
The MegaPipe user-level library provides a set of API
functions to hide the complexity of batching and the in-
ternal implementation details. Table 1 presents a partial
list of MegaPipe API functions. Due to lack of space,
we highlight some interesting aspects of some functions
rather than enumerating all of them.

The application associates a handle (either a regular file
descriptor or a lwsocket) with the specified channel with
mp_register(). All further I/O commands and com-
pletion notifications for the registered handle are done
through only the associated channel. A cookie, an opaque
pointer for developer use, is also passed to the kernel with
handle registration. This cookie is attached in the comple-
tion events for the handle, so the application can easily
identify which handle fired each event. The application
calls mp_unregister() to end the membership. Once
unregistered, the application can continue to use the reg-
ular FD with general system calls. In contrast, lwsockets
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Function Parameters Description

mp_create() Create a new MegaPipe channel instance.
mp_register() channel,

fd, cookie,
cpu_mask

Create a MegaPipe handle for the specified file descriptor (either regular or lightweight) in the given
channel. If a given file descriptor is a listening socket, an optional CPU mask parameter can be used
to designate the set of CPU cores which will respond to incoming connections for that handle.

mp_unregister() handle Remove the target handle from the channel. All pending completion notifications for the handle are
canceled.

mp_accept() handle,
count,
is_lwsocket

Accept one or more new connections from a given listening handle asynchronously. The application
specifies whether to accept a connection as a regular socket or a lwsocket. The completion event will
report a new FD/lwsocket and the number of pending connections in the accept queue.

mp_read()

mp_write()

handle, buf,
size

Issue an asynchronous I/O request. The completion event will report the number of bytes actually
read/written.

mp_disconnect() handle Close a connection in a similar way with shutdown(). It does not deallocate or unregister the handle.
mp_dispatch() channel,

timeout
Retrieve a single completion notification for the given channel. If there is no pending notification event,
the call blocks until the specified timer expires.

Table 1: MegaPipe API functions (not exhaustive).

are immediately deallocated from the kernel memory.
When a listening TCP socket is registered with the

cpu_mask parameter, MegaPipe internally spawns an ac-
cept queue for incoming connections on the specified set
of CPU cores. The original listening socket (now respon-
sible for the remaining CPU cores) can be registered to
other MegaPipe channels with a disjoint set of cores – so
each thread can have a completely partitioned view of the
listening socket.
mp_read() and mp_write() issue asynchronous I/O

commands. The application should not use the provided
buffer for any other purpose until the completion event, as
the ownership of the buffer has been delegated to the ker-
nel, like in other asynchronous I/O APIs. The completion
notification is fired when the I/O is actually completed,
i.e., all data has been copied from the receive queue for
read or copied to the send queue for write. In adapting
nginx and memcached, we found that vectored I/O opera-
tions (multiple buffers for a single I/O operation) are help-
ful for optimal performance. For example, the unmodi-
fied version of nginx invokes the writev() system call to
transmit separate buffers for a HTTP header and body at
once. MegaPipe supports the counterpart, mp_writev(),
to avoid issuing multiple mp_write() calls or aggregat-
ing scattered buffers into one contiguous buffer.
mp_dispatch() returns one completion event as a

struct mp_event. This data structure contains: i) a
completed command type (e.g., read/write/accept/etc.), ii)
a cookie, iii) a result field that indicates success or failure
(such as broken pipe or connection reset) with the cor-
responding errno value, and iv) a union of command-
specific return values.

