Single view 3D Scene Layout

3D Vision
University of Illinois

Derek Hoiem
Agenda

• Scene representations

• Outdoor scene layout
 – Photo popup, WorldSheet

• Indoor scene layout
 – Room as box
 – 360-based layout
 – Complete scene parsing
Geometric Pixel Labeling

- Structured by **pixels**
- **View-dependent**: depth, normals, boundaries are relative to current view
- **Translation** between two measurable things (e.g. intensity to depth)

Scene Layout

- Structured with **objects and surfaces**
- **View-independent**: same representation applies to many perspectives
- **Interpretation** of models from measurement
Uses of scene layout

Context for recognition
Uses of scene layout

Context for recognition
Physical space helpful for recognition

Apparent shape depends strongly on viewpoint
Physical space needed to predict appearance
Physical space needed to predict appearance
Scene understanding
Do pixel labels provide scene understanding?
Interpreting scene layout in a physical space
Physical space needed for affordance

Is this a good place to sit?

Could I stand over here?

Can I put my cup here?

Walkable path
Uses of scene layout

Other direct applications

a) Assisted driving
b) Robot navigation/interaction
c) Object insertion
How to represent scene space?

Wide variety of possible representations
Scene-Level Geometric Description

a) Gist, Spatial Envelope

b) Stages

Figs from Hoiem - Savarese 2011 book
Retinotopic Maps

c) Geometric Context

d) Depth Maps

Figs from Hoiem - Savarese 2011 book
Highly Structured 3D Models

e) Ground Plane
f) Ground Plane with Billboards
g) Ground Plane with Walls

h) Blocks World
i) 3D Box Model

CAD-like: layout + objects
Key Trade-offs

• Level of detail: rough “gist”, or detailed point cloud?
 – Precision vs. accuracy
 – Difficulty of inference

• Abstraction: depth at each pixel, or ground planes and walls?
 – What is it for: e.g., metric reconstruction vs. interaction
Depth (Saxena et al. 2007)

Gist (Oliva Torralba 2002)

CAD-like (Guo et al 2015)

Room as Box (Hedau et al. 2009)
Outdoor Scenes

- Highly irregular

- ~ Things sitting on the ground

- Ground-object boundary informs distance
Surface Layout ("Geometric Context")

- Compute superpixels
- For each superpixel compute several interesting features that make use of vanishing points, color, texture, lines...
- Train classifiers to predict several geometric classes: support, vertical sky
Automatic Photo Popup

Labeled Image ➔ Fit Ground-Vertical Boundary with Line Segments ➔ Form Segments into Polylines ➔ Cut and Fold

Final Pop-up Model

[Hoiem Efros Hebert 2005]
Automatic Photo Popup
Surface Layout + Boundaries + Viewpoint

[Hoiem et al. 2008]
Worldsheet (Hu et al. ICCV 2021)

- https://worldsheet.github.io/
- https://www.youtube.com/watch?v=j5aT3zRxFlk
Indoor scenes

- Highly regular
- Lots of things close to each other
- Things on other things
- Ground contact often not visible
Simplest Model: Box Layout

- Room is an oriented 3D box
 - Three vanishing points specify orientation
 - Two pairs of sampled rays specify position/size
Simplest Model: Box Layout

• Room is an oriented 3D box
 – Three vanishing points (VPs) specify orientation
 – Two pairs of sampled rays specify position/size
Box Layout Algorithm

1. Detect edges

2. Estimate 3 orthogonal vanishing points

3. Apply region classifier to label pixels with visible surfaces
 - Boosted decision trees on region based on color, texture, edges, position

4. Generate box candidates by sampling pairs of rays from VPs

5. Score each box based on edges and pixel labels
 - Learn score via structured learning

6. Jointly refine box layout and pixel labels to get final estimate
Evaluation

• Dataset: 308 indoor images
 – Train with 204 images, test with 104 images
Experimental results

Detected Edges
Surface Labels
Box Layout

Detected Edges
Surface Labels
Box Layout
Experimental results

Detected Edges

Surface Labels

Box Layout

Detected Edges

Surface Labels

Box Layout
Experimental results

• Joint reasoning of surface label / box layout helps
 – Pixel error: 26.5% → 21.2%
 – Corner error: 7.4% → 6.3%

• Similar performance for cluttered and uncluttered rooms
Similar idea for 360 images: “recognize” features of geometry, and fit simple model

“LayoutNet”: Zou Colburn Shan Hoiem 2018 (collaboration with Zillow)
LayoutNet example
Predicting complete models from RGBD

Key idea: create **complete** 3D scene hypothesis that is **consistent** with observed depth and appearance
Overview of approach
Example result
Original Image

Manual Segmentation

Composition w. Manual Segmentation

Ground Truth Annotation

Auto Proposal

Composition w. Auto Proposal
Scene parsing via rendering consistency

"Holistic 3D Scene Parsing": Huang et al. 2018
Factoring Shape, Pose, and Layout from the 2D Image of a 3D Scene

Shubham Tulsiani, Saurabh Gupta, David Fouhey, Alexei A. Efros, Jitendra Malik
University of California, Berkeley
Ultimate goal of 3D scene layout

• Recover layout surfaces (walls, floor, counters, etc.)

• Recognize objects where possible

• Estimate pose and shape of object(s) of interest

• Estimate space occupancy of all other objects (for movement)
Can we combine representations of detail and structure?

Detailed Geometry from Multiview

Structure and Semantics from Single View
Things to remember

• Most vision tasks are about *representing the image*, but 3D scene layout is about *representing the world*

• Difficult to maintain both precision and abstraction in a single representation – maybe best to maintain separate representations
 – Viewer-centric depth, normals, boundaries
 – Viewer-independent 3D layout of surfaces and shapes/positions of objects

• Biggest barrier to progress is complexity and challenge of evaluating, given that a central aim is to produce useful representations for unspecified downstream tasks