
CS 598CSC: Topics in Graph Algorithms Lecture date: 09/17/2024
Instructor: Chandra Chekuri Scribe: CC

1 Introduction to Sparsest Cut

Sparsest Cut is a fundamental problem in graph algorithms with many applications and connec-
tions. There are several variants that are considered in the literature and they are closely related
but it is useful to have proper terminology and understand the similarities and differences.

Non-Uniform Sparsest Cut: We consider the general one first. The input is a graph G =
(V,E) with non-negative edge capacities c : E → R+ and a set of pairs (s1, t1), ..., (sk, tk) along
with non-negative demand values D1, D2, . . . , Dk. When considering undirected graphs the demand
pairs are unordered — by this we mean that we do not distinguish (s1, t1) from (t1, s1). One can
also think of the demand values as “weights” but the demand terminology makes more sense when
considering the dual flow problem. Given a set/cut S ⊆ V the sparsity of the cut S is defined as the

ratio c(δ(S))
(
∑

i:S∩{si,ti}=1 Di)
. The numerator is the capacity of the cut and the denominator is the total

demand of the pairs separated by S. The goal is to find the cut S with minimum sparsity. In other
words we are trying to find the best “bang per buck” cut: how much capacity do we need to remove
per amount of demand separated? It is sometime convenient to consider G as the supply graph and
the demands as forming a demand graph H = (V, F) where F represents the pairs and we associate
D : F → R+ to represent the demand value (alternatively we can also consider multigraphs). With

this representation of the demand pairs, the sparsity of cut S is simply c(δG(S))
D(δH(S)) note that δG(S)

represents the supply edges crossing S and δH(S) represents the demand edges crossing the cut S.

Remark 1. One can define a cut as removing a set of edges. This may lead to more than two
components. In the case of sparsest cut in undirected graphs it suffices to restrict attention to cuts
of the form δ(S) for some S ⊆ V . It is a useful exercise to see why there is always a sparsest
cut of that form for any given instance. This is not necessarily true for directed graphs or even in
undirected graphs with node-weights or in hypergraphs.

Uniform Sparsest Cut: Very often when people say Sparsest Cut they mean the uniform
version. This is the version in which D(u, v) = 1 for each unordered pair of vertices (u, v). For these

demands the a cut S is c(δG(S))
|S||V \S| . Alternatively the demand graph H is a complete graph with unit

demand values on each edge. A slightly generalization of Uniform Sparsest Cut is obtained by
considering demands induced by weights on vertices (the dual flow instances are called Prodcut
Multicommodity Flow instances). There is a weight function π : V → R+ on the vertices and
and demand D(u, v) for pair (u, v) is set to be π(u)π(v). Note that if π(u) = 1 for all u then we
obtain Uniform Sparsest Cut. If π(u) ∈ {0, 1} for all u then we are focusing our attention on
sparsity with respect to the set V ′ = {v | π(v) = 1} since the the vertices with π(u) = 0 play no
role. This may seem unnatural at first but it is closely connected to expansion and conductance as
we will see below.

Expansion: The expansion of a multi-graph G = (V,E) is defined as

minS:|S|≤|V |/2
|δ(S)|
|S| . Recall that G is an α-expander if the expansion of G is at least α. A random

3-regular graph is α-expander with α = Ω(1) with high probability. Thus, to find an α-expander
one can obtain an efficient randomized algorithm by picking a random graph and then verifying its
expansion. However, checking expansion is coNP-Hard. Expansion is closely related to Uniform
Sparsest Cut. Note that when |S| ≤ |V |/2 we have

1

|V |
|δ(S)|
|S|

≤ |δ(S)|
|S||V \ S|

≤ 2

|V |
|δ(S)|
|S|

.

Thus Expansion and Uniform Sparsest Cut are within a factor of 2 of each other. Sometimes
it is useful to consider expansion with vertex weights w : V → R+. Here the expansion is defined as

minS:w(S)≤w(V)/2
|δ(S)|
w(S) . This corresponds to product multicommodity flow instances where π(v) =

w(v). The term Conductance is used to denote the quantity |δ(S)|
vol(S) where vol(S) =

∑
v∈S deg(v)

(here vol is short for volume). When a graph is regular the definition of expansion and conductance
are the same but not in the general setting. Note that we can capture conductance by setting weights
on vertices where w(v) = deg(v).

Some key applications: Uniform Sparsest Cut is fundamentally interesting because it helps
us directly and indirectly solve the Balanced Separator problem. In the latter problem we want
to partition G = (V,E) into two pieces G1 = (V1, E1) and G2 = (V2, E2) where |V1| and |V2 are
roughly the same size so that we minimize the number of edges between V1 and V2. One can
repeatedly use a sparse cut routine to get an approximately balanced separator. The other key
application is to certify expansion of a graph. Expander graphs and relatives arise in many many
applications and knowing whether a graph is expanding or not is very useful — a well-known survey
is by Hoory, Liniar and Wigderson [HLW06].

