
ClickNP: Highly Flexible and High Performance
Network Processing with Reconfigurable Hardware

Bojie Li§† Kun Tan† Layong (Larry) Luo‡ Yanqing Peng•† Renqian Luo§†

Ningyi Xu† Yongqiang Xiong† Peng Cheng† Enhong Chen§
†Microsoft Research §USTC ‡Microsoft •SJTU

ABSTRACT
Highly flexible software network functions (NFs) are cru-
cial components to enable multi-tenancy in the clouds. How-
ever, software packet processing on a commodity server has
limited capacity and induces high latency. While software
NFs could scale out using more servers, doing so adds sig-
nificant cost. This paper focuses on accelerating NFs with
programmable hardware, i.e., FPGA, which is now a ma-
ture technology and inexpensive for datacenters. However,
FPGA is predominately programmed using low-level hard-
ware description languages (HDLs), which are hard to code
and difficult to debug. More importantly, HDLs are almost
inaccessible for most software programmers. This paper presents
ClickNP, a FPGA-accelerated platform for highly flexible
and high-performance NFs with commodity servers. ClickNP
is highly flexible as it is completely programmable using
high-level C-like languages, and exposes a modular program-
ming abstraction that resembles Click Modular Router. ClickNP
is also high performance. Our prototype NFs show that they
can process traffic at up to 200 million packets per second
with ultra-low latency (< 2µs). Compared to existing soft-
ware counterparts, with FPGA, ClickNP improves through-
put by 10x, while reducing latency by 10x. To the best of
our knowledge, ClickNP is the first FPGA-accelerated plat-
form for NFs, written completely in high-level language and
achieving 40 Gbps line rate at any packet size.

CCS Concepts
•Networks → Middle boxes / network appliances; Data
center networks; •Hardware → Hardware-software code-
sign;

Keywords
Network Function Virtualization; Compiler; Reconfigurable
Hardware; FPGA

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22–26, 2016, Florianopolis, Brazil
c© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934897

1. INTRODUCTION
Modern multi-tenant datacenters provide shared infrastruc-

ture for hosting many different types of services from differ-
ent customers (i.e., tenants) at a low cost. To ensure secu-
rity and performance isolation, each tenant is deployed in
a virtualized network environment. Flexible network func-
tions (NFs) are required for datacenter operators to enforce
isolation while simultaneously guaranteeing Service Level
Agreements (SLAs).

Conventional hardware-based network appliances are not
flexible, and almost all existing cloud providers, e.g., Mi-
crosoft, Amazon and VMWare, have been deploying software-
based NFs on servers to maximize the flexibility [23, 30].
However, software NFs have two fundamental limitations –
both stem from the nature of software packet processing.
First, processing packets in software has limited capacity.
Existing software NFs usually require multiple cores to achieve
10 Gbps rate [33, 43]. But the latest network links have
scaled up to 40∼100 Gbps [11]. Although one could add
more cores in a server, doing so adds significant cost, not
only in terms of capital expense, but also more operational
expense as they are burning significantly more energy. Sec-
ond, processing packets in software incurs large, and highly
variable latency. This latency may range from tens of mi-
crosecond to milliseconds [22,33,39]. For many low latency
applications (e.g., stock trading), this inflated latency is un-
acceptable.

To overcome the limitations of software packet processing
while retaining flexibility, recent work has proposed accel-
erating NFs using Graphics Processing Units (GPUs) [26],
network processors (NPs) [2, 5], or reconfigurable hardware
(i.e., Field Programmable Gate Arrays, or FPGAs) [24, 36,
42]. Compared to GPU, FPGA is more power-efficient [19,
28]. Compared to specialized NPs, FPGA is more versatile
as it can be virtually reconfigured with any hardware logic
for any service. Finally, FPGAs are inexpensive and being
deployed at scale in datacenters [24, 40].

In this work, we explore the opportunity to use FPGA to
accelerate software NFs in datacenters. The main challenge
to use FPGA as an accelerator is programmability. Conven-
tionally, FPGAs are programmed with hardware description
languages (HDLs), such as Verilog and VHDL, which ex-
pose only low level building blocks like gates, registers, mul-
tiplexers and clocks. While the programmer can manually

tune the logic to achieve maximum performance, the pro-
gramming complexity is huge, resulting in low productivity
and debugging difficulties. Indeed, the lack of programma-
bility of FPGA has kept the large community of software
programmers away from this technology for years [15].

This paper presents ClickNP, an FPGA-accelerated plat-
form for highly flexible and high-performance NF process-
ing on commodity servers. ClickNP addresses the program-
ming challenges of FPGA in three steps. First, ClickNP
provides a modular architecture, resembling the well-known
Click model [29], where a complex network function is com-
posed using simple, well-defined elements 1. Second, ClickNP
elements are written with a high-level C-like language and
are cross-platform. ClickNP elements can be compiled into
binaries on CPU or low-level hardware description language
(HDL) for FPGAs, by leveraging commercial high-level syn-
thesis (HLS) tools [1,6,9]. Finally, we develop a high-performance
PCIE I/O channel that provides high-throughput and low la-
tency communications between elements running on CPU
and FPGA. This PCIE I/O channel not only enables joint
CPU-FPGA processing – allowing programmers to partition
their processing freely, but also is of great help for debug-
ging, as a programmer may easily run an element in question
on the host and use familiar software tools to diagnose.

ClickNP employs a set of optimization techniques to ef-
fectively utilize the massive parallelisms in FPGA. First of
all, ClickNP organizes each element into a logic block in
FPGA and connects them with first-in-first-out (FIFO) buffers.
Therefore, all these element blocks can run in full parallel.
For each element, the processing function is carefully writ-
ten to minimize the dependency among operations, which
allows the HLS tools to generate maximum parallel logics.
Further, we develop delayed write and memory scattering
techniques to address the read-write dependency and pseudo-
memory dependency, which cannot be resolved by existing
HLS tools. Finally, we carefully balance the operations in
different stages and match their processing speed, so that
the overall throughput of pipelines is maximized. With all
these optimizations, ClickNP achieves high packet process-
ing throughput up to 200 million packets per second 2, with
ultra-low latency (< 2µs for any packet size in most appli-
cations). This is about a 10x and 2.5x throughput gain, com-
pared to state-of-the-art software NFs on CPU and CPU with
GPU acceleration [26], while reducing the latency by 10x
and 100x, respectively.

We have implemented the ClickNP tool-chain, which can
integrate with various commercial HLS tools [1,9]. We have
implemented about 100 common elements, 20% of which
are re-factored straightforwardly from Click. We use these
elements to build five demonstration NFs: (1) a high-speed
traffic capture and generator, (2) a firewall supporting both
exact and wildcard matching, (3) an IPSec gateway, (4) a
Layer-4 load balancer that can handle 32 million concur-
rent flows, and (5) a pFabric scheduler [12] that performs
1This is also where our system name, Click Network Proces-
sor, comes from.
2The actual throughput of a ClickNP NF may be bound by
the Ethernet port data rate.

FPGA

DRAM

Ethernet
Port

Ethernet
Port

PCIe

Figure 1: A logic diagram of a FPGA board.

strict priority flow scheduling with 4-giga priority classes.
We evaluate these network functions on a testbed with Dell
servers and Altera Stratix V FPGA boards [40]. Our re-
sults show that all of these NFs can be greatly accelerated
by FPGA and saturate the line rate of 40Gbps at any packet
size with very low latency and neglectable CPU overhead.

In summary, the contributions of this paper are: (1) the
design and implementation of ClickNP language and tool-
chain; (2) the design and implementation of high-performance
packet processing modules that are running efficiently on
FPGA; (3) the design and evaluation of five FPGA-accelerated
NFs. To the best of our knowledge, ClickNP is the first
FPGA-accelerated packet processing platform for general net-
work functions, written completely in high-level language
and achieving a 40 Gbps line rate.

2. BACKGROUND

2.1 FPGA architecture
As the name indicates, FPGA is a sea of gates. The basic

building block of FPGA is logic element (LE), which con-
tains a Look-up Table (LUT) and a few registers. The LUT
can be programmed to compute any combinational logic and
registers are used to store states. Besides basic LEs, FPGA
also contains Block RAMs (BRAMs) to store data, and Dig-
ital Signal Processing (DSP) components for complex arith-
metic operations. Normally, FPGAs are attached to a PC
through a PCIe add-in board, which may also contain a DRAM
of multi-giga bytes and other communication interfaces, e.g.,
10G/40G Ethernet ports. Figure 1 shows a logic diagram of
a FPGA board.

