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Private Information Retrieval (PIR) [CGKS'95]

* Let a client fetch a record privately from a database on server(s)

without revealing (to server)
any information about which record




Private Information Retrieval (PIR) [CGKS'95]

* Let a client fetch a record privately from a database on server(s)

* Applications
— Anonymous messaging
— Private media streaming

— Private look-ups of domain name, public key, passwords, ...
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Private Information Retrieval (PIR) [CGKS'95]

*  Multi-server PIR VS. Single-server PIR
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PIR Efficiency Metrics

Server computation

Request size
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Outline

» Single-server PIR using homomorphic encryption

e Limits of single-server PIR in the standard model
* Batch PIR

« Amortized sublinear stateful PIR



Background: Additively Homomorphic Encryption
* Enc(x) + Enc(y) = Enc(x+y)

* m * Enc(x) = Enc(x) + Enc(x) + ... + Enc(x) = Enc(mx)



A Strawman PIR using AHE
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Client’s request too large (linear in database size)
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Hierarchical PIR

- Organizing the database in 2D reduces request size to 23/n
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Hierarchical PIR

- Organizing the database in 2D reduces request size to 23/n

» d-dimensional hyper cube reduces request size to di/n

*d = log n = request size = 2 log n (can be improved to log n)

* Remaining problem: extremely expensive computation

—Need “additive” ciphertext blowup, Damgard-Jurik is only candidate



Background: Somewhat Homomorphic Encryption

* SHE: supports a limited number of homomorphic addition &
multiplication operations on ciphertexts

* Based on Ring Learning with Errors (RLWE) assumption

RLWE ciphertext

message noise



Background on SHE

* Homomorphic operations increase noise

 Multiplication adds a lot more noise than addition
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A Strawman PIR using SHE
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Client’s request too large (linear in database size)



Hierarchical PIR using SHE

» d-dimensional hyper cube reduces request size to dy/n
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Hierarchical PIR using SHE

» d-dimensional hyper cube reduces request size to di/n

* Homomorphic multiplication blows up noise quickly

—d =2 or 3 in practice 2 0(y/n) request size

—Higher response and computation costs message noise

* Solved in a series of recent works (beyond this lecture)

— For a database of one million entries each of 12 KB, Onion PIR v2
achieves request = 36 KB, response = 36 KB (3x), computation = 24s



Summary of single-server PIR

» Reasonable request size and response blowup

« Computation still heavy; only efficient for moderately large entries

e Both issues are somewhat inherent!

« Computation must involve every entry for security
* RLWE ciphertexts are big (e.g., ~ 36 KB)

e« Can we do better?

« Amortization! Assume client wants to fetch multiple entries.



Batch PIR [1kOs04,ACLS’ 18]

» Client wants to fetch multiple entries in one go
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Stateful PIR [ppY’18, CK’20]

» Client wants to fetch multiple entries, but one at a time

Client stores hints
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Outline

» Single-server PIR using homomorphic encryption

e Limits of single-server PIR in the standard model
- Batch PIR

« Amortized sublinear stateful PIR



Background: Cuckoo Hashing

* A technique to build a collision-free hash table

 Each entry has multiple (e.g., 3) candidate locations
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Background: Cuckoo Hashing

* A technique to build a collision-free hash table

 Each entry has multiple (e.g., 3) candidate locations
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Background: Cuckoo Hashing

* A technique to build a collision-free hash table

 Each entry has multiple (e.g., 3) candidate locations
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Background: Cuckoo Hashing

 What if none of the candidate locations is vacant!
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Background: Cuckoo Hashing

 What if none of the candidate locations is vacant!

