
CS 598CSC: Topics in Graph Algorithms Lecture date: 08/29/2024
Instructor: Chandra Chekuri Scribe: CC

1 Global Mincut

Given a graph G = (V,E) with edge capacities c : E → R+, the global mincut (or simply mincut)
value of G is defined as minS⊂V,S ̸=∅ c(δ(S)) where δ(S) is the set of edges with exactly one endpoint
in S. For unweighted multi-graphs, this is also referred to as the edge connectivity and is often
denoted by λ(G).
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It is the minimum number of edges whose deletion partitions the graph into two non-empty
components. Mincut plays an important role in several applications, in particular it arises in LP
relaxation for TSP. In addition, the structural and algorithmic understanding of mincuts plays an
indirect role in several other problems.

How does one compute the mincut? A simple and standard way was to compute it was via n−1
s-t mincut computations; fix s arbitrarily and compute s-v mincut for each v ∈ V −s. Fairly recent
work shows how one can do it with only poly-log maxflow computations — we will see this in the
next lecture. Over the years, several (very) different algorithmic approaches have been developed
for the mincut problem. One of the surprising ones is due to the work of Nagamochi and Ibaraki
based on MA-orderings [NI92] who gave a combinatorial O(mn+n2 log n)-time algorithm that does
not rely on flow at all; their approach generalizes to symmetric submodular functions. Hao and
Orlin developed an approach to combine several flow computations together via the push-relabel
method [HO94] (their approach also works for directed graphs). Karger developed elegant and
powerful random contraction based algorithms for global mincut [Kar95], leading to many results.
Two notable consequences are.

Theorem 1 (Karger and Stein [KS96]). There is a randomized algorithm that runs in O(n2 log n)
time and outputs the mincut with high probability.

Note that the algorithm is a Montecarlo one which means that we cannot be guaranteed that
the mincut found is the correct one. Karger proved the following as a consequence of his contraction
algorithm (see a later section for formal definitions and discussion).



Theorem 2 (Approximate Mincuts). The number of α-approximate mincuts in a graph is at most
O(n2α).

Karger then developed another approach, via tree packing, to obtain a randomized near-linear
time algorithm for mincut. He also was able to refine the bound on approximate mincuts via this
approach.

Theorem 3 ([Kar00]). There is a randomized algorithm that runs in time O(m log3 n) and outputs
the mincut with high probability.

While the random contraction based algorithm is taught quite frequently due to its elegance and
simplicity, the tree packing approach is more technical. More recently the tree packing approach has
led to several new results. We will discuss the tree packing approach in this lecture. Williamson’s
book on network flows [Wil19] has a chapter on global mincut algorithms though it does not cover
tree packing based approach

2 Tree packing based algorithm for mincut

Let τ(G) be the fractional tree packing value. We have seen that λ(G)/2 ≤ τ(G) ≤ λ(G). Suppose
we can compute τ(G) exactly or approximately. It seems that it only gives us a 2-approximation
to λ(G). But we will see that it can provide more. A simple but crucial definition is the following.

Definition 1. Let T = (V,ET ) be a spanning tree of G = (V,E). For an integer k ≥ 1 we say T
k-respects a cut δ(S), S ⊂ V if |E(T ) ∩ δ(S)| ≤ k. 
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Figure 1: Spanning tree shown in red edges. T 2-respects the cut (S, V − S).

Consider a mincut (S, V − S) and an optimum tree packing given by y∗T , T ∈ T where T is the
set of spanning trees of G. Since the total value of the tree packing is at least λ(G)/2 = c(δ(S))/2,
not too many trees in the packing can cross S more than twice. We formalize this in the following
technical lemma which is stated in a slightly more general form so that we can also work with
approximate tree packings. We will use p(T ) = yT∑

T yT
to deal with fractional packings.