Compared to CPU or GPU, FPGAs usually have a much
lower clock frequency and a smaller memory bandwidth.
For example, typical clock frequency of a FPGA is about
200MHz, more than an order of magnitude slower than CPU
(at 2∼3 GHz). Similarly, the bandwidth to a single Block
memory or external DRAM of FPGA is usually 2∼10 GBps,
while the memory bandwidth is about 40 GBps of Intel XEON
CPU and 100 GBps for a GPU. However, the CPU or GPU
have only limited cores, which limits parallelism. FPGAs
have a massive amount of parallelism built-in. Modern FP-
GAs may have millions of LEs, hundreds K-bit registers,
tens of M-bits of BRAM, and thousands of DSP blocks. In
theory, each of them can work in parallel. Therefore, there
could be thousands of parallel “cores” running simultane-
ously inside a FPGA chip. Although the bandwidth of a sin-
gle BRAM may be limited, if we access the thousands of
BRAMs in parallel, the aggregate memory bandwidth can be

multiple TBps! Therefore, to achieve high performance, a
programmer must fully utilize this massive parallelism.

Conventionally, FPGAs are programmed using HDLs like
Verilog and VHDL. These languages are too low level, hard
to learn and complex to program. As a consequence, the
large community of software programmers has stayed away
from FPGA for years [15]. To ease this, many high level
synthesis (HLS) tools/systems have been developed in both
industry and academia that try to convert a program in high
level language (predominately C) into HDLs. However, as
we will show in the next subsection, none of them is suitable
for network function processing, which is the focus of this
work.

2.2 Programming FPGA for NFs
Our goal is to build a versatile, high performance network

function platform with FPGA-acceleration. Such a platform
should satisfy the following requirements.

Flexibility. The platform should be fully programmed using
high-level languages. Developers program with high-level
abstractions and familiar tools, and have similar program-
ming experience as if programming on a multi-core proces-
sor. We believe this is a necessary condition for FPGA to be
accessible to most software programmers.

Modularized. We should support a modular architecture
for packet processing. Previous experiences on virtualized
NFs have demonstrated that a right modular architecture can
well capture many common functionalities in packet pro-
cessing [29, 33], making them easy to reuse in various NFs.

High performance and low latency. NFs in datacenters
should handle a large amount of packets flowing at the line-
rates of 40/100 Gbps with ultra-low latency. Previous work
has shown [44] that even a few hundred microseconds of la-
tency added by NFs would have negative impacts on service
experience.

Support joint CPU/FPGA packet processing. We’d say
FPGA is no panacea. As inferred from the FPGA architec-
ture discussed earlier in §2.1, not all tasks are suitable for
FPGA. For example, algorithms that are naturally sequential
and processing that has very large memory footprint with low
locality, should process better in CPU. Additionally, FPGA
has a strict area constraint. That means you cannot fit an arbi-
trarily large logic into a chip. Dynamically swapping FPGA
configurations without data plane interruption is very diffi-
cult, as the reconfiguration time may take seconds to min-
utes, depending on the FPGA’s size. Therefore, we should
support fine-grained processing separation between CPU and
FPGA. This requires high-performance communication be-
tween CPU and FPGA.

No of existing high level programming tools for FPGA
satisfy all aforementioned requirements. Most HLS tools,
e.g., Vivado HLS [9], are only auxiliary tools for HDL tool
chains. Instead of directly compiling a program into FPGA
images, these tools generate only hardware modules, i.e., IP
cores, which must be manually embedded in a HDL project
and connected to other HDL modules – a mission impossible

Catapult shell

ClickNP role
FPGA

Host Catapult PCIe Driver

ClickNP library

ClickNP host process

Mgr thrd Worker thrd

ClickNP
elements

ClickNP
script

ClickNP
host mgr

ClickNP compiler

HLS specific libs

Commercial HLS
tool-chain

HLS specific runtime

PCIe I/O channel

Figure 2: The architecture of ClickNP.

for most software programmers.
Altera OpenCL, however, may directly compile an OpenCL

program to FPGA [1]. However, the OpenCL programming
model is directly derived from GPU programming and is not
modularized for packet processing. Further, OpenCL does
not support joint packet processing between CPU and FPGA
very well: First, communication between a host program
and a kernel in FPGA must always go through the onboard
DDR memory. This adds non-trivial latency and also causes
the on-board memory a bottleneck. Second, OpenCL kernel
functions are called from the host program. Before a ker-
nel terminates, the host program cannot control the kernel
behavior, e.g. setting new parameters, nor reading any ker-
nel state. But NFs face a continuous stream of packets and
should be always running.

Click2NetFPGA [41] provides a modular architecture by
directly compiling a Click modular router [29] program into
FPGA. However, the performance of [41] is much lower (two
orders of magnitude) than what we report in this paper, as
there are several bottlenecks in their system design (e.g., mem-
ory and packet I/O) and they also miss several important op-
timizations to ensure fully pipelined processing (as discussed
in §4). Additionally, [41] does not support FPGA/CPU joint
processing and thus unable to update configuration or read
states while data plane is running.

In the following, we will present ClickNP, a novel FPGA-
accelerated network function platform that satisfies all afore-
mentioned four requirements.

3. ARCHITECTURE

3.1 System architecture
Figure 2 shows the architecture of ClickNP. ClickNP builds

on the Catapult Shell architecture [40]. The shell contains
many reusable bits of logic that are common for all applica-
tions and abstracts them into a set of well-defined interfaces,
e.g., PCIe, Direct Memory Access (DMA), DRAM Mem-
ory Manage Unit (MMU), and Ethernet MAC. The ClickNP
FPGA program is synthesized as a Catapult role. However,
since ClickNP relies on commodity HLS tool-chains to gen-
erate FPGA HDL, and different tools may generate their own
(and different) interfaces for the resources managed by the
shell, we need a shim layer, called HLS-specific runtime, to

perform translations between HLS specific interfaces to the
shell interfaces.

A ClickNP host process communicates with the ClickNP
role through the ClickNP library, which further relies on the
services in Catapult PCIe driver to interact with FPGA hard-
ware. The ClickNP library implements two important func-
tions: (1) It exposes a PCIe channel API to achieve high-
speed and low latency communications between the ClickNP
host process and the role; (2) It calls several HLS specific li-
braries to pass initial parameters to the modules in the role,
as well as control the start/stop/reset of these modules. The
ClickNP host process has one manager thread and zero or
multiple worker threads. The manager thread loads the FPGA
image into the hardware, starts worker threads, initializes
ClickNP elements in both FPGA and CPU based on the con-
figuration, and controls their behaviors by sending signals to
elements at runtime. Each worker thread may process one or
more modules if they are assigned to CPU.

3.2 ClickNP programming

3.2.1 Abstraction
ClickNP provides a modular architecture and the basic

processing module is called an element. A ClickNP element
has the following properties:

• Local states. Each element can define a set of local
variables that are only accessible inside the element.

• Input and output ports. An element can have any num-
ber of input or output ports.

• Handler functions. An element has three handler func-
tions: (1) an initialization handler, which is called once
when the element starts, (2) a processing handler, which
is continuously called to check input ports and process
available data, and (3) a signal handler, which receives
and processes the commands (signals) from the man-
ager thread in the host program.

An output port of an element can connect to an input port
of another element through a channel, as shown in Figure 3(a).
In ClickNP, a channel is basically a FIFO buffer that is writ-
ten to one end and read from the other end. The data unit
of the read/write operations to a channel is called flit, which
has a fixed size of 64 bytes. The format of a flit is shown in
Figure 3(b). Each flit contains a header for meta-data and a
payload of 32 bytes. A large piece of data, e.g., a full-sized
packet, is broken into multiple flits, when flowing among
ClickNP elements. The first flit is marked with sop (start of
packet), and the last flit is marked with eop (end of packet).
If the size of the data piece is not 32, the pad field of the
last flit indicates how many bytes have been padded to the
payload. We note that breaking large data into flits not only
reduces latency, but also potentially increases parallelism as
different flits of a packet may be processed at different ele-
ments simultaneously. Finally, to fulfill a network function,
multiple ClickNP elements can be interconnected to form a
directed processing graph, which is called a ClickNP config-
uration.

(a)

(b)
Figure 3: (a) Two ClickNP elements are connected
through a channel. (b) The format of a flit.

Clearly, the ClickNP programming abstraction largely re-
sembles Click software router [29]. However, there are three
fundamental differences which make ClickNP more suitable
for FPGA implementation: (1) In Click, edges between el-
ements are C++ function calls and a queue element is re-
quired to store packets. However, in ClickNP, an edge ac-
tually represents a FIFO buffer that can hold actual data.
Additionally, ClickNP channels break the data dependency
among elements and allow them to run in parallel. (2) Un-
like Click, where each input/output port can be either push
or pull, ClickNP has unified these operations: An element
can only write (push) to any output port, while read (pull)
can do so from any input port. (3) While Click allows an el-
ement to directly call methods of another element (via flow-
based router context), in ClickNP, the coordination among
elements is message-based, e.g., a requester sends a request
message to a responder and gets a response via another mes-
sage. Message-based coordination allows more parallelism
and is more efficient in FPGA compared to coordination through
shared memory, where accessing a shared memory location
has to be serialized and would become a bottleneck.