Listing 1 presents simplified pseudocode of a ping-
pong server to illustrate how applications use MegaPipe.
An application thread initially creates a MegaPipe chan-
nel and registers a listening socket (listen_sd in this ex-

ch = mp_crea t e ( )
h a n d l e = m p _ r e g i s t e r ( ch , l i s t e n _ s d , mask=0x01 )
mp_accept ( h a n d l e )

whi le t r u e :
ev = mp_d i spa t ch ( ch )
conn = ev . c o o k i e
i f ev . cmd == ACCEPT :

mp_accept ( conn . h a n d l e )
conn = new C o n n e c t i o n ( )
conn . h a n d l e = m p _ r e g i s t e r ( ch , ev . fd ,

c o o k i e =conn )
mp_read ( conn . hand le , conn . buf , READSIZE )

e l i f ev . cmd == READ:
mp_wri te ( conn . hand le , conn . buf , ev . s i z e )

e l i f ev . cmd == WRITE :
mp_read ( conn . hand le , conn . buf , READSIZE )

e l i f ev . cmd == DISCONNECT :
m p _ u n r e g i s t e r ( ch , conn . h a n d l e )
d e l e t e conn

Listing 1: Pseudocode for ping-pong server event loop

ample) with cpu_mask 0x01 (first bit is set) which means
that the handle is only interested in new connections es-
tablished on the first core (core 0). The application then
invokes mp_accept() and is ready to accept new connec-
tions. The body of the event loop is fairly simple; given an
event, the server performs any appropriate tasks (barely
anything in this ping-pong example) and then fires new
I/O operations.

3.6 Discussion: Thread-Based Servers

The current MegaPipe design naturally fits event-driven
servers based on callback or event-loop mechanisms [32,
40]. We mostly focus on event-driven servers in this work.
On the other hand, MegaPipe is also applicable to thread-
based servers, by having one channel for each thread,
thus each connection. In this case the application cannot
take advantage of batching (§3.4.3), since batching ex-
ploits the parallelism of independent connections that are

7
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multiplexed through a channel. However, the application
still can benefit from partitioning (§3.4.1) and lwsocket
(§3.4.2) for better scalability on multi-core servers.

There is an interesting spectrum between pure event-
driven servers and pure thread-based servers. Some
frameworks expose thread-like environments to user ap-
plications to retain the advantages of thread-based archi-
tectures, while looking like event-driven servers to the
kernel to avoid the overhead of threading. Such function-
ality is implemented in various ways: lightweight user-
level threading [23, 39], closures or coroutines [4, 18, 28],
and language runtime [14]. Those frameworks intercept
I/O calls issued by user threads to keep the kernel thread
from blocking, and manage the outstanding I/O requests
with polling mechanisms, such as epoll. These frame-
works can leverage MegaPipe for higher network I/O per-
formance without requiring modifications to applications
themselves. We leave the evaluation of effectiveness of
MegaPipe for these frameworks as future work.

4 Implementation
We begin this section with how we implemented
MegaPipe in the Linux kernel and the associated user-
level library. To verify the applicability of MegaPipe, we
show how we adapted two applications (memcached and
nginx) to benefit from MegaPipe.

4.1 MegaPipe API Implementation

As briefly described in §3.3, MegaPipe consists of two
parts: the kernel module and the user-level library. In this
section, we denote them by MP-K and MP-L, respec-
tively, for clear distinction between the two.

Kernel Implementation: MP-K interacts with MP-L
through a special device, /dev/megapipe. MP-L opens
this file to create a channel, and invokes ioctl() system
calls on the file to issue I/O requests and dispatch comple-
tion notifications for that channel.

MP-K maintains a set of handles for both regular FDs
and lwsockets in a red-black tree4 for each channel. Un-
like a per-process file table, each channel is only ac-
cessed by one thread, avoiding data sharing between
threads (thus cores). MP-K identifies a handle by an in-
teger unique to the owning channel. For regular FDs, the
existing integer value is used as an identifier, but for lw-
sockets, an integer of 230 or higher value is issued to dis-
tinguish lwsockets from regular FDs. This range is used
since it is unlikely to conflict with regular FD numbers, as
the POSIX standard allocates the lowest unused integer
for FDs [6].

4It was mainly for ease of implementation, as Linux provides the
template of red-black trees. We have not yet evaluated alternatives, such
as a hash table, which supports O(1) lookup rather than O(logN).