—Insert at a random candidate location and evict the entry already there
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Background: Cuckoo Hashing

* What if none of the candidate locations is vacant?
—Insert at a random candidate location and evict the entry already there

—Re-insert the evicted entry
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Background: Cuckoo Hashing

* What if none of the candidate locations is vacant?
—Insert at a random candidate location and evict the entry already there
—Re-insert the evicted entry, possibly evicting another entry

—With proper table size, re-insertion won’t continue forever
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Batch PIR of [ACLS’I8]

Client Cuckoo Hashing

Server Regular Hashing
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Batch PIR of [ACLS’I8]

Client Cuckoo Hashing

Server Regular Hashing
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Batch PIR of [ACLS’ 18]

* Client cuckoo hashing, server regular hashing, per-bucket PIR
« ~3N computation (independent of batch size b)

* Response size: b ciphertexts, still inefficient for small entries

* Resolved recently using vectorized SHE in [MR’23], response can
be a single ciphertext
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Outline

» Single-server PIR using homomorphic encryption

e Limits of single-server PIR in the standard model
* Batch PIR

« Amortized sublinear stateful PIR
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» Client wants to fetch multiple entries, but one at a time

Client stores hints

Stateful PIR [ppY’18, CK’20]
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Amortized Sublinear PIR [ck’20]

» Client retrieves hints privately offline

» Each hint is the parity of a random subset (of size \/n)
—Need A4/n hints to guarantee one such hint exists except exp(-1) prob

* Online query for i: find a hint that contains x;

H| = X¢g @ X33 D X9 D X43
Hy = X3, @ X5, @ X4 D Xp9

Hyz = Xo5 @ X4 D Xp9 D Xs7

32



Amortized Sublinear PIR [ck’20]

* Online query for i: find a hint that contains x
* Ideally, request = S \ {i}
* Server computes parity as response

* Answer = response @ hint
X5 D X9 D Xs7

Q = {25,29, 57)
S = {25, 41,29, 57)

Hyz = Xo5 @ X4 D Xp9 D Xs7
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Amortized Sublinear PIR [ck’20]

» Client retrieves hints privately offline

» Each hint is the parity of a random subset (of size \/n)

* Online query for i:find S 3 i, (ideally) send S \ {i}, rest is easy

* Insecure: i won'’t appear in t

e Current solution: occasiona

ne request!

ly, keep i = correctness failure

—> A parallel repetition > A blowup to all metrics

S ={25;4 29,57}

Hyz = Xo5 @ X4 D Xp9 D Xs7
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Our New Protocol [MIR23]

« Amortized sublinear stateful PIR without need for repetition

* Key idea: dummy subset of random indices
—Make i appear with the “right” probability

— Permute real and dummy subsets

41
Q’ = {43, 16, 35)
Q = {25,29, 57)

S = {25, 41,29, 57)

Hyz = Xo5 @ X4 D Xp9 D Xs7
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Our New Protocol [MIR23]

« Amortized sublinear stateful PIR without need for repetition

* Key idea: dummy subset of random indices
—Make i appear with the “right” probability and permute the two subsets

* Security: server cannot tell real vs dummy, i shows nothing special

Q’ = {43, 16, 35)
Q = {25,29, 57)

S = {25, 41,29, 57)

Hyz = Xo5 @ X4 D Xp9 D Xs7
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Our New Results [MIR23]
Communication  Computation  Client storage
Standard 28 KB 767 ms

Stateful 3 KB 0.25 ms 6.25 MB

For a database of 220 entries, each of 32 byte (32 MB in total)

Standard 35 KB 30 s

Stateful 47 KB 45 ms 100 MB

For a database of 228 entries, each of 32 byte (8 GB in total)
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Summary

e State-of-art PIR in standard model: hierarchical PIR with SHE
— 36 KB request and 3x response

— Expensive computation, large response for small entries, per-client storage

e Batch PIR with vectorized SHE

—0(n) computation per batch, single ciphertext response

—Must query in batch, request size grows with n

« Amortized sublinear stateful PIR
— 0(y/n) request, millisecond computation, 2x online response

— 0(A+/n) client storage, update is a challenge
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