I ILLINOIS

URBANA-CHAMPAIGN

Single-Server Private Information Retrieval

Ling Ren

April 23,2024

Private Information Retrieval (PIR) [CGKS'95]

* Let a client fetch a record privately from a database on server(s)

without revealing (to server)
any information about which record

Private Information Retrieval (PIR) [CGKS'95]

* Let a client fetch a record privately from a database on server(s)

* Applications
— Anonymous messaging
— Private media streaming

— Private look-ups of domain name, public key, passwords, ...

Enc(i) f X,
— — (op
- WE X3

Enc(x;) =

Private Information Retrieval (PIR) [CGKS'95]

* Multi-server PIR VS. Single-server PIR

v

o [0 [0
V

/%

v

PIR Efficiency Metrics

Server computation

Request size

Enc(i) -
X2
—
S ——
Enc(x;) =
\ %5
Client storage Response size server (extra)

storage

Outline

» Single-server PIR using homomorphic encryption

e Limits of single-server PIR in the standard model
* Batch PIR

« Amortized sublinear stateful PIR

Background: Additively Homomorphic Encryption
* Enc(x) + Enc(y) = Enc(x+y)

* m * Enc(x) = Enc(x) + Enc(x) + ... + Enc(x) = Enc(mx)

A Strawman PIR using AHE

m; X Enc(|0])
m, X Enc(|(0]|)
Ms X Enc(L1]) B = Enc(| m; [)
s X Enc([0]) '
Server’s Client’s +
database request

Client’s request too large (linear in database size)

m,; m, ms
My M« m;
my Mg Mg

2" Dimension

X X X

Hierarchical PIR

- Organizing the database in 2D reduces request size to 23/n

Enc([T]))

Enc((0]) r |st Dimension

Enc(|0]) J 4

Enc([m, |) Enc([m, |) Enc([m,])

Enc([0]) Enc([0]) Enc([T])

\ ' I 4
Enc(Enc([m,

Hierarchical PIR

- Organizing the database in 2D reduces request size to 23/n

» d-dimensional hyper cube reduces request size to di/n

*d = log n = request size = 2 log n (can be improved to log n)

* Remaining problem: extremely expensive computation

—Need “additive” ciphertext blowup, Damgard-Jurik is only candidate

Background: Somewhat Homomorphic Encryption

* SHE: supports a limited number of homomorphic addition &
multiplication operations on ciphertexts

* Based on Ring Learning with Errors (RLWE) assumption

RLWE ciphertext

message noise

Background on SHE

* Homomorphic operations increase noise

 Multiplication adds a lot more noise than addition

= —

m, € m, €) m;+m, e te;
X —

m € m; m;my m,€,
X —

m, e, m- e, m,;m, me,Ttmse,

-+ e|e2 12

A Strawman PIR using SHE

m, X 0 h
m, X 0
m3 X I S, —
3 — m,
my X 10
Server’s Client’s +
database request

Client’s request too large (linear in database size)

Hierarchical PIR using SHE

» d-dimensional hyper cube reduces request size to dy/n

m, m, M, X]
m, m. m, x |0 ~ Ist Dimension
m- Mg Mg x [0 J 4
m, m, ms
2"d Dimension X X X
0 0 |

l 1
' + .

Hierarchical PIR using SHE

» d-dimensional hyper cube reduces request size to di/n

* Homomorphic multiplication blows up noise quickly

—d =2 or 3 in practice 2 0(y/n) request size

—Higher response and computation costs message noise

* Solved in a series of recent works (beyond this lecture)

— For a database of one million entries each of 12 KB, Onion PIR v2
achieves request = 36 KB, response = 36 KB (3x), computation = 24s

Summary of single-server PIR

» Reasonable request size and response blowup

« Computation still heavy; only efficient for moderately large entries

e Both issues are somewhat inherent!

« Computation must involve every entry for security
* RLWE ciphertexts are big (e.g., ~ 36 KB)

e« Can we do better?

« Amortization! Assume client wants to fetch multiple entries.

Batch PIR [1kOs04,ACLS’ 18]

» Client wants to fetch multiple entries in one go

EnC(X”, Xi2’ Xi3’ ceny Xib)

Stateful PIR [ppY’18, CK’20]

» Client wants to fetch multiple entries, but one at a time

Client stores hints

Offline Phase
<>

PIR(i))
<« >
PIR(i,)
<« 5

PIP:(ib)
<>

Outline

» Single-server PIR using homomorphic encryption

e Limits of single-server PIR in the standard model
- Batch PIR

« Amortized sublinear stateful PIR

Background: Cuckoo Hashing

* A technique to build a collision-free hash table

 Each entry has multiple (e.g., 3) candidate locations

Hy(1)

20

Background: Cuckoo Hashing

* A technique to build a collision-free hash table

 Each entry has multiple (e.g., 3) candidate locations

Hy(2) |
2 :~\H\2(2) al
\ ~
\ \\
N\ ~
\ A
\
\
\
\
Hi(2) A X,

21

Background: Cuckoo Hashing

* A technique to build a collision-free hash table

 Each entry has multiple (e.g., 3) candidate locations

”
-
”
-

‘5
‘5
—

22

Background: Cuckoo Hashing

 What if none of the candidate locations is vacant!