MP-K currently supports the following file types: sock-
ets, pipes, FIFOs, signals (via signalfd), and timers (via
timerfd). MP-K handles asynchronous I/O requests dif-
ferently depending on the file type. For sockets (such as
TCP, UDP, and UNIX domain), MegaPipe utilizes the na-
tive callback interface, which fires upon state changes,
supported by kernel sockets for optimal performance. For
other file types, MP-K internally emulates asynchronous
I/O with epoll and non-blocking VFS operations within
kernel. MP-K currently does not support disk files, since
the Linux file system does not natively support asyn-
chronous or non-blocking disk I/O, unlike other modern
operating systems. To work around this issue, we plan to
adopt a lightweight technique presented in FlexSC [35] to
emulate asynchronous I/O. When a disk I/O operation is
about to block, MP-K can spawn a new thread on demand
while the current thread continues.

Upon receiving batched I/O commands from MP-L
through a channel, MP-K first examines if each request
can be processed immediately (e.g., there is pending data
in the TCP receive queue, or there is free space in the
TCP send queue). If so, MP-K processes the request and
issues a completion notification immediately, without in-
curring the callback registration or epoll overhead. This
idea of opportunistic shortcut is adopted from LAIO [22],
where the authors claim that the 73–86% of I/O opera-
tions are readily available. For I/O commands that are not
readily available, MP-K needs some bookkeeping; it reg-
isters a callback to the socket or declares an epoll interest
for other file types. When MP-K is notified that the I/O
operation has become ready, it processes the operation.

MP-K enqueues I/O completion notifications in the per-
channel event queue. Those notifications are dispatched
in a batch upon the request of MP-L. Each handle main-
tains a linked list to its pending notification events, so that
they can be easily removed when the handle is unregis-
tered (and thus not of interest anymore).

We implemented MP-K in the Linux 3.1.3 kernel with
2,200 lines of code in total. The majority was imple-
mented as a Linux kernel module, such that the mod-
ule can be used for other Linux kernel versions as well.
However, we did have to make three minor modifications
(about 400 lines of code of the 2,200) to the Linux kernel
itself, due to the following issues: i) we modified epoll

to expose its API to not only user space but also to MP-K;
ii) we modified the Linux kernel to allow multiple sock-
ets (partitioned) to listen on the same address/port concur-
rently, which traditionally is not allowed; and iii) we also
enhanced the socket lookup process for incoming TCP
handshake packets to consider cpu_mask when choosing
a destination listening socket among a partitioned set.

User-Level Library: MP-L is essentially a simple wrap-

8
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Application Total Changed

memcached 9442 602 (6.4%)
nginx 86774 447 (0.5%)

Table 2: Lines of code for application adaptations
per of the kernel module, and it is written in about 400
lines of code. MP-L performs two main roles: i) it trans-
parently provides batching for asynchronous I/O requests
and their completion notifications, ii) it performs commu-
nication with MP-K via the ioctl() system call.

The current implementation uses copying to transfer
commands (24 B for each) and notifications (40 B for
each) between MP-L and MP-K. This copy overhead,
roughly 3–5% of total CPU cycles (depending on work-
loads) in our evaluation, can be eliminated with virtual
memory mapping for the command/notification queues,
as introduced in Mach Port [11]. We leave the implemen-
tation and evaluation of this idea as future work.

4.2 Application Integration

We adapted two popular event-driven servers, memcached
1.4.13 [3] (an in-memory key-value store) and nginx
1.0.15 [37] (a web server), to verify the applicability of
MegaPipe. As quantitatively indicated in Table 2, the code
changes required to use MegaPipe were manageable, on
the order of hundreds of lines of code. However, these two
applications presented different levels of effort during the
adaptation process. We briefly introduce our experiences
here, and show the performance benefits in Section 5.

memcached: memcached uses the libevent [30] frame-
work which is based on the readiness model (e.g., epoll
on Linux). The server consists of a main thread and a col-
lection of worker threads. The main thread accepts new
client connections and distributes them among the worker
threads. The worker threads run event loops which dis-
patch events for client connections.