2 LP Relaxation and Maximum Concurrent Flow

How do we write an LP relaxtion for Sparsest Cut? This is less obvious than it is for Multicut
and other cut problems where we have explicit terminal pairs that we wish to separate. We consider
Non-Uniform Sparsest Cut. First we develop an integer program. We have two sets of variables.
For each pair (si, ti) we have a variable yi to indicate whether we want to separate the pair i. For
each edge we have a variable xe to indicate whether e is cut. If we decide to separate pair i then
for every path between si and ti we should cut at least one edge on the path — this is similar to
relaxations we have seen before. We let Psi,t be the set of all si-ti paths. The following captures
the problem:

min

∑
e∈E cexe∑k
i=1Diyi∑

e∈p
xe ≥ yi p ∈ Psi,ti , i ∈ [k]

xe ∈ {0, 1} e ∈ E

yi ∈ {0, 1} i ∈ [k]

Note, however, that the objective is a ratio and not linear. It is a standard trick to obtain an
LP relaxation wherein we normalize the denominator in the ratio to 1 and relax the variables to
be real-valued. Thus we obtain the following LP relaxation.

min
∑
e∈E

cexe

k∑
i=1

Diyi = 1∑
e∈p

xe ≥ yi p ∈ Psi,ti , i ∈ [k]

xe ≥ 0 e ∈ E

yi ≥ 0 i ∈ [k]

Exercise 1. Show that the LP is indeed a relaxation for the Sparsest Cut problem. Formally,
given an integer feasible solution with sparsity λ find a feasible solution to the relaxation such that
its value is no more than λ.

Now we consider the dual LP. For each path p ∈ ∪iPsi,ti there is a non-negative variable yp
which is the amount of “flow” sent on path p. There is a variable λ that we will interpret later.

maxλ∑
p∈Psi,ti

yp ≥ λDi i ∈ [k]

k∑
i=1

∑
p∈Psi,ti ,e∈p

yp ≤ ce e ∈ E

yp ≥ 0 p ∈ Psi,ti , i ∈ [k]

The dual LP is a multicommodity flow. It solves the Maximum Concurrent Multicommod-
ity Flow problem for the given instance. It finds the largest value of λ such that there is a feasible
multicommodity flow for the given pairs in which the flow routed for pair (si, ti) is at least λDi.
It is called concurrent flow since we need to route all demand pairs to the same factor which is in
constrast to the dual of Multicut which corresponds to the maximum throughput multicommodity
flow (in which some pairs may have zero flow while others have a lot of flow).

Exercise 2. Suppose we have a cut S with sparsity c(δ(S))/(
∑

i:S∩{si,ti}=1Di). Why is the maxi-
mum concurrent flow at most the sparsity of S?

Note that the LP can be solved via the Ellipsoid method. One can also write a compact LP via
distance variables which will help us later to focus on constraining the metric in other ways.

min
∑
uv∈E

c(uv)d(uv)

k∑
i=1

Did(siti) = 1

d is a metric on V

Flow-cut gap: The flow-cut gap in this context is the following equivalent way of thinking about
the problem. Consider a multicommodity flow instance on G with demand pairs (s1, t1), . . . , (sk, tk)
and demand values D1, . . . , Dk. Suppose G satisfies the cut-condition, that is, for every S ⊆ V the
capacity c(δ(S)) is at least the demand separated by S. Can we route all the demand pairs? This is
true when k = 1 but is not true in general even for k = 3 in undirected graphs. The question is the
maximum value of λ such that we can route λDi for every pair i? The worst-case integrality gap
of the preceding LP relaxation for Sparsest Cut is precisely the flow-cut gap. One can ask about
the flow-cut gap for all graphs, a specific class of graphs, for a specific class of demand graphs, a
specific class of supply and demand graphs, and so on.

In these notes we will establish that the flow-cut gap in general undirected graphs is at most
O(log k). And there are instances where the gap is Ω(log k) which are uniform instances — in fact
the same expander based example we saw for Multicut shows that the gap is Ω(log n) even for
Uniform Sparsest Cut. It is conjectured that the gap is O(1) for planar graphs but the best
upper bound we have is O(

√
log n). Resolving the flow-cut gap in planar graphs is a major open

problem.

Exercise 3. Use the expander construction that we saw for Multicut to show that the flow-cut
gap for Uniform Sparsest Cut can be Ω(log n).

Remark 2. Approximating the Sparsest Cut problem is not the same as establishing flow-cut
gaps. One can obtain improved approximations for Sparsest Cut via stronger relaxations than
the natural LP. Indeed the best approximation ratio for Sparsest Cut is O(

√
log n) via an SDP

relaxation.