3.2.2 Language
ClickNP elements are alike objects in an object-oriented

language, and can be defined using such languages, i.e., C++.
Unfortunately, many existing HLS tools support only C. To
leverage the commercial HLS tools, we could write a com-
piler that converts a object-oriented language, e.g. C++, to
C. But this effort is non-trivial. In this work, we take an alter-
native path to extend C language to support element declara-
tion. Figure 4(a) shows a code snippet of element Counter,
which simply counts how many packets have passed. An
element is defined by .element keyword, followed by the
element name and the number of input/output ports. The
keyword .state defines the state variables of the element, and
.init, .handler, and .signal specify the initialization, process-
ing, and signal handler functions of the element. A set of
built-in functions are implemented to operate on the input
and output ports, as summarized in Table 1.

Similar to Click, ClickNP also uses a simple script to spec-
ify a configuration of a network function. The configuration
has two parts: declarations and connections, following the
similar syntax of Click language [29]. One thing worth not-
ing is that in ClickNP we can use a keyword host to annotate
an element, which will cause the element to be compiled into
CPU binary and executed on CPU.

Table 1: Built-in operations on ClickNP channels.

uint get_input_port() Get bitmap of all input ports
with available data.

bool test_input_port(uint id) Test the input port indicated by
id.

flit read_input_port(uint id) Read the input port indicated by
id.

flit peek_input_port(uint id) Peek input data from the port
indicated by id.

void set_output_port(uint
id, flit x)

Set a flit to the output port.
The flit is written to the channel
when the handler returns.

ClSignal read_signal() Read a signal from signal port.

void set_signal(ClSignal p) Set an output signal on signal
port.

return (uint bitmap) Return value of .handler speci-
fies a bitmap of input port(s) to
be read on next iteration.

3.2.3 ClickNP tool-chain
The ClickNP tool-chain contains a ClickNP compiler as

the front-end, and a C/C++ compiler (e.g., Visual Studio or
GCC) and an HLS tool (e.g., Altera OpenCL SDK or Xilinx
Vivado HLS) as the back-end. As shown in Figure 2, to write
a ClickNP program, a developer needs to divide her code into
three parts: (1) A set of elements, each of which implements
a conceptually simple operation, (2) A configuration file that
specifies the connectivity among these elements, and (3) A
host manager that initialize each element and control their
behavior during the runtime, e.g., according to the input of
administrators. These three parts of source code are fed into
the ClickNP compiler and translated into intermediate source
files for both host program and FPGA program. The host
program can be directly compiled by a normal C/C++ com-
piler, while the FPGA program is synthesized using commer-
cial HLS tools. Existing commercial HLS tools can deter-
mine a maximum clock frequency of each element through
timing analysis. Then, the clock of a ClickNP processing
graph is constrained by the slowest element in the graph.
Additionally, HLS tools may also generate an optimization
report which shows the dependency among the operations in
an element. An element is fully pipelined if all dependency
is resolved and the element achieves the optimal throughput
by processing one flit in every clock cycle.

4. PARALLELIZING IN FPGA
As discussed in §2.1, it is critical to fully utilize the paral-

lelism inside FPGA in order to speed up processing. ClickNP
exploits FPGA parallelism both at element-level and inside
an element.

4.1 Parallelism across elements
The modular architecture of ClickNP makes it natural to

exploit parallelisms across different elements. The ClickNP
tool-chain maps each element into a hardware block in FPGA.

1 .element Count <1, 1> {
2 .state{
3 ulong count;
4 }
5 .init{
6 count = 0;
7 }
8 .handler{
9 if (get_input_port() != PORT_1) {

10 return (PORT_1);
11 }
12 flit x;
13 x = read_input_port(PORT_1);
14 if (x.fd.sop) count = count + 1;
15 set_output_port(PORT_1, x);
16

17 return (PORT_1);
18 }
19 .signal{
20 ClSignal p;
21 p.Sig.LParam[0] = count;
22 set_signal(p);
23 }
24 }

(a)
1 Count :: cnt @
2 Tee :: tee
3 host PktLogger :: logger
4

5 from_tor -> cnt -> tee [1] -> to_tor
6 tee [2] -> logger

(b)

Figure 4: ClickNP language to write elements and spec-
ify configurations. An element annotated with host key-
word is compiled and executed on the CPU. An element
annotated with “@” is required to receive control signals
from the manager thread. “From_tor” and “to_tor” are
two built-in elements that represent input and output of
an Ethernet port on FPGA. The return value of the han-
dler function specifies a bit-mask of input ports that will
be checked in next round.

These logic blocks are interconnected with FIFO buffers, and
can work completely in parallel. To this end, one can think
of each element in a ClickNP configuration as a tiny, inde-
pendent core with customized logic. Packets flow from one
element to another along a processing pipeline. This type
of parallelism is called pipeline parallelism or task paral-
lelism. Furthermore, if a single processing pipeline does not
have enough processing power, we can duplicate multiple
such pipelines in FPGA and divide data into these pipelines
using a load-balancing element, i.e., exploiting data paral-
lelism. For network traffic, there are both data parallelism (at
packet-level or flow-level) and pipeline parallelism that can
be utilized to speed up processing. ClickNP is very flexible
and can be configured to capture both types of parallelism
with little efforts.

4.2 Parallelism inside element
Unlike CPU, which executes instructions in memory with

limited parallelism, FPGA synthesizes operations into hard-

(a)
1 r = read_input_port (PORT_1);
2 S1: y = mem[r.x]+1;
3 S2: mem[r.x] = y;
4 set_output_port (PORT_1, y);

(b)
1 r = read_input_port (PORT_1);
2 P1: if (r.x == buf_addr) {
3 y_temp = buf_val;
4 } else {
5 y_temp = mem[r.x];
6 }
7 mem[buf_addr] = buf_val;
8 S1: y = y_temp + 1;
9 S2: buf_addr = r.x;

10 buf_val = y;
11 set_output_port (PORT_1, y);

(c)

Figure 5: Illustration of dependency. (a) No dependency.
Sn means a pipeline stage, Dn is a datum. (b) Memory
dependency occurs when states are stored in memory and
need to be updated. (c) Resolve memory dependency us-
ing delayed write.

ware logic, and therefore can be evaluated in parallel without
instruction load overhead. If a datum requires multiple de-
pendent operations in one handler function, HLS tools will
schedule these operations into pipeline stages in a synchro-
nized manner. At every clock, the result of one stage moves
to the next stage, and at the same time, a new datum is in-
puted into this stage, as shown in Figure 5(a). This way,
the handler function can process a datum at every clock cy-
cle and achieve maximum throughput. However, in practice,
this efficient pipeline processing could break under two sit-
uations: (1) there is memory dependency among operations;
and (2) there are unbalanced stages. In the following two
subsections, we will discuss these two issues in details and
present our solutions.

4.2.1 Minimize memory dependency
If two operations access the same memory location, and

at least one of them is write, we call these two operations
depend on each other [18]. Operations with memory depen-
dency cannot be evaluated at the same time, as each memory
access has one cycle latency and the semantic correctness of
the program strongly depends on the order of operations. As
shown in Figure 5(b), S1 and S2 depend on each other: S2
has to be delayed until S1 finishes, and only after S2 finishes
can S1 operate on new input data. Therefore, the function
will take two cycles to process one datum. Memory depen-
dency can be rather complicated for some processing algo-
rithms, but thanks to the modular architecture of ClickNP,

1 struct hash_entry
2 {
3 ulong key;
4 ulong cnt;
5 } A[100];
6

7 .handler {
8 ...
9 idx = hash (h);

10 S1: if (A[idx].key==k)
11 {
12 S2: A[idx].cnt ++;
13 }
14 ...
15 }

(a) (b)

Figure 6: Memory scattering.
most elements perform only simple tasks and the read-write
memory dependency shown in Figure 5(b) is the most com-
mon case we have encountered.

One way to remove this memory dependency is to store
data in registers only. Since registers are fast enough to
perform read, computation and write back within one cy-
cle, there would be no read-write dependency at all. In-
deed, compared to CPU, FPGA has a much larger number
of registers, i.e., 697Kbit for Altera Stratix V, which can be
used whenever possible to reduce memory dependency. The
ClickNP compiler aggressively assigns registers to variables
as long as all accesses to the variable refer to a constant ad-
dress – either the variable is a scalar or an array entry with
constant offset. Certainly, the programmer can use “register”
or “local/global” keywords to explictly instruct the compiler
to place a variable (can also be an array) in register, BRAM
or onboard DDR memory.

For large data, they have to be stored in memory. Fortu-
nately, we can still use a technique called delayed write to
resolve the read-write memory dependency in Figure 5(b).
The core idea is to buffer the new data in a register and delay
the write operation until the next read operation. If the next
read accesses the same location, it will read the value from
the buffer register directly. Otherwise, the read can operate
in parallel with the delayed write operation as they are going
to access different memory locations3. Figure 5(c) shows the
code snippet with delayed write. Since there is no longer
memory dependency in the code, the element can process a
datum in one cycle. By default, ClickNP compiler automat-
ically applies delayed write for an array (generating similar
code as shown in Figure 5(b)).