Modifying memcached to use MegaPipe in place of
libevent involved three steps5:

(1) Decoupling from libevent: We began by removing
libevent-specific data structures from memcached. We
also made the drop-in replacement of mp_dispatch() for
the libevent event dispatch loop.

(2) Parallelizing accept: Rather than having a single
thread that accepts all new connections, we modified
worker threads to accept connections in parallel by par-
titioning the shared listening socket.

(3) State machine adjustment: Finally, we replaced calls

5In addition, we pinned each worker thread to a CPU core for the
MegaPipe adaptation, which is considered a best practice and is neces-
sary for MegaPipe. We made the same modification to stock memcached
for a fair comparison.
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Figure 3: Comparison of parallel speedup for varying numbers
of transactions per connection (labeled) over a range of CPU
cores (x-axis) with 64 B messages.

to read() with mp_read() and calls to sendmsg() with
mp_writev(). Due to the semantic gap between the
readiness model and the completion notification model,
each state of the memcached state machine that invokes a
MegaPipe function was split into two states: actions prior
to a MegaPipe function call, and actions that follow the
MegaPipe function call and depend on its result. We be-
lieve this additional overhead could be eliminated if mem-
cached did not have the strong assumption of the readiness
model.

nginx: Compared to memcached, nginx modifications
were much more straightforward due to three reasons: i)
the custom event-driven I/O of nginx does not use an ex-
ternal I/O framework that has a strong assumption of the
readiness model, such as libevent [30]; ii) nginx was de-
signed to support not only the readiness model (by default
with epoll in Linux), but also the completion notification
model (for POSIX AIO [6] and signal-based AIO), which
nicely fits with MegaPipe; and iii) all worker processes
already accept new connections in parallel, but from the
shared listening socket.

nginx has an extensible event module architecture,
which enables easy replacement for its underlying event-
driven mechanisms. Under this architecture, we im-
plemented a MegaPipe event module and registered
mp_read() and mp_writev() as the actual I/O func-
tions. We also adapted the worker threads to accept new
connections from the partitioned listening socket.

5 Evaluation

We evaluated the performance gains yielded by MegaPipe
both through a collection of microbenchmarks, akin to
those presented in §2.2, and a collection of application-
level macrobenchmarks. Unless otherwise noted, all
benchmarks were completed with the same experimental
setup (same software versions and hardware platforms as
described in §2.2.
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Number of transactions per connection
1 2 4 8 16 32 64 128

+P 211.6 207.5 181.3 83.5 38.9 29.5 17.2 8.8
P +B 18.8 22.8 72.4 44.6 31.8 30.4 27.3 19.8

PB +L 352.1 230.5 79.3 22.0 9.7 2.9 0.4 0.1
Total 582.4 460.8 333.1 150.1 80.4 62.8 45.0 28.7

Table 3: Accumulation of throughput improvement (%) over
baseline, from three contributions of MegaPipe.

5.1 Microbenchmarks

The purpose of the microbenchmark results is three-fold.
First, utilization of the same benchmark strategy as in §2
allows for direct evaluation of the low-level limitations we
previously highlighted. Figure 1 shows the performance
of MegaPipe measured for the same experiments. Sec-
ond, these microbenchmarks give us the opportunity to
measure an upper-bound on performance, as the mini-
mal benchmark program effectively rules out any com-
plex effects from application-specific behaviors. Third,
microbenchmarks allow us to illuminate the performance
contributions of each of MegaPipe’s individual design
components.

We begin with the impact of MegaPipe on multi-core
scalability. Figure 3 provides a side-by-side comparison
of parallel speedup (compared to the single core case of
each) for a variety of transaction lengths. The baseline
case on the left clearly shows that the scalability highly
depends on the length of connections. For short connec-
tions, the throughput stagnates as core count grows due to
the serialization at the shared accept queue, then suddenly
collapses with more cores. We attribute the performance
collapse to increased cache congestion and non-scalable
locks [21]; note that the connection establishment process
happens more frequently with short flows in our test, in-
creasing the level of contention.