3 Rounding LP via Connection to Multicut

There are close connections between Sparsest Cut andMulticut. By repeatedly using Sparsest
Cut routine and Set Cover style analysis prove the following.

Exercise 4. Suppose there is an α(k, n)-approximation for Non-Uniform Sparsest Cut. Prove
that this implies an O(α(k, n) ln k)-approximation for Multicut.

Can we prove some form a converse? That is, can we use an approximation algorithm for
Multicut to obtain an approximation algorithm for Sparsest Cut? Note that if someone told
us the pairs to separate in an optimum solution to the Sparsest Cut instance then we can use an
(approximation) algorithm for Multicut to separate those pairs. Here we show that one can use
information from the LP solution to figure out which pairs to separate. We sketch the argument
and focus our attention on the simpler case when Di = 1 for all i ∈ [k]. We give this argument
even though it does not lead to the optimum ratio, for historical interest, as well as to illustrate a
useful high-level technique that has found applications in other settings.

Identifying the pairs to separate from LP solution: Suppose we solve the LP and obtain
a feasible solution (x, y). yi indicates the extent to which pair i is separated. Suppose we have
an ideal situation where yi ∈ {0, p} for every i. Let A = {i | yi = p}. We have |A| = 1/p since∑

i yi = 1. Then it is intutively clear that the LP is separating the pairs in A. We can then solve
the Multicut problem for the pairs in A and consider the ratio of the cost of the cut to |A|. How do

we argue about this algorithm? We do the following. Consider a fractional assignment x′ : E → R+

where x′e = min{1, xe/p}; in other words we scale each xe by 1/p. Note that yi = dx(si, ti).
Since we scaled up each xe by 1/p it is not hard to see that dx′(si, ti) ≥ 1; in other words x′ is
a feasible solution to the Multicut instance on G for the pairs in A. The fractional cost of x′ is∑

e cex
′
e ≤

∑
e cexe/p. Thus, by the algorithm for Multicut in the previous chapter, we can find a

feasible Multicut E′ ⊆ E that separates all pairs in A and c(E′) = O(log k)
∑

e cexe/p. What is
the sparsity of this cut? It is c(E′)/|A| which is O(log k)

∑
e xe. Thus the sparsity of the cut is

O(log k)λ where λ is the value of the LP relaxation.
Now we consider the general setting. Recall that

∑
i yi = 1. We partition the pairs into groups

that have similar yi values. For j ≥ 0, let Aj = {i | yi ∈ (1/2j+1, 1/2j]. Thus all pairs in Aj have a
yi value that are within a factor of 2 of each other.

Claim 3. There exists a j ≤ log2 k such that
∑

i∈Aj
yi ≥ 1

2(1+log2 k)
≥ 1

4 log k .

Proof. Consider any i such that i ∈ Aj where j > log2 k. By definition we have yi ≤ 1/2k. Since
there are only k pairs,

∑
j>log2 k

∑
i∈Aj

yi ≤ k/2k ≤ 1/2. Thus
∑

j≤log2 k

∑
i∈Aj

yi ≥ 1/2 and

therefore, there must be a j ≤ log2 k such that
∑

i∈Aj
yi ≥ 1

2(1+log2 k)
(there are only so many

groups). ■

Consider the Aj with
∑

i∈Aj
yi ≥ 1

4 log2 k
. For each i ∈ Aj we have 1/2j+1 ≤ yi ≤ 1/2j .

Therefore |A|j ≥ min{1, 2j/4 log2 k}. The algorithm now separates the pairs in Aj via an algorithm
for Multicut.

Claim 4. Consider the fractional solution x′ : E → [0, 1] where x′e = min{1, 2j+1xe}. Then
dx′(si, ti) ≥ 1 for all i ∈ Aj. Thus x′ is a feasible fractional solution to the Multicut LP for
separating the pairs in Aj.

Via the rounding algorithm in the preceding chapter we have there is a set E′ ⊆ E such that
E′ is a feasible multicut for the pairs in Aj and c(E′) = O(log k)2j+1

∑
e cexe. The sparsity of this

cut is c(E′)/|Aj | = O(log2 k)
∑

e cexe. Thus we obtained an O(log2 k)-approximation for Sparsest
Cut when Di = 1 for each pair.

Remark 5. When demands are not 1 (or identical) the preceding argument yields an O(log k logD)
approximation where D =

∑
iDi with the normalization that Di ≥ 1 for all i.