One subtle issue will occur when using an array of struct
variables. Figure 6(a) shows such an example, where a hash
table is used to maintain a count for every flow. We find S2
will have a memory dependency to S1, although they are ac-
cessing different fields of a struct. The reason is that almost
all current HLS tools will treat a struct array as a single-
dimension array with a large bit-width – equal to the size of
the struct, and use only one arbitrator to control access. We
call this type of memory dependency pseudo dependency, as
physically, the two fields, key and cnt, can be on different
3Most BRAM in FPGA has two ports.

memory locations. To resolve this issue, ClickNP employs
a simple technique called memory scattering, which auto-
matically translates a struct array into several independent
arrays, each for a field in the struct, and assigns them into
different BRAMs (Figure 6(b)). With memory scattering, S1
no longer depends on S2. So the pipeline can be inferred by
HLS tools, and when S2 is still operating, a new datum can
be clocked in and processed by S1. It is worth noting that
memory scattering is only applied for elements in FPGA and
disabled if elements are assigned to run on the host CPU.

We note that the above techniques may not resolve all
memory dependencies. In many cases, it requires program-
mers to re-factor their code or even change the algorithms to
ensure their implementation can be fully pipelined in FPGA.

4.2.2 Balance pipeline stages
Ideally, we require every stage in one processing pipeline

to have the same speed. i.e., processing a datum at one
clock cycle. However, if the process at each stage is unbal-
anced and some stages need more cycles than others, these
fat stages will limit the whole throughput of the pipeline. For
example, in Figure 7(a), S1 is a loop operation. Since each
iteration takes one cycle (S2), the whole loop will need N
cycles to finish, significantly reducing the pipeline through-
put. Figure 7(b) shows another example, which implements a
cache in BRAM for a global table (gmem) in DDR. Although
the “else” branch is seldom hit, it generates a fat stage in the
pipeline (taking hundreds of cycles!), and slows down the
processing greatly.

ClickNP uses two techniques to balance the stages inside a
pipeline. First, we unroll the loop whenever possible. When
unrolled, the loop operation effectively breaks into a sequence
of small operations, each of which can be finished in one cy-
cle. It is worth noting that unrolling a loop will duplicate
the operations in the loop body and thus increase area cost.
Therefore, it may be only applicable to loops with simple
bodies and small number of iterations. In NFs, we find such
small loops are rather common, e.g. calculating checksums,
shifting packet payload and iterating through possible con-
figurations. ClickNP compiler provides the .unroll directive
to unroll a loop. While many HLS tools support loop unroll
for a known number of iterations, ClickNP extends this capa-
bility to unroll a loop whose number of iterations is unknown
but under an upper bound that is specified by programmers.

Second, if we identify that an element has both heavy and
light-weight operations, we try to separate each type of oper-
ations in an individual element. For example, to implement
a cache as shown in Figure 7(b), we move the slow “else”
branch into another element. This way, the fast path and
the slow path would be running asynchronously. If cache
miss is rare, the overall processing speed is dominated by
the fast path. We will return to this point later in §6. Cur-
rently, ClickNP compiler cannot automatically perform such
separation for programmers.

5. IMPLEMENTATION

5.1 ClickNP tool-chain and hardware setup

1 .handler {
2 r = read_input_port (PORT_1);
3 ushort *p = (ushort*) &r.fd.data;
4 S1:for (i = 0; i<N; i++) {
5 S2: sum += p[i];
6 }
7 }

(a)
1 .handler {
2 r = read_input_port (PORT_1);
3 idx = hash (r.x);
4 S1:if (cache[idx].key == r.x) {
5 o = cache[idx].val;
6 S2:} else {
7 o = gmem[r.x];
8 k = cache[idx].key;
9 gmem[k] = cache[idx].val;

10 cache[idx].key = r.x;
11 cache[idx].val = o;
12 }
13 set_output_port (PORT_1, o);
14 }

(b)

Figure 7: Unbalanced pipeline stages.

We have built a ClickNP compiler which serves as the
front-end of the ClickNP tool-chain (§3.2.3). For the host
program, we use Visual C++ as the backend. We further
integrate Altera OpenCL SDK (v15.1) [1] and Xilinx Vi-
vado HLS (v2015.4) [9] as the backend for the FPGA pro-
gram. The ClickNP compiler contains 4,925 lines of C++
code, which parses configuration file and element declara-
tions, performs optimizations in §4, and generates code spe-
cific for each commercial HLS tool. When working with
Altera OpenCL, each ClickNP element is compiled into a
kernel and the connections between elements are translated
into Altera extended channels. When using Xilinx Vivado
HLS, we compile each element into an IP core and use AXI
streams to implement connections between elements. An el-
ement can also be compiled to CPU binary and the man-
ager thread will create one worker thread for each host ele-
ment. Each connection between a host and a FPGA element
is mapped to a slot of the PCIe I/O channel (§5.3).

Our hardware platform is based on Altera Stratix V FPGA
with the Catapult shell [40]. The Catapult shell also contains
an OpenCL specific runtime, so that the ClickNP role can
communicate with the shell through this runtime layer. The
FPGA board has a PCIe Gen2 x8 interface, 4GB onboard
DDR memory and two 40G Ethernet ports. By the time of
writing this paper, we do not get a Xilinx hardware platform.
Therefore, the primary system evaluations are based on the
Altera platform using ClickNP+OpenCL, and we use the re-
ports generated by Vivado HLS, e.g., frequency and area
cost, to understand the performance of ClickNP+Vivado.

5.2 ClickNP element library
We have implemented a ClickNP element library that con-

tains nearly 100 elements. Part of them (20%) are derived
directly from the Click Modular Router, but re-factored us-

Table 2: A selected set of key elements in ClickNP.
Performance Resource (%)

Element Configuration Optimizations Fmax
(MHz)

Peak
Throughput

Speedup
(FPGA/CPU)

Delay
(cycles)

LE BRAM

L4_Parser (A1-5) N/A REG 221.93 113.6 Gbps 31.2x / 41.8x 11 0.8% 0.2%
IPChecksum (A1-4) N/A UL 226.8 116.1 Gbps 33.1x / 55.1x 18 2.3% 1.3%
NVGRE_Encap (A1,4) N/A REG, UL 221.8 113.6 Gbps 35.5x / 42.9x 9 1.5% 0.6%

AES_CTR (A3) 16B block UL 217.0 27.8 Gbps 79.9x / 255x 70 4.0% 23.1%
SHA1 (A3) 64B block MS, UL 220.8 113.0 Gbps 157.5x / 83.1x 105 7.9% 6.6%

CuckooHash (A2) 128K entries MS, UL, DW 209.7 209.7 Mpps 43.6x / 57.5x 38 2.0% 65.5%
HashTCAM (A2) 16 x 1K MS, UL, DW 207.4 207.4 Mpps 155.9x / 696x 48 18.7% 22.0%
LPM_Tree (A2) 16K entries MS, UL, DW 221.8 221.8 Mpps 34.5x / 45.2x 181 4.3% 13.2%
FlowCache (A4) 4-way, 16K MS, DW 105.6 105.6 Mpps 55.8x / 21.5x 27 5.6% 46.9%

SRPrioQueue (A5) 32 Pkts buffer REG, UL 214.5 214.5 Mpps 150.3x / 28.6x 41 2.6% 0.6%
RateLimiter (A1,5) 16K flows MS, DW 141.5 141.5 Mpps 7.0x / 65.3x 14 16.9% 14.1%
Optimization method. REG=Using Registers; MS=Memory Scattering; UL=Unroll Loop; DW=Delay Write.
The Speedup column compares the performance between the optimized version and our earlier implementation without apply-
ing techniques discussed in §4 as well as a CPU implementation.

ing the ClickNP framework. These elements cover a large
range of basic operations of NFs, including packet parsing,
checksum computing, encap/decap, hash tables, longest pre-
fix matching (LPM), rate limiting, cryptographic, and packet
scheduling. Due to the modular architecture of ClickNP,
the code size of each element is modest. The mean line-
of-code (LoC) of an element is 80 and the most complex
element, PacketBuffer, has 196 lines of C code. Table 2
presents a selected set of key elements we have implemented
in ClickNP. Beside element names, we also mark the demon-
stration NFs (A1∼A5, discussed in §6) in which the element
is used. We have heavily applied the optimization techniques
discussed earlier in §4.2 to minimize memory dependency
and balance pipeline stages. We summarize the optimiza-
tion techniques used for each element in the 3rd column. For
the top part of Table 2, the element needs to touch every
byte of a packet. We show the throughput in Gbps. The
elements in the bottom part of the table, however, process
only the packet header (metadata). Therefore, it makes more
sense to measure the throughput using packet per second.
We note that the throughput measured in Table 2 is the max-
imal throughput that the corresponding element can achieve.
When they work in a real NF, other components, e.g. the
Ethernet port, may be the bottleneck. As a reference, we
compare the optimized version to our earlier implementation
on FPGA without applying the techniques discussed in §4 as
well as a CPU implementation. Clearly, after optimization,
all these elements can process packet very efficiently, achiev-
ing 7∼157x speedup compared to our naive FPGA imple-
mentation, and 21∼696x speedup over a software implemen-
tation on one CPU core. This performance gain comes from
the ability to utilize the vast parallelism in FPGA. Consider-
ing the power footprint of FPGA (∼30W) and CPU (∼5W
per core), ClickNP elements are 4∼120x more power effi-
cient than CPU.

