
CS 598DH Secure Computation – Homework 1

Professor David Heath

Due: February 15, 2024

Problem 1. To formalize the security of a protocol, it is essential to first specify the functionality
of that protocol. The functionality specifies ideal-world behavior. Write out functionalities for each
of the following tasks (an example functionality presented in Figure 1):

1. Compute set intersection, where each party’s input is a set.

2. Voting. You choose parameters of the voting problem.

Hint: The tasks are not formally specified; choose your own formalization. The goal of this problem
is to practice notation and to get used to formalizing intuitive notions.

Answer 1.

Problem 2. Sometimes it is not clear whether a certain behavior is an “attack” against a protocol.
Our definition of security roughly states that a protocol is insecure if there is an adversarial behavior
that is possible in the real world, but that same behavior is impossible in the ideal world.

For each of the following, consider a semi-honest adversary that successfully carries out the
described behavior as part of a real-world protocol. Specify whether this behavior indicates that
the real-world protocol is insecure (yes or no). If the procotol is insecure, give a brief explanation.

1. Alice holds x and Bob holds y, where x, y ∈ {0, ..., N − 1}. They wish to compute:

(x+ y) mod N

A semi-honest adversary corrupts Alice and learns Bob’s input in its entirety.

2. Alice holds x and Bob holds y, where x, y ∈ {0, ..., 7}. They wish to compute:{
1 if x < y

0 otherwise

A semi-honest adversary corrupts Alice and learns the most significant bit of y (assume y is
written as a three bit value, e.g. 4 = 1002).

1



Parameters:

1. Let P0, ..., Pn−1 be n parties. Suppose n > 2.

2. Each party Pi has input xi ∈ [0..k).

Functionality:

1. Compute the lowest and highest elements:

xlo =
n−1
min
i=0

(xi) xhi =
n−1
max
i=0

(xi)

2. Compute the set X = {xi} \ {xlo, xhi}.

3. Each party Pi outputs the average of X:∑
i xi

n− 2
where xi ∈ X

Figure 1: Example functionality that computes the average, omitting the single highest and the
single lowest value. Each party provides an input between 0 and k

3. Alice holds x and Bob holds y, where x, y ∈ {0, ..., 7}. They wish to compute:{
1 if x < y

0 otherwise

A semi-honest adversary corrupts Alice and learns the least significant bit of y (assume y is
written as a three bit value, e.g. 4 = 1002).

4. Alice holds x and Bob holds y, where x, y ∈ {0, 1}n. They wish to compute the inner product
of those strings modulo 2: (

n−1∑
i=0

xi · yi

)
mod 2

A semi-honest adversary corrupts Alice and learns whether the y string has a majority of 0s
or a majority of 1s. Assume that n is odd.

5. Alice and Bob each hold a string: Alice’s string k is used as an encryption key, and Bob’s
string x is plaintext. Parties wish to compute Enc(k, x) and deliver the output to both parties.
Assume the encryption scheme is correct. I.e., the following holds:

Dec(k,Enc(k, x)) = x

A semi-honest adversary corrupts Alice and learns Bob’s input in its entirety. Hint: You
might be concerned that I didn’t define security of the encryption scheme. Does it matter?

Answer 2.

2



Problem 3. Suppose Alice has an input x ∈ {0, 2, 4, ..., 8} and Bob has an input y ∈ {1, 3, 5, ..., 9}.
Here is a protocol that computes the function max(x, y):

• If Bob has input y = 9, he announces “yes” and both parties output 9 and halt. Otherwise
he announces “no” and the protocol continues.

• If Alice has input x = 8, she announces “yes” and both parties output 8 and halt. Otherwise,
she announces “no” and the protocol continues.

• If Bob has input y = 7, he announces “yes” and both parties output 7 and halt. Otherwise
he announces “no” and the protocol continues.

• If Alice has input x = 6, she announces “yes” and both parties output 6 and halt. Otherwise,
she announces “no” and the protocol continues.

• ...

• The protocol continues until some party says “yes”, at which point the output is determined
and the protocol is finished.

Construct simulators that demonstrate this protocol is secure in the presence of a semi-honest
adversary.

Answer 3.

Problem 4. Consider Problem 3, modified as follows: Alice has an input x ∈ {0, 1, ..., 9} and Bob
has an input y ∈ {0, 1, ..., 9}. The protocol is amended as follows:

• If Bob has input y = 9, he announces “yes” and both parties output 9 and halt. Otherwise
he announces “no” and the protocol continues.

• If Alice has input x = 9, she announces “yes” and both parties output 9 and halt. Otherwise,
she announces “no” and the protocol continues.

• If Bob has input y = 8, he announces “yes” and both parties output 8 and halt. Otherwise
he announces “no” and the protocol continues.

• ...

• The protocol continues until some party says “yes”, at which point the output is determined
and the protocol is finished.

Is the modified protocol still secure in the semi-honest model? If so, prove security; if not,
explain the vulnerability.

Answer 4.

Problem 5. We often assume that in 2PC, each party outputs the same value. Let’s instead
consider the case where the ideal functionality delivers separate outputs to each party.

Suppose there are two functions fA and fB and that in the ideal world, the functionality receives
x from Alice and y from Bob, then delivers only fA(x, y) to Alice and only fB(x, y) to Bob.

3



1. Give an example fA and fB where it is demonstrably insecure (i.e., less secure than the ideal
world described above) if in the real world both parties learn fA(x, y) and fB(x, y). Hint:
there are extremely simple choices of fA and fB that meet the criteria.

2. Suppose we have access to a semi-honest secure protocol that computes any function f(x, y)
and delivers this output to both Alice and Bob.

(a) Formalize a new protocol that uses the above protocol as a black-box. This new protocol
should deliver fA(x, y) to Alice and fB(x, y) to Bob.

(b) Prove your new protocol secure in the semi-honest model by constructing simulators.

You may assume that x, y, fA(x, y), and fB(x, y) are each n-bit strings.

Answer 5.

Problem 6. Some MPC techniques can be made very efficient when there are many parties and
few corruptions. For instance, in class we discussed Oblivious Transfer (OT). With few corruptions,
we can implement OT very efficiently. In this problem, consider the following setting:

• The adversary is semi-honest.

• There are three parties.

• There is an honest majority. I.e., the adversary corrupts at most one party.

Consider the following “assisted OT” functionality:

Parameters:

1. Let P0, P1, P2 be three parties.

2. The sender P0 inputs two secrets x0, x1 ∈ {0, 1}n.

3. The receiver P1 inputs a selection bit s ∈ {0, 1}.

4. The helper P2 inputs ⊥.

Functionality:

1. P0 outputs ⊥.

2. P1 outputs xs.

3. P2 outputs ⊥.

1. Construct a protocol that securely achieves the above functionality in the considered setting.
Your protocol should require no cryptographic assumptions (e.g., you do not need to assume
something like DDH) and the total number of transmitted bits should be O(n).

2. Construct simulators for each party that demonstrate your protocol is secure.

Answer 6.

4