4 Rounding via ℓ1 embeddings

Leighton and Rao [LR99], in their seminal work, obtained an O(log n) approximation and flow-
cut gap for Uniform Sparsest Cut and showed many applications. They also showed a lower
bound of Ω(log n) on the flow-cut gap for Uniform Sparsest Cut via expanders which was also
an important connection. This led to O(log2 n)-approximation for Sparsest Cut and it was an
open problem to obtain a tight conjectured bound of O(log n). The optimal rounding of the LP
relaxation turns out to go via metric embedding theory and this connection was discovered by
Linial, London and Rabinovich [LLR95] and Aumann and Rabani [AR98]. We need some basics in
metric embeddings to point out the connection and rounding. Even though the metric embedding
machinery is powerful, it can seem like magic. The more basic ideas for Uniform Sparsest Cut
based on region growing is useful to know. One can find the details in [LR99] or in a more accessible
form in the book of Williamson and Shmoys [WS11].

4.1 A digression through trees

It is instructive to consider the simple setting when G is a tree T = (V,E). In this case it
is easy to find the sparsest cut. For each edge e ∈ T we can associate a cut Se which is one
side of the two components in T − e. The capacity of the cut δ(Se), by defintion, is ce. Let
D(e) =

∑
i:|Se∪{si,ti}|=1Di be the demand separated by e. The sparsity of the cut Se is simply

ce/De. Finding sparsest cut in a tree is easy from the following exercise.

Exercise 5. The sparsest cut in a tree is given by argmine ce/De.

A more interesting exercise is to prove that the LP relaxation gives an optimum solution on a
tree.

Lemma 6. Let (x, y) be a feasible solution to the LP with objectie value λ. If G is a tree T then
there is an edge e ∈ T such that ce/De ≤ λ.

Proof. We have λ =
∑

e cexe∑
i Didx(si,ti)

where dx(si, ti) is the shortest path distance between si and ti.

There is a unique path Psi,ti from si to ti in a tree so dx(si, ti) =
∑

e∈Psi,ti
xe. Thus,

λ =

∑
e cexe∑

iDidx(si, ti)

=

∑
e cexe∑

iDi
∑

e∈Psi,ti
xe

=

∑
e cexe∑
eDexe

≥ min
e

ce
De

.

In the last inequality we are using the simple fact that a1+a2+...+an
b1+b2+...+bn

≥ mini
ai
bi

for positive a’s and
b’s. ■

What made the proof work for trees? Is there a more general phenomenon than the fact that
trees are pretty simple structures? It turns out that the key fact is that shortest path distances
induced by a tree are ℓ1 metrics or equivalently cut metrics.

4.2 Cut metrics, line metrics, and ℓ1 metrics

Let (V, d) be a finite metric space. We will be interested in two special types of metrics.

Definition 1. Let V be a finite set and let S ⊆ V . The metric dS associated with the cut S is the
following: dS(u, v) = 1 if |S ∩ {u, v}| = 1 and dS(u, v) = 0 otherwise.

Definition 2. Let (V, d) be a finite metric space. The metric d is a cut metric if there is a set
S ⊂ V such that d = dS. d is in the cut cone (or in the cone of cut metrics) if there exist
non-negative scalars yS , S ⊂ V such that d(u, v) =

∑
S⊂V ySdS(u, v) for all u, v ∈ V .

Definition 3. Let (V, d) be a finite metric space. The metrid d is a line metric if there is a
mappting f : V → R (the real line) such that d(u, v) = |f(u)− f(v)| for all u, v ∈ V .

Definition 4. Let (V, d) be a finite metric space. The metric d is an ℓ1 metric1 if there is some
integer d and a mapping f : V → Rd (Euclidean space in d dimensions) such that d(u, v) =
|f(u)− f(v)|1 (the ℓ1 distance) for all u, v ∈ V .

Claim 7. A metric (V, d) is an ℓ1 metric iff it is a non-negative combination of line metrics (in
the cone of line metrics).

Proof Sketch. If d is an ℓ1 metric then each dimension corresponds to a line metric and since the ℓ1
metric is separable over the dimensions it is a non-negative combination of line metric. Conversely,
any non-negative combination of line metrics can be made into an ℓ1 metric where each line metric
becomes a separate dimension (scalar multiplication of a line metric is also a line metric). ■

Lemma 8. d is an ℓ1 metric iff d is in the cut cone.

Proof. Consider the metric dS . It is easy to that it is a simple line metric. Map all vertices in S to
0 and all vertices in V −S to 1. If d is in the cut cone then it is a non-negative combination of the
cut metrics, and hence it is a non-negative combination of line metrics, and hence an ℓ1 metric.