In contrast, the throughput of MegaPipe scales almost
linearly regardless of connection length, showing speedup
of 6.4 (for single-transaction connections) or higher. This
improved scaling behavior of MegaPipe is mostly from
the multi-core related optimizations techniques, namely
partitioning and lwsocket. We observed similar speedup
without batching, which enhances per-core throughput.

In Table 3, we present the incremental improvements
(in percent over baseline) that Partitioning (P), Batching
(B), and lwsocket (L) contribute to overall throughput,
by accumulating each technique in that order. In this ex-
periment, we used all eight cores, with 64 B messages
(1 KiB messages yielded similar results). Both partition-
ing and lwsocket significantly improve the throughput of
short connections, and their performance gain diminishes
for longer connections since the both techniques act only
at the connection establishment stage. For longer connec-
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Figure 4: Relative performance improvement for varying mes-
sage sizes over a range of CPU cores.
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Figure 5: memcached throughput comparison with eight cores,
by varying the number of requests per connection. ∞ indicates
persistent connections. Lines with "X" markers (-FL) represent
fine-grained-lock-only versions.

tions (not shown in the table), the gain from batching
converged around 15%. Note that the case with partition-
ing alone (+P in the table) can be seen as sockets with
Affinity-Accept [33], as the both address the shared ac-
cept queue and connection affinity issues. lwsocket further
contributes the performance of short connections, helping
to achieve near-linear scalability as shown in Figure 3(b).

Lastly, we examine how the improvement changes
by varying message sizes. Figure 4 depicts the relative
throughput improvement, measured with 10-transaction
connections. For the single-core case, where the improve-
ment comes mostly from batching, MegaPipe outperforms
the baseline case by 15–33%, showing higher effective-
ness for small (≤ 1 KiB) messages. The improvement
goes higher as we have five or more cores, since the base-
line case experiences more expensive off-chip cache and
remote memory access, while MegaPipe effectively miti-
gates them with partitioning and lwsocket. The degrada-
tion of relative improvement from large messages with
many cores reflects that the server was able to saturate the
10 G link. MegaPipe saturated the link with seven, five,
and three cores for 1, 2, and 4 KiB messages, respectively.
The baseline Linux saturated the link with seven and three
cores for 2 and 4 KiB messages, respectively.
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5.2 Macrobenchmark: memcached
We perform application-level macrobenchmarks of mem-
cached, comparing the baseline performance to that of
memcached adapted for MegaPipe as previously de-
scribed. For baseline measurements, we used a patched6

version of the stock memcached 1.4.13 release.
We used the memaslap [12] tool from libmemcached

1.0.6 to perform the benchmarks. We patched memaslap

to accept a parameter designating the maximum number
of requests to issue for a given TCP connection (upon
which it closes the connection and reconnects to the
server). Note that the typical usage of memcached is to
use persistent connections to servers or UDP sockets, so
the performance result from short connections may not be
representative of memcached; rather, it should be inter-
preted as what-if scenarios for event-driven server appli-
cations with non-persistent connections.

The key-value workload used during our tests is the de-
fault memaslap workload: 64 B keys, 1 KiB values, and a
get/set ratio of 9:1. For these benchmarks, each of three
client machines established 256 concurrent connections
to the server. On the server side, we set the memory size
to 4 GiB. We also set the initial hash table size to 222

(enough for 4 GiB memory with 1 KiB objects), so that
the server would not exhibit performance fluctuations due
to dynamic hash table expansion during the experiments.

