3D Vision

Derek Hoiem
University of Illinois

Fall 2021
Today’s class

• A little about me

• Intro to 3D vision

• Course logistics

• 2D-3D Basics
About me

Raised in “upstate” NY
About me

1998-2002
Undergrad at SUNY Buffalo
B.S., EE and CSE

2002-2007
Grad at Carnegie Mellon
Ph.D. in Robotics

2007-2008
Postdoc at Beckman Institute

2009-
Prof in CS at UIUC

2016-
CTO / Chief Scientist
Reconstruct
Computer vision provides situational awareness

What

[Image: Street scene]

Who

[Sun et al 2019]

Where

[Kirillov et al 2019]

[Image: 3D reconstruction]
3D Vision Matters

Inspection: Reduce cost and time of inspection to enable frequent inspection and reduce disasters

Construction: Reduce schedule cost, risk, and plan deviation to benefit builders, owners, and dwellers

Driving: Fewer accidents, less stress

Robotics: Do repetitive jobs fast, dangerous jobs safely

Photo credit: https://emerj.com/ai-sector-overviews/how-self-driving-cars-work/

Image: Hu et al. 2019
What is the layout of the environment?

Multiview Reconstruction

Single-view Reconstruction

[Reconstruct] [Zou et al. 2018]
What does the scene look like from new views?

Mesh-based

[Image: Riegler Kolton 2020]

NeRF

[Image: Mildenhall et al. 2020]
Where were the photos taken from?

Structure from Motion (SfM) Simultaneous Localization and Mapping (SLAM)
How does reality compare to expected?

Alignment, Shape Fitting

[Reconstruct]
What objects are there? What are their poses/shapes?

Semantic Segmentation

Single-view Shape

RGB Image

Predicted Mesh

[Shin et al. 2018]

[Hu et al. 2021]

[Semantic Segmentation]

[Single-view Shape]
My first main research project: single-view 3D reconstruction with Efros, Hebert
Most recent: multi-view 3D Reconstruction

PatchMatch-RL (Lee et al. 2021)
Everything in between

Research
• Robot path planning [IROS 2006]
• Objects in 3D context [CVPR 2006, IJCV 2008, CVPR 2008]
• 3D Object Recognition [CVPR 2007, ECCV 2010, CVPR 2018]
• 3D Photo Manipulation [SG 2007, SGA 2011]
• Occlusion Boundaries [ICCV 2007, IJCV 2011]
• RGBD Scene Analysis [ECCV 2012, IJCV 2019]
• Object 3D shape estimation [CVPR 2013, CVPR 2015, ICCV 2017]
• 3D material recognition [CVPR 2016]

Commercial Application
• Reconstruct: SfM, SLAM, MVS, meshing, recognition, registration

But I still have a lot to learn!
This Class

• Learn fundamentals of 3D vision
 – Lectures on Thursdays

• Learn state-of-the-art
 – Discuss papers you select and read on Tuesdays

• Improve research skills
 – Identify potential directions: survey, paper reports
 – Design proof-of-concept: research proposal
 – Perform PoC, re-assess: research paper
Prerequisites

• Graduate-level computer vision (CS 543 or equivalent)

• Engaged or interested in 3D Vision research
Materials

- Website: https://courses.engr.illinois.edu/cs598dwh/fa2021/
 - Syllabus
 - Schedule
 - Paper selection/reports
Paper Readings

For each topic

[Before Thursday class]
1. **Group assignment.** Groups are (randomly) assigned by the professor and listed in Paper Selection. One tab for each topic, one row per group.

[Before Tuesday class]
2. **Scribe.** Group selects a scribe. Whoever has been scribe fewest times should be scribe next. In case of tie, can choose by interest.
3. **Paper selection.** The scribe chooses a topical paper in consultation with the other group members by end of day Thursday and puts title/link next to group in Paper Selection. No two groups can choose the same paper! First to claim the paper gets it.
4. **Paper reading and review.** By 10:45am Tuesday, each group member (including scribe) submits their reviews using the Review Form.

[In class Tuesday]
5. **Discussion.** In class, students split into groups and discuss the ideas of the paper and ideas for future work or other applications.
6. **Summary.** During discussion period, scribe consolidates discussion in one summary slide. Copy-paste the template under the topic and fill in the slide. Can include figures from paper. Put slides in group order.
7. **Report out.** Scribe presents summary to class.
Course Project

1. Survey
 • Assigned group
 • Choose different topic for each group
 • 4-6 page report: overview, taxonomy, evaluation, analysis, research ideas

2. Research Proposal
 • You form group
 • Choose research proposal idea
 • 2-3 page report: motivation, related work, proposed approach, contributions, significance, planned experiments including proof-of-concept

3. Project Report
 • Same group as proposal
 • Perform proof-of-concept experiments
 • 4 page report: intro, approach, PoC results, recommendations

Reviews: everyone reviews one survey and one proposal
Grading

• Paper reviews and discussion: 50%
 – Must do at least 10 for full points
 – ½ credit if review is unsatisfactory or discussion is missed