To prove the converse, it suffices to argue that any line metric is in the cut cone. Let
V = {v1, v2, . . . , vn} and let d be a line metric on V . Without loss of generality assume that
the coordinates of the points corresponding to the line metric d are x1 ≤ x2 ≤ xn on the real line.
For 1 ≤ i < n let Si = {v1, v2, . . . , vi}. It is not hard to verify that

∑n−1
i=1 |xi+1 − xi|dSi = d. ■

4.3 Brief introducton to metric embeddings

Let (V, d) me a finite metric space. Note that any finite metric space can be viewed as one that
is derived from the shortest path metric induced on a graph with some non-negative edge lengths.
If G = (V,E) is a simple graph and ℓ : E → R+ are some edge-lengths, the metric induced on
V depends both on the “topology” of G as well as the lengths. Finite metrics can encode graph
structure and hence can be diverse. When trying to round we may want to work with simpler
metric spaces. One way to do this is to embed a given metric space (V, d) into a simpler host metric
space (V ′, d′). An embedding is simply a mapping of V to V ′. Even though we may be interested
in finite metric spaces, the host metric space can be continuous/infinite such as the Euclidean
space in some dimenstion d. Embedding typically distorts the distances and thus one wants to find
embeddings with small distortion. We will focus on relative notion of distortion; additive notions
are also explored in the literature although they are very restrictive due to lack of scale invariance.

Definition 5. An embedding of a finite metric space (V, d) to a host metric space (V ′, d′) is a
mapping f : V → V ′. The embedding is an isometric embedding if d(u, v) = d′(f(u), f(v)) for all
u, v ∈ V . An embedding is a contraction if d′(f(u), f(v)) ≤ d(u, v) for all u, v ∈ V . An embedding
is non-contracting if d′(f(u), f(v)) ≥ d(u, v) for all u, v ∈ V .

Definition 6. Let (V, d) and (V ′, d′) be two metric spaces and let f : V → V ′ be an embedding.

The distortion of f is maxu,v∈V,u̸=v max{ d(u,v)
d′(f(u),f(v)) ,

d′(f(u),f(v))
d(u,v) }.

1We define ℓ1 metric with respect to finite dimensional embeddings. Technically we can allow infinite dimensional
embeddings but they are not needed for finite metrics. Moreover, it is algorithmically more useful to confine attention
to finite dimensional embeddings.

Of particular importance are embeddings of finite metric spaces into Euclidean space Rd where
the distance in the host space is measured under a norm. Examples include ℓ1, ℓ2, ℓ∞. An embedding
of a finite metric space (V, d) into Rd means that we map each v to a point (x1, x2, . . . , xd) and the
distance between say x, y is measured as ∥x− y∥ for some norm of interest.

The dimension d is also important in various applications but in some settings like with Spars-
est Cut the dimension is not important.

Theorem 9 (Bourgain). Any n-point finite metric space can be embedded into ℓ2 (and hence also
ℓ1) with distortion O(log n). Moreover the embedding is a contraction and can be constructed in
randomized polynomial time and embeds points into Rd where d = O(log2 n).

In fact one can obtain a refined theorem that is useful for Sparsest Cut.

Theorem 10 (Bourgain). Let (V, d) be n-point finite metric and let S ⊆ V with |S| = k. Then

there is a randomized polynomial time algorithm to compute an embedding f : V → RO(log2 n) such
that (i) the embedding is a contraction (that is, ∥f(u)− f(v)∥1 ≤ d(u, v) for all u, v ∈ V and (ii)
for every u, v ∈ S, ∥f(u)− f(v)∥1 ≥

c
log kd(u, v) for some universal constant c.

4.4 Utilizing the ℓ1 embedding

We saw that the integrality gap of the LP is 1 on trees since the shortest path metric on trees is
in the cut cone (equivalently ℓ1-embeddable). More generally one can prove that if the shortest
path metric on a graph G embeds into ℓ1 with distortion α then the integrality gap of the LP for
Sparsest Cut is at most α. This will imply an O(log n)-integrality gap via Bourgain’s theorem
since any n point finite metric embeds in to ℓ1 with distortion O(log n).

Theorem 11. Let G = (V,E) be a graph. Suppose any finite metric induced by edge lengths on E
can be embedded into ℓ1 with distortion α. Then the integrality gap of the LP for Sparsest Cut
is at most α for any instance on G.

Proof. Let (x, y) be a feasible fractional solution and let d be the metric induced by edge lengths

given by x. Let λ be the value of the solution and recall that λ =
∑

uv∈E c(uv)d(uv)∑k
i=1 Did(si,ti)

.

Since d can be embedded into ℓ1 with distortion at most α and any ℓ1 metric is in the cut-cone,
it implies that there are scalaras zS , S ⊂ V such that for all u, v

1

α

∑
S⊂V

ySdS(u, v) ≤ d(u, v) ≤
∑
S⊂V

ySdS(u, v).

Here we assumed without loss of generality that the embedding is a contraction. For a set
S ⊂ V we use Dem(δ(S)) =

∑
i:|S∩{si,ti}|=1Di to denote the total demand crossing the cut S.

λ =

∑
uv∈E c(uv)d(uv)∑k
i=1Did(si, ti)

≥ 1

α

∑
uv∈E c(uv)

∑
S⊂V zSdS(uv)∑k

i=1Di
∑

S⊂V dS(si, ti)
(using embedding of d with distortion α

=
1

α

∑
S⊂V zSc(δ(S))∑

S⊂V zSDem(δ(S))

≥ 1

α
min
S⊂V

c(δ(S))

Dem(δ(S))
.