We also show the processing latency of each element in
Table 2. As we see, this latency is low: The mean is 0.19µs
and the maximum is merely 0.8µs (LPM_Tree). The last two

columns summarize the resource utilization of each element.
The utilization is normalized to the capacity of the FPGA
chip. We can see most elements use only a small number
of logic elements. This is reasonable as most operations on
packets are simple. HashTCAM and RateLimiter have mod-
erate usage of LEs because these elements have larger arbi-
tration logic. The BRAM usage, however, heavily relies on
configurations of elements. For example, the BRAM usage
grows linearly with the number of entries supported in a flow
table. Overall, our FPGA chip has sufficient capacity to sup-
port a meaningful NF containing a handful elements (§6).

5.3 PCIE I/O channel
As aforementioned, one key property of ClickNP is to sup-

port joint CPU/FPGA processing. We enable this by design-
ing a high-throughput, low latency PCIe I/O channel. We ex-
tend the OpenCL runtime and add a new I/O channel, which
is connected to a PCIe switch in the shell. The PCIe switch
will arbitrate the access between the newly added I/O chan-
nel and other components in the shell, e.g., DDR memory
controller.

We leverage the PCIe slot DMA engine in Catapult shell
[40], which divides a PCIe Gen2 x8 link into 64 logical sub-
channels, i.e., slots. Each slot has a pair of send and receive
buffers for DMA operations. Among 64 slots, 33 are re-
served by Shell and the runtime library to control kernels
and access on-board DDR, one slot is used for passing sig-
nals to ClickNP elements. The remaining 30 slots, however,
are used for data communications among FPGA and CPU
elements. To amortize DMA overhead, we aggressively use
batching. The maximum message size is limited at 64KB.

In FPGA, a special element, called CmdHub, which is
generated automatically by the ClickNP compiler, redirects
the data from different slots to corresponding FPGA ele-
ments using FIFO buffers. CmdHub is also used to distribute
control signals from the manager thread to FPGA elements.
To identify the target element, an element ID is embedded
in the signal message, and CmdHub can read the ID and for-

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

64 256 1K 4K 16K 64K

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Batch Size (Byte)

4 slots PCIe
1 slot PCIe

OpenCL

(a)

10
-1

10
0

10
1

10
2

10
3

10
4

64 256 1K 4K 16K 64K

L
a
te

n
c
y
 (

u
s
)

Batch Size (Byte)

4 slots PCIe
1 slot PCIe

OpenCL

(b)

Figure 8: The performance of the PCIe I/O channel. The
y-axis is in logarithmic scale.

ward the signal message to the corresponding element, again
through FIFO buffers.

Figure 8 shows a benchmark of our PCIe I/O channel with
different number of slots and batch sizes. As a base-line, we
also measure the performance of OpenCL global memory
operations – so far, the only means provided for CPU/FPGA
communication in OpenCL [8]. We can see that the maxi-
mum throughput of a single slot is around 8.4 Gbps. With
4 slots, the aggregate throughput of the PCIe I/O channel
can reach up to 25.6 Gbps. This is the maximum throughput
we can get out of our current FPGA chip due to limitation
of the clock frequency of the DMA engine. However, the
throughput of OpenCL is surprisingly low, less than 1 Gbps.
This is because the global memory API is designed to trans-
fer huge amount of data (multiple GB). This may be suitable
for applications with large data set, but not for network func-
tions that require strong stream processing capability. Sim-
ilarly, Figure 8(b) shows the communication latency. Since
OpenCL is not optimized for stream processing, the OpenCL
latency is as high as 1 ms, usually unacceptable for network
functions. In contrast, the PCIe I/O channel has very low
latency of 1 µs in polling mode (one core repeatedly polls
status register) and 9 µs in interrupt mode (with almost zero
CPU overhead).

6. APPLICATIONS
To evaluate the flexibility of ClickNP, we have created five

common NFs based on ClickNP. All of them can run in our
test-bed processing real-time traffic. Table 3 summarizes the
number of elements included in each network function and
the total LoC, including all elements specification and the
cofiguration files. Our experience also confirms the ClickNP
modular architecture greatly improves the code reuse and
simplifies the construction of new NFs. As shown in Ta-
ble 2, there are many chances to reuse one element in many
applications, e.g., L4_Parser is used in all five NFs in this
paper (A1-5). Each NF may take 1∼2 weeks for one pro-
grammer to develop and debug. We find that the ability of
joint CPU/FPGA processing would also greatly help debug-
ging, as we can move an element in question to CPU, so that
we can easily print logs to track the problem.

A1. Packet generator (PktGen) and capture (PktCap).
PktGen can generate various traffic patterns based on differ-
ent profiles. It can generate different sized flows and sched-
ule them to start at different time, following given distri-
butions. Generated flows can further pass through different

traffic shapers to control the flow rates and their burstiness.
PktCap simply redirects all packets it receives to logger ele-
ments, which are usually located in the host. Since a single
logger cannot fully utilize the PCIe I/O channel capacity, Pk-
tCap has a Receive Side Scaling (RSS) element in FPGA to
distribute packets to multiple loggers based on the hash of
flow 5-tuple. Since our PCIe channel has less capacity than
40G NIC, we add an extractor element that extracts only im-
portant fields of a packet (e.g. 5-tuple, DSCP and VLAN tag
if any) and forwards these fields (total 16B), together with
a timestamp (4B) to the logger element across PCIe. Pkt-
Cap is one example demonstrating the importance of joint
CPU/FPGA processing. Compared to FPGA, CPU has more
memory for buffering and can easily access other storages,
e.g., HDD/SSD drives as in [32], and therefore it makes more
sense to run loggers on CPU.

A2. Openflow firewall (OFW). Our Openflow [34] fire-
wall supports both exact- and wildcard-matching of flows.
The exact-match table is implemented using Cuckoo Hash-
ing [38] and contains 128K entries that match against flow 5-
tuples. The wild-card match is based on TCAM. However, a
naive TCAM implementation with 512 104-bit entries takes
65% logic resource of our FPGA. Instead, we use BRAM-
based TCAM [27]. BRAM-based TCAM breaks search key
into 8-bit keys and use them to address lookup tables, which
trades memory for logic area. A BRAM TCAM with 2K
entries takes 14% logic and 43% BRAM. Additionally, we
design a HashTCAM to leverage the fact that many entries
in flow tables share the same bit-masks. HashTCAM divides
the table space into a number of smaller hash tables, each of
which is associated with a bit-mask. Any incoming packet
will first perform an “and” operation before looking up the
hash table. Each entry in the table is also associated with a
priority. An arbitrator logic is applied to select the matched
entry with the highest priority. HashTCAM has better trade-
off between capability and area cost. A HashTCAM with
16K flow entries and 16 distinct bit-masks (similar to Broad-
com Trident II [10]) takes 19% logic and 22% BRAM. The
manager program always tries to group rules based on their
bit-masks and places groups with most rules into HashT-
CAM. The rest rules, which casnnot fit into any groups in
HashTCAM, are then put into BRAM-based TCAM.

A3. IPSec gateway (IPSecGW). One issue with software
NFs is that the CPU soon becomes a bottleneck when packets
require some computation intensive processing, e.g., IPSec [26].
We have built an IPSec datapath that is able to process IPSec
packets with AES-256-CTR encryption and SHA-1 authen-
tication. As shown in §5.2, a single AES_CTR element can
achieve only 27.8 Gbps throughput. Therefore, we need two
AES_CTR elements to run in parallel to achieve line rate.
SHA-1, however, is tricky. The SHA-1 divides a packet into
smaller data blocks (64B). Although the computation in one
data block can be pipelined, there is a dependency between
successive blocks inside one IP packet – the computation
of the next block cannot start before the previous block has
finished! If we process these data blocks sequentially, the
throughput would be as low as 1.07 Gbps. Fortunately, we

can leverage parallelism among different packets. While the
processing of a data block of the current packet is still going,
we feed a data block of a different packet. Since these two
data blocks do not have dependency, they can be processed in
parallel. To implement this, we design a new element called
reservo (short for reservation station), which buffers up to
64 packets and schedules independent blocks to SHA-1 ele-
ment. After the signature of one packet has been computed,
the reservo element will send it to a next element that ap-
pends SHA-1 HMAC to the packet. There is one more tricky
thing. Although SHA-1 element has a fixed latency, the over-
all latency of a packet is different, i.e., proportional to packet
size. When multiple packets are scheduled in SHA-1 com-
putation, these packets may be out-of-order, e.g., a smaller
packet behind a large packet may finish earlier. To prevent
this, we further design a reorder buffer element after SHA-1
element that stores the out-of-order packets and restore the
original order according to sequence numbers of packets.

