
Single-Server Private Information Retrieval

Ling Ren

April 23, 2024

Private Information Retrieval (PIR) [CGKS’95]

• Let a client fetch a record privately from a database on server(s)

2

without revealing (to server)
any information about which record

x1
x2
x3
x4
x5

Enc(i)

Enc(xi)

Private Information Retrieval (PIR) [CGKS’95]

• Let a client fetch a record privately from a database on server(s)

• Applications
–Anonymous messaging
– Private media streaming
– Private look-ups of domain name, public key, passwords, …

3

x1
x2
x3
x4
x5

Enc(i)

Enc(xi)

Private Information Retrieval (PIR) [CGKS’95]

• Multi-server PIR vs. Single-server PIR

4

PIR Efficiency Metrics

5

x1
x2
x3
x4
x5

Enc(i)

Enc(xi)

Request size Server computation

Response size Server (extra)
storage

Client storage

Outline

• Single-server PIR using homomorphic encryption

• Limits of single-server PIR in the standard model

• Batch PIR

• Amortized sublinear stateful PIR

6

Background: Additively Homomorphic Encryption

• Enc(x) + Enc(y) = Enc(x+y)

• m * Enc(x) = Enc(x) + Enc(x) + … + Enc(x) = Enc(mx)

7

A Strawman PIR using AHE

8

m1

m2

m3

m4

…

Server’s
database

x
x
x
x

+

=

Client’s request too large (linear in database size)

0

0

1

0

…

Client’s
request

Enc()

Enc()

Enc()

Enc()
m3Enc()

Hierarchical PIR

9

m1

m4

m7

m2

m5

m8

m3

m6

m9

1st Dimension

2nd Dimension

• Organizing the database in 2D reduces request size to 2! 𝑛

1

0

0

x
x
x +

Enc()

Enc()

Enc()

m3Enc()m2Enc()m1Enc()

0 0 1x
+

Enc() Enc() Enc()

Enc(Enc())m3

Hierarchical PIR

10

• Organizing the database in 2D reduces request size to 2! 𝑛
• d-dimensional hyper cube reduces request size to d" 𝑛
• d = log n à request size = 2 log n (can be improved to log n)

• Remaining problem: extremely expensive computation
–Need “additive” ciphertext blowup, Damgard-Jurik is only candidate

Background: Somewhat Homomorphic Encryption

• SHE: supports a limited number of homomorphic addition &
multiplication operations on ciphertexts

• Based on Ring Learning with Errors (RLWE) assumption

11

message noise

RLWE ciphertext

Background on SHE
• Homomorphic operations increase noise

• Multiplication adds a lot more noise than addition

12

m1 e1 m2 e2 m1+m2 e1+e2

+ =

m2m1 e1 m1m2 m2e1

x =

m1 e1 m2 e2 m1m2 m1e2+m2e1
+ e1e2

x =

A Strawman PIR using SHE

13

0

0

1

0

…

Client’s
request

m1

m2

m3

m4

…

Server’s
database

x
x
x
x

+

= m3

Client’s request too large (linear in database size)

0

0

1

0

Hierarchical PIR using SHE

14

m1

m4

m7

m2

m5

m8

m3

m6

m9

1

0

0

x
x
x +

m3m1 m2

100
xxx

+

1st Dimension

2nd Dimension

• d-dimensional hyper cube reduces request size to d" 𝑛

Hierarchical PIR using SHE

15

• d-dimensional hyper cube reduces request size to d" 𝑛
• Homomorphic multiplication blows up noise quickly
– d = 2 or 3 in practice à 𝑂(𝑛) request size
–Higher response and computation costs

• Solved in a series of recent works (beyond this lecture)
– For a database of one million entries each of 12 KB, Onion PIR v2

achieves request = 36 KB, response = 36 KB (3x), computation = 24s

message noise

Summary of single-server PIR
• Reasonable request size and response blowup

• Computation still heavy; only efficient for moderately large entries

• Both issues are somewhat inherent!

• Computation must involve every entry for security

• RLWE ciphertexts are big (e.g., ~ 36 KB)

• Can we do better?

• Amortization! Assume client wants to fetch multiple entries.
16

Batch PIR [IKOS’04, ACLS’18]

17

x1
x2
x3
x4
x5

Enc(i1, i2, i3, …, ib)

Enc(xi1, xi2, xi3, …, xib)

• Client wants to fetch multiple entries in one go

Stateful PIR [PPY’18, CK’20]

18

x1
x2
x3
x4
x5

• Client wants to fetch multiple entries, but one at a time

PIR(i1)

PIR(i2)

PIR(ib)
…

Offline Phase

Client stores hints

Outline

• Single-server PIR using homomorphic encryption

• Limits of single-server PIR in the standard model

• Batch PIR

• Amortized sublinear stateful PIR

19

Background: Cuckoo Hashing

• A technique to build a collision-free hash table

• Each entry has multiple (e.g., 3) candidate locations

𝐻! 1

𝐻" 1

𝐻# 1

1

20

x1

x1
x2
x3
x4
x5

Background: Cuckoo Hashing

• A technique to build a collision-free hash table

• Each entry has multiple (e.g., 3) candidate locations

x1

𝐻# 2

𝐻! 2

𝐻" 2

2

21

x1
x2
x3
x4
x5

x2

Background: Cuckoo Hashing

• A technique to build a collision-free hash table

• Each entry has multiple (e.g., 3) candidate locations

x1

x2

𝐻! 3

𝐻# 3

𝐻" 3

3

22

x1
x2
x3
x4
x5

x3

Background: Cuckoo Hashing
• What if none of the candidate locations is vacant?