Thus there is a cut whose sparsity is at most α · λ. ■

Polynomial-time algorithm: How do we fine a sparse cut? The preceding proof used the em-
bedding of d into the cut-cone. The proof shows that one of the cuts with zS > 0 has sparsity at
most α ·λ. Recall the proof that a metric is in the cut-cone iff it is ℓ1-embeddable. That argument
shows the following. Suppose we have an ℓ1 embedding into d-dimensions. Each dimension corre-
sponds to a line-embedding. Each line embedding is in the cut-cone with only n − 1 cuts used to
express it. Thus, given an ℓ1 embedding into d dimensions with distortion α we only need to try
d(n− 1) cuts and one of them will be guaranteed to have sparsity at most α · λ.

Via Theorem 10 we can obain an O(log k) randomized approximation and the algorithm is
described below.

SparseCutviaEmbedding

1. Solve LP relaxation to obtain (x, y) and metric dx on V

2. Use Theorem 10 to obtain map f : V → Rd where d = O(log2 n)

3. For i = to d do

(a) Let vj1 , vj2 , . . . , vjn be the sorting of V according to dimension i

(b) For h = 1 to n− 1 let Si,h = {vj1 , vj2 , . . . , vjh}

4. Among all cuts Si,h with 1 ≤ i ≤ d and 1 ≤ h ≤ n − 1 output the one with the smallest
sparsity.

Exercise 6. Use the refined guarantee in 10 and the proof outline in 11 to show that the described
algorithm is a randomized O(log k)-approximation algorithm for Sparsest Cut.

4.5 Line embeddings, ℓ1 embeddings and tree embeddings

Bourgain’s theorem shows that any finite metric space on n points embeds into ℓ1 with distortion
O(log n). This can also be derived via probabilistic tree embeddings because every tree metric
embeds into ℓ1 isometrically (that is, without any distortion or with distortion 1).

Exercise 7. Prove formally that if a finite metric (V, d) can be probabilistically approximated via
dominating tree metrics with distortion α then it can be embedded into ℓ1 with distortion α. Is the
resulting map an expansion or a contraction?

For general metrics, tree embeddings provide a more constrained space while yielding the same
worst-case distortion. However, one can ask if ℓ1 embeddings provide better distortion for concrete
graph classes. Indeed this is the case. For instance consider a ring network (a cycle with capaci-
ties). One can prove that tree embeddings require a distortion 2. However the ring metric can be
isometrically embedded into ℓ1. Thus, the flow-cut gap on ring networks is 1 which is not obvious.

Exercise 8. Prove that the metric on a ring network emebeds into ℓ1 isometrically.

Planar graphs are an important class of graphs for a number of reasons, both from a theoretical
and applications point of view. They also pave the way to the class of proper minor closed families
of graphs. There is a famous conjecture that the flow-cut gap in planar graphs is O(1) [GNRS99].
Interestingly, for tree embeddings there is a lower bound of Ω(log n) even on the special case of
planar graphs called series parallel graphs. Thus, tree embeddings are not powerful enough to prove
the conjecture. Rao proved that the flow-cut gap is O(

√
log n) via ℓ1 embeddings, thus separating

the general graph case from planar graph case. For series-parallel graphs we know that the flow-
cut gap is a tight bound of 2 and establishing this tight bound took a fair amount of work. For
Uniform Sparsest Cut, [KPR93] showed that the flow-cut gap in planar graphs is O(1). One
can show a tight connection between embedebbility into ℓ1 and flow-cut gap [GNRS99].

We saw that ℓ1 embeddings are a non-negative combination of line embeddings. A particular
type of line-embedding is called a Frechet embedding. Let (V, d) be a metric space and let S ⊆ V .
Then we can define a mapping f : V → R to the real line where f(v) = d(S, v), that is the distance
of v from S. Note that all vertices in S get mapped to 0. And the mapping is a contraction.
Many results in embeddings into ℓp spaces are based on using Frechet embeddings in various clever
and often highly non-trivial ways. Bourgain’s embedding is, in particular, based on picking many
random sets and combining the resulting Frechet embeddings. Line embeddings are simple and
have substantial power on their own. Rabinovich [Rab08] defined the following notion of average
distortion for line embeddings.

Definition 7. Let (V, d) be a metric space and let w : V × V → R+ be a non-negative symmetric
weight/demand function on the vertices. We say that a line embedding f : V → R is has average
weighted distortion α for some α ≥ 1 if∑

uv

w(uv)|f(u)− f(v)| ≥ 1

α

∑
uv

w(uv)d(uv).