A4. L4 load balancer (L4LB). We implement L4LB ac-
cording to multiplexer (MUX) in Ananta [39]. The MUX
server basically looks into the packet header and sees if a
direct address (DIP) has been assigned to the flow. If so,
the packet is forwarded to the server indicated by DIP via a
NVGRE tunnel. Otherwise, the MUX server will call a local
controller to allocate a DIP for the flow. A flow table is
used to record the mapping of flows to their DIPs. To handle
the large traffic volume in datacenters, it requires the L4LB
to support up to 32 million flows in the flow table. Clearly,
such a large flow table cannot fit into the BRAM of FPGA,
and has to be stored in onboard DDR memory. However, ac-
cessing DDR memory is slow. To improve performance, we
create a 4-way associative flow cache in BRAM with 16K
cache lines. The Least Recently Used (LRU) algorithm is
used to replace entries in the flow cache.

In our implementation, an incoming packet first passes a
parser element which extracts the 5-tuple and sends them to
the flow cache element. If the flow is not found in the flow
cache, the packet’s metadata is forwarded to the global flow
table, which reads the full table in DDR. If there is still no
matching entry, the packet is the first packet of a flow and a
request is sent to an DIPAlloc element to allocate a DIP for
the flow according to load balancing policy. After the DIP is
determined, an entry is inserted into the flow table.

After deciding the DIP of a packet, an encapsulation ele-
ment will retrieve the next-hop information, e.g., IP address
and VNET ID, and generate a NVGRE encapsulated packet
accordingly. A flow entry would be invalidated if a FIN
packet is received, or a timeout occurs before receiving any
new packets from the flow.

We put all elements in FPGA except for the DIPAlloc ele-
ment. Since only the first packet of a flow may hit DIPAlloc
and the allocation policy also could be complex, it is more
suitable to run DIPAlloc on CPU, being another example of
joint CPU-FPGA processing.

A5. pFabric flow scheduler. As the last application, we use
ClickNP to implement one recently proposed packet schedul-
ing discipline – pFabric [12]. pFabric scheduling is simple.

It keeps only a shallow buffer (32 packets), and always de-
queues the packet with the highest priority. When the buffer
is full, the packet with the lowest priority is dropped. pFab-
ric is shown to achieve near-optimal flow completion time in
datacenters. In the original paper, the authors proposed using
a binary comparison tree (BCT) to select the packet with the
highest priority. However, while BCT takes only O(log2N)
cycles to compute the highest priority packet, there is a de-
pendency between successive selection processes. It is be-
cause only when the previous selection finishes can we know
the highest priority packet, and then the next selection pro-
cess can be started reliably. This limitation would require
the clock frequency to be at least 300MHz to achieve the line
rate of 40Gbps, which is not possible for our current FPGA
platform. In this paper, we use a different way to implement
pFabric scheduler which is much easier to parallelize. The
scheme is based on shift register priority queue [35]. Entries
are kept in a line of K registers in non-increasing priority
order. When dequeuing, all entries are shifted right and the
head is popped. This takes just 1 cycle. For an enqueue
operation, the metadata of a new packet is forwarded to all
entries. And now, with each entry, a local comparison can
be performed among the packet in the entry, the new packet,
and the packet in the neighboring entry. Since all local com-
parisons can be carried in parallel, the enqueue operation can
also finish in 1 cycle. Enqueue and dequeue operations can
further be parallelized. Therefore, a packet can be processed
in one cycle.

7. EVALUATION

7.1 Testbed and methodology
We evaluate ClickNP in a testbed of 16 Dell R720 servers

(§3.1). For each FPGA board, both Ethernet ports are con-
nected to a Top-of-Rack (ToR) Dell S6000 switch [3]. All
ClickNP NFs are running on a Windows Server 2012 R2. We
compare ClickNP with other state-of-the-art software NFs.
For those NFs running on Linux, we use CentOS 7.2 with
kernel version 3.10. In our test, we use PktGen to generate
testing traffic at different rates with various packet sizes (up
to 56.4 Mpps with 64B packets). To measure the NF process-
ing latency, we embed a generation timestamp in every test-
ing packet. When packets pass the NF, they are looped back
to a PktCap which is located with PktGen in the same FPGA.
Then we can determine the latency by subtracting the gener-
ation timestamp from the receiving time of the packet. The
delay induced by the PktGen and PktCap was pre-calibrated
via direct loop-back (without NFs) and removed from our
data.

7.2 Throughput and latency
OpenFlow firewall. In this experiment, we compare OFW
with Linux firewall as well as Click+DPDK [17]. For Linux,
we use IPSet to handle exact-match rules, while use IPTables
for wildcard rules. As a reference, we also include the perfor-
mance of Dell S6000 switch, which has limited firewall ca-
pability and supports 1.7K wild-card rules. It is worth noting

2
-4

2
-2

2
0

2
2

2
4

2
6

0 128 512 2K 8KP
ro

c
e

s
s
in

g
 R

a
te

 (
M

p
p

s
)

Number of Wildcard Rules

ClickNP
Dell S6000

Click+DPDK
Linux

(a)

 0

 10

 20

 30

 40

 50

20 40 60 80 100

F
o

rw
a

rd
 L

a
te

n
c
y
 (

u
s
)

Load Factor (%)

ClickNP
Dell S6000

Click+DPDK
Linux

415 671 2K 626 68K

(b)

 0

 20

 40

 60

 80

 100

64 128 256 512 1024 1504

F
o

rw
a

rd
 L

a
te

n
c
y
 (

u
s
)

Packet Size (Byte)

ClickNP
Dell S6000

Click+DPDK
Linux

68K 69K 68K 67K 67K 67K

(c)

10
0

10
1

10
2

10
3

10
4

HashTCAM

BRAM TCAM

Dell S
6000

IPTablesR
u

le
 U

p
d

a
te

 L
a

te
n

c
y
 (

u
s
)

(d)

Figure 9: Firewalls. Error bars represents the 5th and 95th percentile.
(a) and (b) Packet size is 64B.

 0.1

 1

 10

 100

64 128 256 512 1024 1504

T
h

ro
u

g
h

p
u
t

(G
b

p
s
)

Packet Size (Byte)

ClickNP StrongSwan

(a)

10
1

10
2

10
3

10
4

20 40 60 80 100

L
a

te
n

c
y
 (

u
s
)

Load Factor (%)

ClickNP StrongSwan

(b)
Figure 10: IPSec gateway.

that the original Click+DPDK [17] does not support Receive
Side Scaling(RSS). In this work, we have fixed this issue and
find when using 4 cores, Click+DPDK already achieves the
best performance. But for Linux, we use as many cores as
possible (up to 8 due to RSS limitation) for best performance.

Figure 9(a) shows packet processing rates of different fire-
walls with different number of wild-card rules. The packet
size is 64B. We can see that both ClickNP and S6000 can
achieve a maximum speed of 56.4 Mpps. Click+DPDK can
achieve about 18 Mpps. Since Click uses a static classifica-
tion tree to implement wildcard-match, the processing speed
does not change with the number of rules inserted. Linux
IPTables has a low processing speed of 2.67 Mpps, and the
speed decreases as the number of rules increases. This is be-
cause IPTables performs linear matching for wild-card rules.

Figure 9(b) shows the processing latency under different
loads with small packets (64B) and 8K rules. Since each
firewall has significantly different capacity, the load factor is
normalized to the maximum processing speed of each sys-
tem. Under all levels of load, FPGA (ClickNP) and ASIC
(S6000) solutions have µs-scale latency (1.23µs for ClickNP
and 0.62µs for S6000) with very low variance (1.26µs for
ClickNP and 0.63µs for S6000 at 95% percentile). However,
the software solutions have much larger delay, and also much
larger variance. For example, with Click+DPDK, when the
load is high, the latency can be as high as 50µs. Figure 9(c)
shows the processing latency with different packet sizes and
8K rules. With software solutions, the latency increases with
the packet size, mainly due to the larger memory to be copied.
In contrast, FPGA and ASIC retain the same latency irre-
spective to the packet size. In all experiments, the CPU usage
of ClickNP OFW is very low (< 5% of a core).

Finally, Figure 9(d) shows rule insertion latency when there
are already 8K rules. Click’s static classification tree re-
quires a prior knowledge of all rules, and generating tree

for 8K rules takes one minute. IPTables rule insertion takes
12ms, which is proportional to the number of existing rules
in the table. Rule insertion in Dell S6000 takes 83.7µs. For
ClickNP, inserting a rule into HashTCAM table takes 6.3∼9.5µs
for 2∼3 PCIe round-trips, while SRAM TCAM table takes
44.9µs on average to update 13 lookup tables. ClickNP data
plane throughput does not degrade during rule insertion. We
conclude that OFW has similar performance as ASIC in packet
processing, but is flexible and reconfigurable.