x3
x1

x2

𝐻! 4

𝐻" 4

𝐻# 4

4

23

x1
x2
x3
x4
x5

Background: Cuckoo Hashing
• What if none of the candidate locations is vacant?
– Insert at a random candidate location and evict the entry already there

x4
x1

x2

𝐻! 4

𝐻" 4

𝐻# 4

4

24

x1
x2
x3
x4
x5

x3

Background: Cuckoo Hashing
• What if none of the candidate locations is vacant?
– Insert at a random candidate location and evict the entry already there
–Re-insert the evicted entry

x4
x1

x2

𝐻! 3

𝐻# 3

𝐻" 3

3

25

x1
x2
x3
x4
x5

Background: Cuckoo Hashing
• What if none of the candidate locations is vacant?
– Insert at a random candidate location and evict the entry already there
–Re-insert the evicted entry, possibly evicting another entry
–With proper table size, re-insertion won’t continue forever

x4
x1
x3

x2

𝐻! 3

𝐻# 3

𝐻" 3

3

26

x1
x2
x3
x4
x5

Batch PIR of [ACLS’18]

27

Batch PIR of [ACLS’18]

28

Batch PIR of [ACLS’18]

• Client cuckoo hashing, server regular hashing, per-bucket PIR

• ~3N computation (independent of batch size b)

• Response size: b ciphertexts, still inefficient for small entries

• Resolved recently using vectorized SHE in [MR’23], response can
be a single ciphertext

29

Outline

• Single-server PIR using homomorphic encryption

• Limits of single-server PIR in the standard model

• Batch PIR

• Amortized sublinear stateful PIR

30

Stateful PIR [PPY’18, CK’20]

31

x1
x2
x3
x4
x5

• Client wants to fetch multiple entries, but one at a time

PIR(i1)

PIR(i2)

PIR(ib)

…

Offline Phase

Client stores hints

Amortized Sublinear PIR [CK’20]

• Client retrieves hints privately offline

• Each hint is the parity of a random subset (of size 𝑛)
–Need 𝜆 𝑛 hints to guarantee one such hint exists except exp(-𝜆) prob

• Online query for i: find a hint that contains xi

32

H1 = x68 ⊕ x33 ⊕ x19 ⊕ x43
H2 = x31 ⊕ x52 ⊕ x14 ⊕ x29

…

H23 = x25 ⊕ x41 ⊕ x29 ⊕ x57

Amortized Sublinear PIR [CK’20]

• Online query for i: find a hint that contains xi
• Ideally, request = S \ {i}

• Server computes parity as response

• Answer = response ⊕ hint

33

S = {25, 41, 29, 57}

Q = {25, 29, 57}

x25 ⊕ x29 ⊕ x57

H23 = x25 ⊕ x41 ⊕ x29 ⊕ x57

Amortized Sublinear PIR [CK’20]

• Client retrieves hints privately offline

• Each hint is the parity of a random subset (of size 𝑛)

• Online query for i: find S ∋ i, (ideally) send S \ {i}, rest is easy

• Insecure: i won’t appear in the request!

• Current solution: occasionally, keep i à correctness failure

 à 𝜆 parallel repetition à 𝜆 blowup to all metrics

34

H23 = x25 ⊕ x41 ⊕ x29 ⊕ x57

S = {25, 41, 29, 57}

Our New Protocol [MIR’23]

• Amortized sublinear stateful PIR without need for repetition

• Key idea: dummy subset of random indices
–Make i appear with the “right” probability
– Permute real and dummy subsets

35

H23 = x25 ⊕ x41 ⊕ x29 ⊕ x57

S = {25, 41, 29, 57}

Q = {25, 29, 57}
Q’ = {43, 16, 35}

41

Our New Protocol [MIR’23]

• Amortized sublinear stateful PIR without need for repetition

• Key idea: dummy subset of random indices
–Make i appear with the “right” probability and permute the two subsets

• Security: server cannot tell real vs dummy, i shows nothing special

36

H23 = x25 ⊕ x41 ⊕ x29 ⊕ x57

S = {25, 41, 29, 57}

Q = {25, 29, 57}
Q’ = {43, 16, 35}

Our New Results [MIR’23]

37

 Communication Computation Client storage

Standard 28 KB 767 ms

Stateful 3 KB 0.25 ms 6.25 MB

Standard 35 KB 30 s

Stateful 47 KB 4.5 ms 100 MB

For a database of 220 entries, each of 32 byte (32 MB in total)

For a database of 228 entries, each of 32 byte (8 GB in total)

Summary
• State-of-art PIR in standard model: hierarchical PIR with SHE
– 36 KB request and 3x response
– Expensive computation, large response for small entries, per-client storage

• Batch PIR with vectorized SHE
–𝑂(𝑛) computation per batch, single ciphertext response
–Must query in batch, request size grows with n

• Amortized sublinear stateful PIR
–𝑂(𝑛) request, millisecond computation, 2x online response
–𝑂(𝜆 𝑛) client storage, update is a challenge

38