Note that a contraction implies
∑

uv w(uv)|f(u) − f(v)| ≤
∑

uv w(uv)d(uv) so we are mainly
interested in lower bounding the average distances.

Bourgain’s result in fact implies the following.

Theorem 12. For any n point metric space (V, d) and any weight function w : V × V → R+ there
is a line embedding with average weighted distortion O(log n).

One can use line embeddings with average distortion to prove flow-cut gap. You should think
of the weight w(uv) as the demand D(uv) for pair uv.

Exercise 9. Prove that the flow-cut gap for Sparsest Cut is O(log n) using Theorem 12.

For product multicommodity flow the demand D(uv) is of the form π(u)π(v). Rabinovich [?]
showed that existing results such as [KPR93] can be interpreted as providing line embeddings
with low average distortion for these demands/weights. Line embeddings turn out to be very
relevant when considering node capacities and directed graphs (among other generalizations) where
ℓ1 embedding do not quite work. They are also relevant in spectral methods and SDP methods.
We refer the reader to [FHL05] for the relevance of line embeddings in node-capacitated settings
and their utility beyond node-capacities [CKRV12].

5 SDP Relaxation

Can we obtain a better approximation than O(log k) for sparsest cut? Using semi-definite program-
ming based relaxation, Arora, Rao and Vazirani [ARV09] obtained an O(

√
log n)-approximation for

Uniform Sparsest Cut (and more generally product instances). Building on this work, Arora,
Lee and Naor [ALN08, ALN07] obtained an O(

√
log n log log n)-approximation for Sparsest Cut.

Currently these are the best approximation algorithms known for these problems. There was a
conjecture that the SDP based relaxation would yield an O(1)-approximation but it was shown
that the integrality gap is essentially close to Ω(

√
log n); this required substantial mathematical

work.

6 Spectral Relaxation for Conductance

As we said expander graphs are very important. However, certifying expansion is co-NP hard. In
several applications it is important to obtain constant-degree expanders with constant expansion.
The approximation algorithms we saw are not useful in this regime. It turns out that there is a
very different method based on spectral graph theory that helps in this regime. For an undirected
graph on n vertices one can associate a symmetric matrix called the Laplacian LG. The matrix
has the following entries. The diagonal entry for i is deg(vi). We have LG[i, j] = LG[i, j] = −1.
Since this matrix is symmetric all its eigen values are real. More over, this matrix is also positive
semidefinite (PSD) and hence all its eigen values are non-negative. Let 0 = λ1 ≤ λ2 ≤ . . . λn be
its eigen values (it is not hard to verify that 0 is an eigen value with eigen vector being the all
1’s vector). A well-known and famous result in spectral graph theory is the following Cheeger’s
inequality on the conductance of G.

λ2

2
≤ ϕ(G) ≤

√
2λ2

Thus λ2 provides a constant factor approximation for the conductance when the conductance
is a constant! Note that expansion and conductance are related by the maximum degree and hence
when the degree is small and constant one can use λ2 to certify expansion. Due to its importance for
certifying expansion/conductance, some use λ2 as the definition of expansion since it is computable
and also helps in construction of expanders.

7 Node capacities and Directed Graphs

We typically discuss s-t cuts and other problems such as Sparsest Cut cut with edge capacities.
One can define cut problems with node capacities; for instance Menger’s theorem on node disjoint
paths is an example. In the s-t case it is typical to reduce the node-capacitated problems to edge
capacitated case when the graph is directed. However this reduction does not apply when the graph
is undirected. When dealing with more complicated problems involving multicommodity flows and
cuts, the directed graph problems often become harder than their undirected graph counterparts.
And thus one has to consider node-capacitated undirected graph problems separately.

In the context of Uniform Sparsest Cut, node capacitated cuts are quite important since
they are closely related to the notion of treewidth of a graph. It is a graph parameter and tree
decompositions associated with treewidth play a fundamental role in graph structure theory and

many algorithmic applications. Treewidth is NP-hard to compute but an α approximation for
Uniform Sparsest Cut implies an O(α)-approximation for treewidth. We think of node separator
as a set of vertices S such that G − S has (at least) two non-trivial components. Sometimes one
uses the terminology (A,S,B) for disjoint sets A,B, S with S as the separation if there is no edge
between A and B (all paths between A and B goe via S). The cost/weight of the cut/separation
is now the cost/weight of the separator set S. When considering sparse cuts and the like there
is a bit of an added complication because S itself is a set of vertices which may have demands
associated with them. Handling this requires some care and proper definitions. The existing
algorithms for Uniform Sparsest Cut can be generalized with additional technical work (one
needs to work with line embeddings rather than ℓ1 embeddings) to handle node capacities. This
leads to an O(