Figure 5 compares the throughput between the baseline
and MegaPipe versions of memcached (we discuss the “-
FL” versions below), measured with all eight cores. We
can see that MegaPipe greatly improves the throughput
for short connections, mostly due to partitioning and lw-
socket as we confirmed with the microbenchmark. How-
ever, the improvement quickly diminishes for longer con-
nections, and for persistent connections, MegaPipe does
not improve the throughput at all. Since the MegaPipe
case shows about 16% higher throughput for the single-
core case (not shown in the graph), it is clear that there is
a performance-limiting bottleneck for the multi-core case.
Profiling reveals that spin-lock contention takes roughly
50% of CPU cycles of the eight cores, highly limiting the
scalability.

In memcached, normal get/set operations involve two
locks: item_locks and a global lock cache_lock. The
fine-grained item_locks (the number is dynamic, 8,192
locks on eight cores) keep the consistency of the object
store from concurrent accesses by worker threads. On the
other hand, the global cache_lock ensures that the hash
table expansion process by the maintenance thread does
not interfere with worker threads. While this global lock

6We discovered a performance bug in the stock memcached release
as a consequence of unfairness towards servicing new connections, and
we corrected this fairness bug.
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Figure 6: 50th and 99th percentile memcached latency.

is inherently not scalable, it is unnecessary for our experi-
ments since we configured the hash table expansion to not
happen by giving a sufficiently large initial size.

We conducted experiments to see what would happen
if we rule out the global lock, thus relying on the fine-
grained locks (item_locks) only. We provide the re-
sults (with the suffix “-FL”) also in Figure 5. Without
the global lock, the both MegaPipe and baseline cases
perform much better for long or persistent connections.
For the persistent connection case, batching improved the
throughput by 15% (note that only batching among tech-
niques in §3 affects the performance of persistent con-
nections). We can conclude two things from these exper-
iments. First, MegaPipe improves the throughput of ap-
plications with short flows, and the improvement is fairly
insensitive to the scalability of applications themselves.
Second, MegaPipe might not be effective for poorly scal-
able applications, especially with long connections.

Lastly, we discuss how MegaPipe affects the latency
of memcached. One potential concern with latency is that
MegaPipe may add additional delay due to batching of I/O
commands and notification events. To study the impact of
MegaPipe on latency, we measured median and tail (99th
percentile) latency observed by the clients, with varying
numbers of persistent connections, and plotted these re-
sults in Figure 6. The results show that MegaPipe does
not adversely affect the median latency. Interestingly, for
the tail latency, MegaPipe slightly increases it with low
concurrency (between 72–264) but greatly reduces it with
high concurrency (≥ 768). We do not fully understand
these tail behaviors yet. One likely explanation for the
latter is that batching becomes more effective with high
concurrency; since that batching exploits parallelism from
independent connections, high concurrency yields larger
batch sizes.

In this paper, we conduct all experiments with the in-
terrupt coalescing feature of the NIC. We briefly describe
the impact of disabling it, to investigate if MegaPipe fa-
vorably or adversely interfere with interrupt coalescing.
When disabled, the server yielded up to 50μs (median)
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Figure 7: Evaluation of nginx throughput for the (a) SpecWeb, (b) Yahoo, and (c) Yahoo/2 workloads.

and 200μs (tail) lower latency with low concurrency (thus
underloaded). On the other hand, beyond near saturation
point, disabling interrupt coalescing incurred significantly
higher latency due to about 30% maximum throughput
degradation, which causes high queueing delay. We ob-
served these behaviors for both MegaPipe and baseline;
we could not find any MegaPipe-specific behavior with
interrupt coalescing in our experiments.

5.3 Macrobenchmark: nginx

Unlike memcached, the architecture of nginx is highly
scalable on multi-core servers. Each worker process has
an independent address space, and nothing is shared by
the workers, so the performance-critical path is com-
pletely lockless. The only potential factor that limits scal-
ability is the interface between the kernel and user, and
we examine how MegaPipe improves the performance of
nginx with such characteristics.