Lemma 4. Let δ(S) be a mincut of G and consider a (1− ϵ)-approximate tree packing of G given
by yT , T ∈ T . Let p(T ) = yT∑

T yT
and let ℓ(T ) = |ET ∩ δ(S)| be the number of edges of T that cross

the cut S. Let q =
∑

T :ℓ(T )≤2 pT be the fraction of the tree packing that 2-respects S. Then

q ≥ 1

2
(3− 2

1− ϵ
(1− 1/n)).

In particular, if ϵ = 0 then q ≥ 1
2 + 1

n and if ϵ < 1/5 then q ≥ 1/4.

Proof. We have
∑

T yT ≥ (1− ϵ)τfrac(G) by assumption. We have seen that τfrac(G) ≥ n
n−1λ(G)/2.

Putting together we have ∑
T

yT ≥ (1− ϵ)
n

n− 1
λ(G)/2.

Let S ⊂ V be a mincut. We have 1 =
∑

T p(T ) =
∑

T :ℓ(T )≤2 pT +
∑

T :ℓ(T )≥3 pT . Each tree T
with ℓ(T ) ≥ 3 uses up at least 3 edges from δ(S) and each tree T with ℓ(T ) ≤ 2 uses up at least 1
edge from δ(S). Since the total capacity of δ(S) is λ(G) and the tree packing is valid,

(
∑
T

yT )(q + 3(1− q)) ≤ λ(G).

Combining with
∑

T yT ≥ (1− ϵ) n
n−1λ(G)/2, we obtain

(q + 3(1− q)) ≤ 2(1− 1/n)
1

1− ϵ
.

Simplifying yields the desired claim. ■

In other words, if the tree packing is sufficiently good approximation then a constant fraction
of the trees in the packing will cross the mincut at most twice.

Exercise 1. For any mincut (S, V −S) and any exact tree packing, there is a tree T in the support
of the packing such that T is 1-respecting with respect to S.

2.1 Algorithm for mincut

Karger’s original algorithm was more involved because there was no near-linear time approximation
algorithm for tree packing that he could use as a black-box at that time. He used a form of
sparsification and then applied an approximate tree packing algorithm on the sparsified graph
which is quite a feat. In our description we will use the algorithm for approximate tree packing
from [CQ17] as a black-box which simplifies the description.

1. Given G = (V,E) with capacities c : E → R+, compute a (1 − ϵ0)-approximate tree packing
for some fixed ϵ0 < 1/5. Let yT , T ∈ T be the packing.

2. Pick a tree T at random from the packing where the probability of picking T is pT =
yT /

∑
T yT .

3. Find the cheapest cut (S, V − S) in G such that T is 2-respecting with respect to δ(S).



The following is easy to see from Lemma 4.

Lemma 5. The algorithm outputs the mincut of G with probability at least 1/4.

We can repeat the last two steps Θ(log n)-times to increase the probability of correctness to
(1− 1/nc) for any desired constant c. Now we analyze the running time. A key ingredient is Step
3. Karger showed that one can implement the step via a clever dynamic program coupled with
link-cut tree data structure. It is worth reading.

Theorem 6 ([Kar00]). Given a graph G and a spanning tree T , there is a deterministic algorithm
that computes a minimum 2-respecting cut with respect to T in O(m log2 n) time.

As we mentioned in the previous lecture, [CQ17] gave a deterministic algorithm to compute a
(1 − ϵ)-approximate tree packing in O( 1

ϵ2
m log3 n)-time. We fix ϵ to be a constant such as 1/5,

and hence the time for this step is O(m log3 n). We only need to compute the packing once and
apply the repetition for the second and third steps to boost the probability of success. Thus, if we
do O(log n) repetitions, we obtain an O(m log3 n)-time algorithm that outputs the correct mincut
with high probability.

3 Bounding the number of approximate mincuts

How many distinct mincuts can an undirected graph have? The following theorem was first shown
by Dinitz and Karzanov, and Lomonosov [DKL76].

Theorem 7. The number of distinct mincuts in an undirected graph is at most
(
n
2

)
.