IPSec gateway. We compare IPSecGW with StrongSwan [7],
using the same cipher suite of AES-256-CTR and SHA1. We
setup one IPSec tunnel and Figure 10(a) shows the through-
put with different packet sizes. With all sizes, IPSecGW
achieves line rates, i.e., 28.8Gbps with 64B packets and 37.8
Gbps with 1500B packets. StrongSwan, however, achieves
only a maximum of 628Mbps, and the throughput decreases
as packets become smaller. This is because with smaller size,
the number of packets needed to be processed increases, and
therefore the system needs to compute more SHA1 signa-
tures. Figure 10(b) shows the latency under different load
factors. Again, IPSecGW yields constant latency of 13µs,
but StrongSwan incurs larger latency with higher variance,
up to 5ms!

L4 load balancer. We compare L4LB with Linux Virtual
Server (LVS) [4]. To stress test the system, we generate
a large number of concurrent UDP flows with 64B pack-
ets, targeting one virtual IP (VIP). Figure 11(a) shows the
processing rates with different number of concurrent flows.
When the number of concurrent flows is less than 8K, L4LB
achieves the line rate of 51.2Mpps. However, when the num-
ber of concurrent flows becomes larger, the processing rate
starts to drop. This is because of flow cache misses in L4LB.
When a flow is missing in the flow cache, L4LB has to ac-
cess the onboard DDR memory, which results in lower per-

 0.01

 0.1

 1

 10

 100

1K 4K 16K 128K 1M 8M 32M

P
ro

c
e
s
s
in

g
 R

a
te

 (
M

p
p
s
)

Concurrent Flows

ClickNP LVS

(a)

10
0

10
1

10
2

10
3

10
4

10
5

1K 10K 100K 1M 10M

L
a

te
n

c
y
 (

u
s
)

Offered Load (pps)

ClickNP LVS

(b)

1K

16K

256K

4M

64M

1K 16K 256K 4M 56M

A
ll
o

c
a

ti
o

n
s
/s

New Connections/s

ClickNP LVS

(c)
Figure 11: L4 Load Balancer.

formance. When there are too many flows, e.g., 32M, cache
miss dominates and for most of the packets, L4LB needs to
have one access to the DDR memory. So the processing rate
reduces to 11Mpps. In any case, the processing rate of LVS
is low. Since LVS associates a VIP to only one CPU core, its
processing rate is bound to 200Kpps.

Figure 11(b) shows the latency under different load con-
ditions. In this experiment, we fix the number of concurrent
flows to 1 million. We can see that L4LB achieves very low
latency of 4µs. LVS, however, incurs around 50µs delay.
This delay goes up quickly when the offered load is higher
than 100Kpps, which exceeds the capacity of LVS.

Finally, Figure 11(c) compares the capability of L4LB and
LVS to accept new flows. In this experiment, we instruct Pk-
tGen to generate as many one-packet tiny flows as possible.
We can see that L4LB can accept up to 10M new flows per
second. Since a single PCIe slot can transfer 16.5M flits per
second, the bottleneck is still DDR access. Our DIPAlloc
element simply allocates DIP in a round-robin manner. For
complex allocation algorithms, the CPU core of DIPAlloc
will be the bottleneck, and the performance can be improved
by duplicating DIPAlloc elements on more CPU cores. For
LVS, due to the limited packet processing capacity, it can
only accept up to 75K new flows per second.

7.3 Resource utilization
In this subsection, we evaluate the resource utilization of

ClickNP NFs. Table 3 summarizes the results. Except for
IPSec gateway which uses most BRAMs to hold coding books,
all other NFs only use moderate resources (5∼50%). There
is still room to accommodate even more complex NFs.

Next, we study the overhead of fine-grained modulariza-
tion of ClickNP. Since every element will generate a logic
block boundary and use only FIFO buffers to communicate
with other blocks, there should be an overhead. To measure
this overhead, we create a simple element that only passes
data from one input port to an output port. The resource uti-
lization of this empty element should well capture the over-
head of modularization. Different HLS tools may use dif-
ferent amount of resources, but all are low, with a min of
0.15% to a max of 0.4%. So we conclude ClickNP incurs
little overhead due to modularization.

Finally, we want to study the efficiency of RTL code gen-
erated by ClickNP, compared to hand-written HDL. To do
so, we use NetFPGA [36] as our reference. We extract the

Table 3: Summary of ClickNP NFs.
Network Function LoC† #Elements LE BRAM

Pkt generator 665 6 16% 12%
Pkt capture 250 11 8% 5%
OpenFlow firewall 538 7 32% 54%
IPSec gateway 695 10 35% 74%
L4 load balancer 860 13 36% 38%
pFabric scheduler 584 7 11% 15%
† Total line of code of all element declarations and
configuration files.

Table 4: Relative area cost compared to NetFPGA.
NetFPGA
Function

LUTs Registers BRAMs
Min / Max Min / Max Min / Max

Input arbiter 2.1x / 3.4x 1.8x / 2.8x 0.9x / 1.3x
Output queue 1.4x / 2.0x 2.0x / 3.2x 0.9x / 1.2x
Header parser 0.9x / 3.2x 2.1x / 3.2x N/A
Openflow table 0.9x / 1.6x 1.6x / 2.3x 1.1x / 1.2x

IP checksum 4.3x / 12.1x 9.7x / 32.5x N/A
Encap 0.9x / 5.2x 1.1x / 10.3x N/A

key modules in NetFPGA, which are well optimized by ex-
perienced Verilog programmers, and implement counterpart
elements in ClickNP with the same functionality. We com-
pare the relative area cost between these two implementa-
tions using different HLS tools as a backend. The results are
summarized in Table 4. Since different tools may have dif-
ferent area costs, we record both the maximum and minimal
value. We can see generally, automatically generated HDL
code uses more area compared to hand-optimized code. The
difference, however, is not very large. For complex modules
(shown in the top part of the table), the relative area cost is
less than 2x. For tiny modules (shown in the bottom part of
the table), the relative area cost appears larger, but the abso-
lute resource usage is small. This is because all HLS tools
would generate a fixed overhead that dominates the area cost
for tiny modules.

In summary, ClickNP can generate efficient RTL for FPGA
that incurs only moderate area cost, which is capable of build-
ing practical NFs. Looking forward, FPGA technology is
still evolving very rapidly. For example, the next generation
FPGA from Altera, Arria 10, would have 2.5x more capac-
ity than the chip we use currently. Therefore, we believe the
area cost of HLS would be less of a concern in the future.

7.4 Validation of pFabric
Before we end this section, we show that ClickNP is also

a good tool for network research. Thanks to the flexibility
and high performance, we can quickly prototype the latest
research and apply it to real environments. For example, we
can easily implement pFabric scheduler [12] using ClickNP,
and apply it in our testbed. In this experiment, we modify a
software TCP flow generator [16] to place the flow priority,
i.e., the total size of the flow, in packet payload. We generate
flows according to the data-mining workload in [12] and fur-
ther the restrict egress port to be 10 Gbps using a RateLimit
element. We apply pFabric to schedule flows in egress buffer
according to flow priorities. Figure 12 shows the average
flow completion time (FCT) of pFabric, TCP with Droptail
queue, and the ideal. This experiment validates that pFabric
achieves near ideal FCT in this simple scenario.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10
2

10
4

C
D

F

FCT (us, log-scale)

Ideal

pFabric

TCP-Droptail

Figure 12: Validation of pFabric.

8. RELATED WORK
Software NFs have great flexibility and scalability. Early

studies mainly focus on software-based packet forwarding [20,
21]. They show that multi-core x86 CPU can forward pack-
ets at near 10Gbps per server and the capacity can scale
by clustering more servers. Recently, many systems have
been designed to implement various types of NFs [25, 33,
43]. Similarly, all of these systems exploit the multi-core
parallelism in CPUs to achieve close to 10Gbps through-
put per machine, and scale out to use more machines when
higher capacity is needed. Ananta [39] is a software load-
balancer deployed in Microsoft datacenters to provide cloud-
scale load-balancing service. While software NFs can scale
out to provide more capacity, doing so adds considerable
costs in both CAPEX and OPEX [22, 39].

To accelerate software packet processing, previous work
has proposed using GPU [26], specialized network proces-
sor (NP) [2, 5], and hardware switches [22]. GPU is primar-
ily designed for graphic processing and recently extended
to other applications with massive data parallelism. GPU is
more suitable for batch operations. Han, et al. [26], show
that using GPU can achieve 40Gbps packet switching speed.
However, batch operations incur high delay. For example,
the forwarding latency reported in [26] is about 200µs, two
orders of magnitude larger than ClickNP. Compared to GPU,
FPGA is more flexible and can be reconfigured to capture
data and pipeline parallelisms, both of which are very com-
mon in NFs. NPs, however, are specialized to handle net-
work traffic and have many hard-wired network accelera-

tors. In contrast, FPGA is a general computing platform.
Beside NFs, FPGA have many other applications in datacen-
ters, making it more attractive to deploy at scale [40]. Hard-
ware switch has limited functionality and its applications are
very restricted [22].