For the nginx HTTP benchmark, we conduct experi-
ments with three workloads with static content, namely
SpecWeb, Yahoo, and Yahoo/2. For all workloads, we
configured nginx to serve files from memory rather
than disks, to avoid disks being a bottleneck. We used
weighttp7 as a workload generator, and we modified it to
support variable number of requests per connection.

SpecWeb: We test the same HTTP workload used in
Affinity-Accept [33]. In this workload, each client con-
nection initiates six HTTP requests. The content size
ranges from 30 to 5,670 B (704 B on average), which is
adopted from the static file set of SpecWeb 2009 Support
Workload [9].

Yahoo: We used the HTTP trace collected from the Ya-
hoo! CDN [13]. In this workload, the number of HTTP
requests per connection ranges between 1 and 1,597. The
distribution is heavily skewed towards short connections
(98% of connections have ten or less requests, 2.3 on av-
erage), following the Zipf-like distribution. Content sizes
range between 1 B and 253 MiB (12.5 KiB on average).
HTTP responses larger than 60 KiB contribute roughly

7http://redmine.lighttpd.net/projects/weighttp/wiki

50% of the total traffic.

Yahoo/2: Due to the large object size of the Yahoo work-
load, MegaPipe with only five cores saturates the two 10G
links we used. For the Yahoo/2 workload, we change the
size of all files by half, to avoid the link bottleneck and
observe the multi-core scalability behavior more clearly.

Web servers can be seen as one of the most promising
applications of MegaPipe, since typical HTTP connec-
tions are short and carry small messages [13]. We present
the measurement result in Figure 7 for each workload.
For all three workloads, MegaPipe significantly improves
the performance of both single-core and multi-core cases.
MegaPipe with the Yahoo/2 workload, for instance, im-
proves the performance by 47% (single core) and 75%
(eight cores), with a better parallel speedup (from 5.4
to 6.5) with eight cores. The small difference of im-
provement between the Yahoo and Yahoo/2 cases, both
of which have the same connection length, shows that
MegaPipe is more beneficial with small message sizes.

6 Related Work
Scaling with Concurrency: Stateless event multiplexing
APIs, such as select() or poll(), scale poorly as the
number of concurrent connections grows since applica-
tions must declare the entire interest set of file descrip-
tors to the kernel repeatedly. Banga et al. address this is-
sue by introducing stateful interest sets with incremental
updates [16], and we follow the same approach in this
work with mp_(un)register(). The idea was realized
with with epoll [8] in Linux (also used as the baseline
in our evaluation) and kqueue [29] in FreeBSD. Note that
this scalability issue in event delivery is orthogonal to the
other scalability issue in the kernel: VFS overhead, which
is addressed by lwsocket in MegaPipe.

Asynchronous I/O: Like MegaPipe, Lazy Asynchronous
I/O (LAIO) [22] provides an interface with completion
notifications, based on “continuation”. LAIO achieves
low overhead by exploiting the fact that most I/O opera-
tions do not block. MegaPipe adopts this idea, by process-
ing non-blocking I/O operations immediately as explained
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in §4.1.
POSIX AIO defines functions for asynchronous I/O in

UNIX [6]. POSIX AIO is not particularly designed for
sockets, but rather, general files. For instance, it does
not have an equivalent of accept() or shutdown().
Interestingly, it also supports a form of I/O batching:
lio_listio() for AIO commands and aio_suspend()

for their completion notifications. This batching must be
explicitly arranged by programmers, while MegaPipe sup-
ports transparent batching.

Event Completion Framework [1] in Solaris and
kqueue [29] in BSD expose similar interfaces (comple-
tion notification through a completion port) to MegaPipe
(through a channel), when they are used in conjunction
with POSIX AIO. These APIs associate individual AIO
operations, not handles, with a channel to be notified. In
contrast, a MegaPipe handle is a member of a particular
channel for explicit partitioning between CPU cores. Win-
dows IOCP [10] also has the concept of completion port
and membership of handles. In IOCP, I/O commands are
not batched, and handles are still shared by all CPU cores,
rather than partitioned as lwsockets.