An n-cycle is the worst example with
(
n
2

)
cuts. All the mincuts of a graph can be represented

in a nice compact data structure called the cactus as was also shown in [DKL76]. See [FF09] for
a short proof. See [Cun83] for a deeper result on decomposition submodular functions. The next
two figures are taken from [FF09].

T. Fleiner and A. Frank: A quick proof for the cactus representation of mincuts 3

Claim 6. For every node v, there are two two-element tight sets containing v.

Proof. It follows from Claim 5 that there is a two-element tight set T1 = {v, x}. By
(1), there is a tight set T ′ crossing T1 that contains v. A second application of Claim
5 (with T ′ in place of T ) implies that there is a two-element tight subset T2 of T ′

which contains v, and this differs from T1.

Suppose that {v, x} and {v, y} are tight sets. Since there are exactly k/2 parallel
vx-edges and k/2 parallel vy-edges, we conclude that every node v of G has exactly
two distinct neighbours. As G is connected, it arises from a circuit by replacing each
edge with k/2 parallel copies.

Figure 1: A cactus graph

We call a loopless and 2-edge-connected graph C =
(U, F ) a cactus if each edge belongs to exactly one
circuit. This is equivalent to saying that all blocks are
circuits (allowing two-element circuits). For example,
a cactus may be obtained by duplicating each edge of
a tree. A more general cactus is shown in figure 1.

Note that the mincuts of a cactus C are exactly
those pairs of edges which belong to the same circuit
of C. The following result states that the mincuts
of an arbitrary graph have the same structure as the
mincuts of a cactus. For algorithmic aspects and re-
lated results, see [4].

Theorem 7 (Dinits, Karzanov, and Lomonosov, [1]). Let k ≥ 1 be an integer and
G = (V, E) a loopless graph for which the minimum cardinality of a cut is k. There
is a cactus C = (U, F ) and a mapping ϕ : V → U so that the preimages ϕ−1(U1) and
ϕ−1(U2) are the two shores of a mincut of G for every 2-element cut of C with shores
U1 and U2. Moreover, every mincut of G arises this way. Concisely: X is a tight set
of G if and only if ϕ(X) is a tight set of C.
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Figure 2: A graph and the cactus of its mincuts.

Proof. We use induction on |V |. As the theorem is trivial when |V | ≤ 2, we assume
that |V | ≥ 3.

Suppose first that each mincut is a star-cut and let v1, . . . , vh denote the nodes of
degree k. Let U = {u0, u1, . . . uh} be the node-set of cactus C in which u0 and ui are

EGRES Quick-Proof No. 2009-03

Figure 2: A cactus is a graph in which each edge is a single cycle (allowing for 2-edge cycles).
Alternatively, it is a 2-edge-connected graph in which each block consists of a single cycle. This
figure is from [FF09].

In contrast, the number of s-t mincuts can be very large, potentially exponential in n. We will
be interested in approximate mincuts.
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Claim 6. For every node v, there are two two-element tight sets containing v.

Proof. It follows from Claim 5 that there is a two-element tight set T1 = {v, x}. By
(1), there is a tight set T ′ crossing T1 that contains v. A second application of Claim
5 (with T ′ in place of T ) implies that there is a two-element tight subset T2 of T ′

which contains v, and this differs from T1.

Suppose that {v, x} and {v, y} are tight sets. Since there are exactly k/2 parallel
vx-edges and k/2 parallel vy-edges, we conclude that every node v of G has exactly
two distinct neighbours. As G is connected, it arises from a circuit by replacing each
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We call a loopless and 2-edge-connected graph C =
(U, F ) a cactus if each edge belongs to exactly one
circuit. This is equivalent to saying that all blocks are
circuits (allowing two-element circuits). For example,
a cactus may be obtained by duplicating each edge of
a tree. A more general cactus is shown in figure 1.

Note that the mincuts of a cactus C are exactly
those pairs of edges which belong to the same circuit
of C. The following result states that the mincuts
of an arbitrary graph have the same structure as the
mincuts of a cactus. For algorithmic aspects and re-
lated results, see [4].