”
—-—
”
-

23

Background: Cuckoo Hashing

 What if none of the candidate locations is vacant!

—Insert at a random candidate location and evict the entry already there

H2(4;),-v X4 X3 al
:: ————— > X X3
\\ H1(4) X3

\\\ X4

N\
\\\ X5

Hs(4) ~

y O

24

Background: Cuckoo Hashing

* What if none of the candidate locations is vacant?
—Insert at a random candidate location and evict the entry already there

—Re-insert the evicted entry

H2(3’)" X4 X
3 ::~~ X i
\\\H3(3 e X3
\N X4
\
\\\ X5
H{(3)»
TEA

25

Background: Cuckoo Hashing

* What if none of the candidate locations is vacant?
—Insert at a random candidate location and evict the entry already there
—Re-insert the evicted entry, possibly evicting another entry

—With proper table size, re-insertion won’t continue forever

H2(3’)" X4 X
3 ::~~ X i
\\\H3(3 e X3 X3
\N X4
\
\\\ X5
H{(3)»
TEA

26

Batch PIR of [ACLS’I8]

Client Cuckoo Hashing

Server Regular Hashing

Se A1,02,03

—h3(6)‘ :' a4, 05, g

aj a3 as ag “«
P Database

Batch PIR of [ACLS’I8]

Client Cuckoo Hashing

Server Regular Hashing

PRG) | a1arasas «
\ -~
PIR(3) h1(6)
» e a1,02,03
T ", Q4,05, 06
PIRD | | a1 a3 a5 ag < ~hs(6) »7 7
7 Database
PIR(L) , :
,| @1 G204 a5 hy(6) o~
Y 4 .
PIR(4) ¥ (65.
g weon

-

28

Batch PIR of [ACLS’ 18]

* Client cuckoo hashing, server regular hashing, per-bucket PIR
« ~3N computation (independent of batch size b)

* Response size: b ciphertexts, still inefficient for small entries

* Resolved recently using vectorized SHE in [MR’23], response can
be a single ciphertext

29

Outline

» Single-server PIR using homomorphic encryption

e Limits of single-server PIR in the standard model
* Batch PIR

« Amortized sublinear stateful PIR

30

» Client wants to fetch multiple entries, but one at a time

Client stores hints

Stateful PIR [ppY’18, CK’20]

Offline Phase
<>

PIR(i/)
<« >
PIR(i,)
<« " 5

PIP:(ib)
<>

31

Amortized Sublinear PIR [ck’20]

» Client retrieves hints privately offline

» Each hint is the parity of a random subset (of size \/n)
—Need A4/n hints to guarantee one such hint exists except exp(-1) prob

* Online query for i: find a hint that contains x;

H| = X¢g @ X33 D X9 D X43
Hy = X3, @ X5, @ X4 D Xp9

Hyz = Xo5 @ X4 D Xp9 D Xs7

32

Amortized Sublinear PIR [ck’20]

* Online query for i: find a hint that contains x
* Ideally, request = S \ {i}
* Server computes parity as response

* Answer = response @ hint
X5 D X9 D Xs7

Q = {25,29, 57)
S = {25, 41,29, 57)

Hyz = Xo5 @ X4 D Xp9 D Xs7

33

Amortized Sublinear PIR [ck’20]

» Client retrieves hints privately offline

» Each hint is the parity of a random subset (of size \/n)

* Online query for i:find S 3 i, (ideally) send S \ {i}, rest is easy

* Insecure: i won'’t appear in t

e Current solution: occasiona

ne request!

ly, keep i = correctness failure

—> A parallel repetition > A blowup to all metrics

S ={25;4 29,57}

Hyz = Xo5 @ X4 D Xp9 D Xs7

34

Our New Protocol [MIR23]

« Amortized sublinear stateful PIR without need for repetition

* Key idea: dummy subset of random indices
—Make i appear with the “right” probability

— Permute real and dummy subsets

41
Q’ = {43, 16, 35)
Q = {25,29, 57)

S = {25, 41,29, 57)

Hyz = Xo5 @ X4 D Xp9 D Xs7

35

Our New Protocol [MIR23]

« Amortized sublinear stateful PIR without need for repetition

* Key idea: dummy subset of random indices
—Make i appear with the “right” probability and permute the two subsets

* Security: server cannot tell real vs dummy, i shows nothing special

Q’ = {43, 16, 35)
Q = {25,29, 57)

S = {25, 41,29, 57)

Hyz = Xo5 @ X4 D Xp9 D Xs7

36

Our New Results [MIR23]
Communication Computation Client storage
Standard 28 KB 767 ms

Stateful 3 KB 0.25 ms 6.25 MB

For a database of 220 entries, each of 32 byte (32 MB in total)

Standard 35 KB 30 s

Stateful 47 KB 45 ms 100 MB

For a database of 228 entries, each of 32 byte (8 GB in total)

37

Summary

e State-of-art PIR in standard model: hierarchical PIR with SHE
— 36 KB request and 3x response

— Expensive computation, large response for small entries, per-client storage

e Batch PIR with vectorized SHE

—0(n) computation per batch, single ciphertext response

—Must query in batch, request size grows with n

« Amortized sublinear stateful PIR
— 0(y/n) request, millisecond computation, 2x online response

— 0(A+/n) client storage, update is a challenge

38