System Call Batching: While MegaPipe’s batching was
inspired by FlexSC [35, 36], the main focus of MegaPipe
is I/O, not general system calls. FlexSC batches syn-
chronous system call requests via asynchronous channels
(syscall pages), while MegaPipe batches asynchronous
I/O requests via synchronous channels (with traditional
exception-based system calls). Loose coupling between
system call invocation and its execution in FlexSC may
lead poor cache locality on multi-core systems; for exam-
ple, the send() system call invoked from one core may be
executed on another, inducing expensive cache migration
during the copy of the message buffer from user to kernel
space. Compared with FlexSC, MegaPipe explicitly par-
titions cores to make sure that all processing of a flow is
contained within a single core.

netmap [34] extensively use batching to amortize the
cost of system calls, for high-performance, user-level
packet I/O. MegaPipe follows the same approach, but its
focus is generic I/O rather than raw sockets for low-level
packet I/O.

Kernel-Level Network Applications: Some network ap-
plications are partly implemented in the kernel, tightly
coupling performance-critical sections to the TCP/IP
stack [25]. While this improves performance, it comes at a
price of limited security, reliability, programmability, and
portability. MegaPipe gives user applications lightweight
mechanisms to interact with the TCP/IP stack for similar
performance advantages, while retaining the benefits of
user-level programming.

Multi-Core Scalability: Past research has shown that par-
titioning cores is critical for linear scalability of network
I/O on multi-core systems [19,20,33,38]. The main ideas
are to maintain flow affinity and minimize unnecessary
sharing between cores. In §3.4.1, we addressed the simi-
larities and differences between Affinity-Accept [33] and
MegaPipe. In [20], the authors address the scalability is-
sues in VFS, namely inode and dentry, in the general con-
text. We showed in §3.4.2 that the VFS overhead can be
completely bypassed for network sockets in most cases.

The Chronos [26] work explores the case of direct cou-
pling between NIC queues and application threads, in the
context of multi-queue NIC and multi-core CPU envi-
ronments. Unlike MegaPipe, Chronos bypasses the ker-
nel, exposing NIC queues directly to user-space memory.
While this does avoid in-kernel latency/scalability issues,
it also loses the generality of TCP connection handling
which is traditionally provided by the kernel.

Similarities in Abstraction: Common Communication
Interface (CCI) [15] defines a portable interface to sup-
port various transports and network technologies, such as
Infiniband and Cray’s Gemini. While CCI and MegaPipe
have different contexts in mind (user-level message-
passing in HPC vs. general sockets via the kernel net-
work stack), both have very similar interfaces. For ex-
ample, CCI provides the endpoint abstraction as a chan-
nel between a virtual network instance and an applica-
tion. Asynchronous I/O commands and notifications are
passed through the channel with similar API semantics
(e.g., cci_get_event()/cci_send() corresponding to
mp_dispatch()/mp_write()).

The channel abstraction of MegaPipe shares some sim-
ilarities with Mach port [11] and other IPC mechanisms
in microkernel designs, as it forms queues for typed mes-
sages (I/O commands and notifications in MegaPipe) be-
tween subsystems. Especially, Barrelfish [17] leverages
message passing (rather than sharing) based on event-
driven programming model to solve scalability issues,
while its focus is mostly on inter-core communication
rather than strict intra-core communication in MegaPipe.

7 Conclusion
Message-oriented network workloads, where connections
are short and/or message sizes are small, are CPU-
intensive and scale poorly on multi-core systems with the
BSD Socket API. In this paper, we introduced MegaPipe,
a new programming interface for high-performance net-
working I/O. MegaPipe exploits many performance opti-
mization opportunities that were previously hindered by
existing network API semantics, while being still sim-
ple and applicable to existing event-driven servers with
moderate efforts. Evaluation through microbenchmarks,
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memcached, and nginx showed significant improvements,
in terms of both single-core performance and parallel
speedup on an eight-core system.
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