Theorem 7 (Dinits, Karzanov, and Lomonosov, [1]). Let k ≥ 1 be an integer and
G = (V, E) a loopless graph for which the minimum cardinality of a cut is k. There
is a cactus C = (U, F ) and a mapping ϕ : V → U so that the preimages ϕ−1(U1) and
ϕ−1(U2) are the two shores of a mincut of G for every 2-element cut of C with shores
U1 and U2. Moreover, every mincut of G arises this way. Concisely: X is a tight set
of G if and only if ϕ(X) is a tight set of C.
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Proof. We use induction on |V |. As the theorem is trivial when |V | ≤ 2, we assume
that |V | ≥ 3.

Suppose first that each mincut is a star-cut and let v1, . . . , vh denote the nodes of
degree k. Let U = {u0, u1, . . . uh} be the node-set of cactus C in which u0 and ui are
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Figure 3: A graph and the cactus representation of its mincuts. This figure is from [FF09].

Definition 2 (α-approximate mincut). For α ≥ 1, a cut S ⊂ V is an α-approximate mincut if
c(δ(S)) ≤ αλ(G).

Karger used tree packing to prove the following theorem.

Theorem 8 ([Kar00]). The number of α-approximate mincuts in a graph is O(n⌊2α⌋).

We prove the preceding theorem via the description in [CQX20]. We will work with an optimum
fractional tree packing {(Ti, yi)}. Recall that an optimum fractional tree packing can be found via
a solution to a linear program which has m non-trivial constraints, so we can assume that the
support size of y (that is, the number of i such that yi > 0) is at most m.

Consider an α-approximate cut S ⊂ V . Fix h = ⌈ 2
α⌉. Let qh,α be the fraction of tree packing

that h-respects S ⊂ V . Using a similar analysis as the one in Lemma 4, we can argue that

qh,α ≥ 1

h
(1− (2α− ⌊2α⌋))(1− 1/n).

Moreover, at least one tree in the packing h-respects the cut. If we use this latter fact, then the
total number of α-approximate cuts is at most m ·nh ≤ m ·n⌊2α⌋. We can do better by noticing that
qh,α > 0 is a fixed constant for any fixed α. Suppose N is the number of α-approximate mincuts.
For any fixed α-approximate mincut, qh,α fraction of the tree packing is h-respecting with respect to
the cut. Fix a single tree. How many distinct h-respecting cuts can we obtain from T? We remove
at most h edges from T to create at most h + 1 components. We can combine these components
into two sides of a cut. Hence, each tree T can correspond to at most 2h+1

(
n
n

)
≤ 2h+1nh cuts.

We thus claim that the number of α-approximate cuts is at most 2h+1nh/qh,α. Why? It is easier
to think of the cut packing as consisting of N distinct trees (for N very large) where each tree T ,
p(T ) = 1/N . As we argued each tree gives rise to at most 2h+1nh cuts at most. For each distinct
α-approximate cut S, there are at least qh,αN of the N trees are h-respecting with respect to it.
Thus, if L is the number of distinct α-approximate cuts then L · qh,αN ≤ 2h+1nhN which implies
that L ≤ 2h+1nh/qh,α, as desired.

See [BCW23] for a very different approach to bounding the number of approximate mincuts.
The bound they achieve is n4α+2 which is weaker that what we proved, but the proof technique is
different and elegant.

Deterministic algorithm: Karger’s algorithm is a randomized near-linear time algorithm for
global mincut. Designing a deterministic algorithm was a long-standing open problem. A very



recent algorithm obtained such an algorithm [HLRW24] (see the paper for the history and related
work that preceded it). The precise running time is not stated since there are many log factors.
Moreover, it appears that the running time depends on logW where W is the largest integer
capacity. This is in contrast to the randomized algorithm of Karger which is strongly polynomial.
The algorithm is quite involved. Is there a simple deterministic near-linear time algorithm for the
global mincut?
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