FPGA is a mature technology and recently has been de-
ployed to accelerate datacenter services, including NFs [24,
31, 40, 42]. It is well recognized that the programmability
of FPGA is low and there is a rich body of literature on
improving it, by providing high-level programming abstrac-
tions [13–15, 37, 45, 46]. Gorilla [31] proposes a domain-
specific high-level language for packet switching on FPGA.
Chimpp [42], however, tries to introduce Click model into
HDL to develop modular router. ClickNP works along this
direction and is complimentary to previous work. ClickNP
targets NFs in datacenters, and addresses the programmabil-
ity issue by providing a highly flexible, modularized archi-
tecture and leveraging commercial HLS tools.

The work most related to ours is the Click2FPGA toolchain [41],
which compiles an entire Click configuration to FPGA. Its
performance, however, is much lower than ClickNP and it
lacks support for joint CPU/FPGA packet processing. To
the best of our knowledge, ClickNP is the first FPGA-accelerated
platform for general NFs processing at 40Gbps line rate, and
completely written in high-level language.

9. CONCLUSION
This paper presents ClickNP, an FPGA-accelerated plat-

form for highly flexible and high-performance NFs in com-
modity servers. ClickNP is completely programmable us-
ing high-level language and provides a modular architecture
familiar to software programmers in the networking field.
ClickNP supports joint CPU/FPGA packet processing and
has high performance. Our evaluations show that ClickNP
improves the throughput of NFs by 10x compared to state-
of-the-art software NFs, while alos reducing latency by 10x.
Our work makes a concrete case showing FPGA is capable
for accelerating NFs in datacenters. Also, we demonstrate
that high-level programming for FPGA is actually feasible
and practical. One limitation of FPGA programming, how-
ever, is that the compilation time is rather long, e.g., 1∼2
hours, largely due to HDL synthesis tools. ClickNP allevi-
ates this pain with its cross-platform ability, and hopes most
bugs could be detected by running elements on CPU. How-
ever, in the long term, HDL synthesis tools should be opti-
mized to greatly shorten their compilation time.

Acknowledgements
We would like to thank Andrew Putnam, Derek Chiou, and
Doug Burger for all technical discussions. We’d also like to
thank the whole Catapult v-team at Microsoft for the Cata-
pult Shell and support of OpenCL programming. We thank
Albert Greenberg and Dave Maltz for their support and sug-
gestions on the project. We thank Tong He for his contribu-
tion on ClickNP PCIe channel development. Finally, we also
thank our shepherd, KyoungSoo Park, and other anonymous
reviewers for their valuable feedbacks and comments.

10. REFERENCES
[1] Altera SDK for OpenCL. http://www.altera.com/.
[2] Cavium Networks OCTEON II processors.

http://www.caviumnetworks.com.
[3] Dell networking s6000 spec sheet.
[4] Linux virtual server. http://www.linuxvirtualserver.org/.
[5] Netronome Flow Processor NFP-6xxx.

https://netronome.com/product/nfp-6xxx/.
[6] SDAccel Development Environment. http://www.xilinx.com/.
[7] Strongswan ipsec-based vpn. https://www.strongswan.org/.
[8] The OpenCL Specifications ver 2.1. Khronos Group.
[9] Vivado Design Suite. http://www.xilinx.com/.

[10] Ethernet switch series, 2013. Broadcom Trident II.
[11] Introducing EDR 100GB/s - Enabling the Use of Data, 2014.

Mellanox White Paper.
[12] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,

B. Prabhakar, and S. Shenker. pfabric: Minimal near-optimal
datacenter transport. In Proc. ACM SIGCOMM, 2013.

[13] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah. Lime: a
java-compatible and synthesizable language for
heterogeneous architectures. In ACM SIGPLAN Notices,
volume 45, pages 89–108. ACM, 2010.

[14] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,
R. Avižienis, J. Wawrzynek, and K. Asanović. Chisel:
constructing hardware in a scala embedded language. In
Proc. ACM Annual Design Automation Conf., 2012.

[15] D. F. Bacon, R. Rabbah, and S. Shukla. Fpga programming
for the masses. Communications of the ACM, 56(4):56–63,
2013.

[16] W. Bai, L. Chen, K. Chen, and H. Wu. Enabling ecn in
multi-service multi-queue data centers. In Proc. USENIX
NSDI, 2016.

[17] T. Barbette, C. Soldani, and L. Mathy. Fast userspace packet
processing. In Proc. ANCS, 2015.

[18] A. Bernstein. Analysis of programs for parallel processing.
IEEE Transactions on Electronic Computers,
EC-15(5):757–763, Oct 1966.

[19] B. Betkaoui, D. B. Thomas, and W. Luk. Comparing
performance and energy efficiency of fpgas and gpus for high
productivity computing. In 2010 International Conference on
Field-Programmable Technology, 2010.

[20] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
Routebricks: Exploiting parallelism to scale software routers.
In Proc. ACM SOSP, 2009.

[21] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and
L. Mathy. Towards high performance virtual routers on
commodity hardware. In Proc. ACM CoNEXT, 2008.

[22] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan,
and M. Zhang. Duet: Cloud scale load balancing with
hardware and software. In Proc. ACM SIGCOMM, 2014.

[23] A. Greenberg. Windows Azure: Scaling SDN in Public
Cloud, 2014. OpenNet Submit.

[24] A. Greenberg. SDN for the Cloud, 2015. Keynote at
SIGCOMM 2015 (https://azure.microsoft.com/en-
us/blog/microsoft-showcases-software-defined-networking-
innovation-at-sigcomm-v2/).

[25] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou,
M. Handley, and L. Mathy. Flow processing and the rise of
commodity network hardware. ACM SIGCOMM CCR,
39(2):20–26, Mar. 2009.

[26] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: A

gpu-accelerated software router. In Proc. ACM SIGCOMM,
2010.

[27] W. Jiang. Scalable ternary content addressable memory
implementation using fpgas. In Proc. ANCS, 2013.

[28] S. Kestur, J. D. Davis, and O. Williams. Blas comparison on
fpga, cpu and gpu. In IEEE Computer Society Symposium on
VLSI, July 2010.

[29] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transactions on
Computer Systems (TOCS), 18(3):263–297, 2000.

[30] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,
B. Fulton, I. Ganichev, J. Gross, N. Gude, P. Ingram, et al.
Network virtualization in multi-tenant datacenters. In Proc.
USENIX NSDI, Berkeley, CA, USA, 2014.

[31] M. Lavasani, L. Dennison, and D. Chiou. Compiling high
throughput network processors. In Proc. FPGA, 2012.

[32] J. Lee, S. Lee, J. Lee, Y. Yi, and K. Park. Flosis: a highly
scalable network flow capture system for fast retrieval and
storage efficiency. In Proc. USENIX ATC, 2015.

[33] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici. Clickos and the art of network
function virtualization. In Proc. USENIX NSDI, 2014.

[34] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
enabling innovation in campus networks. ACM SIGCOMM
CCR, 38(2):69–74, 2008.

[35] S.-W. Moon, J. Rexford, and K. G. Shin. Scalable hardware
priority queue architectures for high-speed packet switches.
IEEE Transactions on Computers, 2000.

[36] J. Naous, G. Gibb, S. Bolouki, and N. McKeown. Netfpga:
Reusable router architecture for experimental research. In
Proc. PRESTO, 2008.

[37] R. S. Nikhil and Arvind. What is bluespec? ACM SIGDA
Newsletter, 39(1):1–1, Jan. 2009.

[38] R. Pagh and F. F. Rodler. Cuckoo hashing. Algorithms - ESA
2001. Lecture Notes in Computer Science 2161, 2001.

[39] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A.
Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and
N. Karri. Ananta: Cloud scale load balancing. In Proc. ACM
SIGCOMM, 2013.

[40] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers,
G. P. Gopal, J. Gray, et al. A reconfigurable fabric for
accelerating large-scale datacenter services. In Proc. Intl.
Symp. on Computer Architecture (ISCA), 2014.

[41] T. Rinta-aho, M. Karlstedt, and M. P. Desai. The
click2netfpga toolchain. In Proc. USENIX ATC, 2012.

[42] E. Rubow, R. McGeer, J. Mogul, and A. Vahdat. Chimpp: A
click-based programming and simulation environment for
reconfigurable networking hardware. In Proc. ANCS, 2010.

[43] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi.
Design and implementation of a consolidated middlebox
architecture. In Proc. USENIX NSDI, 2012.

[44] J. Sherry, P. Gao, S. Basu, A. Panda, A. Krishnamurthy,
C. Macciocco, M. Manesh, J. Martins, S. Ratnasamy,
L. Rizzo, and S. Shenker. Rollback recovery for
middleboxes. In Proc. ACM SIGCOMM, 2015.

[45] D. Singh. Implementing fpga design with the opencl
standard. Altera whitepaper, 2011.

[46] R. Wester. A transformation-based approach to hardware
design using higher-order functions. 2015.