• Course project: 50%
 – Survey 15%
 – Proposal 15%
 – Report 15%
 – Reviews 5%
 – Grading is “satisfactory” (full credit), “needs improvement” (3/4 credit), “unsatisfactory” (1/2 credit); can be resubmitted once if necessary

• Late policy
 – no credit for late reviews
 – project component penalty is 1% of course total per day
Academic Integrity

• All work you submit should be your own – do not copy any text from any online reviews or papers
 – Cite sources diligently

• If your research project builds on prior/ongoing work, discuss with professor first

• Violations will be penalized through official channels
COVID-19 Policy

• Students who feel ill must not come to class. In addition, students who test positive for COVID-19 or have had an exposure that requires testing and/or quarantine must not attend class.
 – You will not lose review/discussion points for this

• All students, faculty, staff, and visitors are required to wear face coverings in classrooms and university spaces.
Getting help outside of class

Office hours
• For help with projects or papers or other complex questions, see professor after class or another arranged time

Slack:
• For discussion within student groups or logistical questions
https://join.slack.com/t/3dvision-fa21/shared_invite/zt-u1yy4vk1-8oEBalkCVT15GhQeoLaF7g

Readings/Textbook
• See webpage
Questions about class structure/content?
Basics of Cameras: **What is a pixel?**

Image coordinate

CCD cell

3D ray

u, v

$P = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$
How do we map from 3D to 2D?

\[
p = K P
\]

\[
p = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}
\]
Homogeneous coordinates

Homogeneous Coordinates

\[
\begin{bmatrix}
 x \\
 y \\
 k
\end{bmatrix}
= \begin{bmatrix}
 w_x \\
 w_y \\
 w_k
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
 \frac{w_x}{w_k} \\
 \frac{w_y}{w_k}
\end{bmatrix}
= \begin{bmatrix}
 \frac{x}{k} \\
 \frac{y}{k}
\end{bmatrix}
\]

= a Ray

= a Point
Basic geometry in homogeneous coordinates

• Line equation: \(ax + by + c = 0 \)

\[
\begin{bmatrix}
 a_i \\
 b_i \\
 c_i \\
\end{bmatrix}
\]

\(line_i \)

• Append 1 to pixel coordinate to get homogeneous coordinate

\[
\begin{bmatrix}
 u_i \\
 v_i \\
 1
\end{bmatrix}
\]

\(p_i \)

• Line given by cross product of two points

\[
line_{ij} = p_i \times p_j
\]

• Intersection of two lines given by cross product of the lines

\[
q_{ij} = line_i \times line_j
\]
How do we map from 2D to 3D?

Sometimes called a “bearing”

$$K^{-1}p = wP$$

$$\begin{bmatrix}
 \frac{1}{f} & 0 & \frac{-u_0}{f} \\
 0 & \frac{1}{f} & \frac{-v_0}{f} \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix}
= w
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}$$
Rotation and translation map from “world” coordinates to “camera” coordinates

\[
X_c = [R \ t] X_w \quad \text{x} = K [R \ t] X_w
\]

- \(X_c \): Image Coordinates: \((u, v, 1)\)
- \(X_w \): World Coordinates: \((X, Y, Z, 1)\)
- \(K \): Intrinsic Matrix (3x3)
- \(R \): Rotation (3x3)
- \(t \): Translation (3x1)
Properties of 3D rotation matrix

\[R = \begin{bmatrix}
 r_{11} & r_{12} & r_{13} \\
 r_{21} & r_{22} & r_{23} \\
 r_{31} & r_{32} & r_{33}
\end{bmatrix} \]

\[R^{-1} = R^T \]

\(R \) is orthonormal:

\[R = \begin{bmatrix}
 r_1 \\
 r_2 \\
 r_3
\end{bmatrix} \quad \|r_i\| = 1 \quad r_i^T r_j = 0 \quad \|RX\| = \|X\| \]
Rotation matrix sudoku

• Solve for missing r values (up to sign ambiguity)

\[
\mathbf{R} = \begin{bmatrix}
 r_{11} & r_{12} & ? \\
 r_{21} & r_{22} & ? \\
 r_{31} & ? & ? \\
\end{bmatrix}
\]

\[
\mathbf{R} = \begin{bmatrix}
 r_{12} & ? \\
 r_{21} & r_{22} & ? \\
 ? & ? & ? \\
\end{bmatrix}
\]
Questions to consider

1. What is the camera’s position in world coordinates, given \mathbf{R} and \mathbf{t}?

2. What additional information can enable recovering a 3D geometry coordinate from a 2D pixel coordinate?

3. Suppose a camera images a star (~infinite distance point). If the camera translates without rotating, what is the effect on the pixel position of the star?
Final comments

• To do
 – Review web page and syllabus
 – Start planning with your group which paper to do for next Tuesday

• Next class: two-view stereo

• Questions?