√
log n)-approximation for Uniform Sparsest Cut and a corresponding algorithm

for treewidth. See [FHL05].
Sparsest Cut in directed graphs is more difficult. The natural definition, motivated by ob-

structions to routing, is the following. We are given a directed edge-capcitated graph G = (V,E)
and a set of k ordered demand pairs (s1, t1), . . . , (sk, tk) each with a non-negative demand Di. We
think of a cut as a set of edges E′ ⊆ E. Removing E′ disconnects some pairs and the sparsity is
simply c(E′)/dem(E′) where dem(E′) is the demand separated by E′. Unlike undirected graphs
minimal E′ cuts do no induce bipartititions of the vertex set. It turns out that the flow-cut gap (for
Multicut also) can be as large as k [SSZ04], and also Ω(n11/27 [CK09]. More over, [CK09] prove
hardness of approximation close to polynomial factors. However, there is an important special case
of symmetric demands that is quite relevant in several problems. Here the demands are unordered,
that is, each demand pair is siti and we say that a pair is separated by an edge set E′ if they are
not in the same strongly connected component. Note that this means that we are asking that at
least one of the pairs (si, ti) or (ti, si) to be separated. It turns out that Multicut and Sparsest
Cut and Uniform Sparsest Cut in this formulation have poly-logarithmic approximations and
flow-cut gaps. These problems have also connected to the problem of removing edges/nodes to
delete all cycles (called Feedback problems). We refer the reader to [ENRS00] on flow-cut gaps and
to [ACMM05, CMM06] for SDP based algorithms.

Finally, since it is connected to the work of the instructor, there is a notion of polymatroid
networks which connect network flows to submodular functions. This comes from classical work
in combinatorial optimziation and one can generalize the notions of multicommodity flows and
cuts. Several ideas from regular flows and cuts can be ported over with useful applications and
consequences. See [CKRV12] and some recent work on submodular hypergraphs [COT23].

Additional bibliographic information

The highly influential paper of Leighton and Rao [LR99] obtained an O(log n)-approximation and
flow-cut gap for Uniform Sparsest Cut and introduced the region growing argument as well
as the lower bound via expanders (an important influence is the paper of Sharokhi and Matula
[SM90]). [LR99] demonstrated many applications of the divide and conquer approach. There is a
large literature on Sparsest Cut and related problems and we only touched upon a small part. An
outstanding open problem is whether the flow-cut gap for Non-Uniform Sparsest Cut in planar
graphs is O(1) (this called the GNRS conjecture [GNRS99] in the more general context of minor-
free graphs); Rao, building on ideas from [KPR93], showed that the gap is O(

√
log n) [Rao99]. No

super-constant lower bound is known for planar graphs. The theory of metric embeddings has been

a fruitful bridge between TCS and mathematics and there are several surveys and connections from
both perspectives. The argument via Multicut is attributed to Nabil Kahale — see the chapter
by Shmoys on approximation algorithms for cut problems [Shm97].

References

[ACMM05] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev.
o(
√
log n) approximation algorithms for min uncut, min 2cnf deletion, and directed

cut problems. In Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing, pages 573–581, 2005.

[ALN07] Sanjeev Arora, James R Lee, and Assaf Naor. Fréchet embeddings of negative type
metrics. Discrete & Computational Geometry, 38(4):726–739, 2007.

[ALN08] Sanjeev Arora, James R Lee, and Assaf Naor. Euclidean distortion and the sparsest
cut. Journal of the AMS, 21(1):1–21, 2008.

[AR98] Yonatan Aumann and Yuval Rabani. An o (log k) approximate min-cut max-flow
theorem and approximation algorithm. SIAM Journal on Computing, 27(1):291–301,
1998.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embed-
dings and graph partitioning. Journal of the ACM (JACM), 56(2):1–37, 2009.

[CK09] Julia Chuzhoy and Sanjeev Khanna. Polynomial flow-cut gaps and hardness of directed
cut problems. Journal of the ACM (JACM), 56(2):1–28, 2009.

[CKRV12] Chandra Chekuri, Sreeram Kannan, Adnan Raja, and Pramod Viswanath. Multicom-
modity flows and cuts in polymatroidal networks. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pages 399–408, 2012.

[CMM06] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Directed metrics and
directed graph partitioning problems. In SODA, volume 6, pages 51–60, 2006.

[COT23] Antares Chen, Lorenzo Orecchia, and Erasmo Tani. Submodular hypergraph parti-
tioning: Metric relaxations and fast algorithms via an improved cut-matching game.
arXiv preprint arXiv:2301.08920, 2023.

[ENRS00] Guy Even, Joseph Seffi Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer ap-
proximation algorithms via spreading metrics. Journal of the ACM (JACM), 47(4):585–
616, 2000.

[FHL05] Uriel Feige, MohammadTaghi Hajiaghayi, and James R Lee. Improved approximation
algorithms for minimum-weight vertex separators. In Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, pages 563–572, 2005.

[GNRS99] Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair. Cuts, trees
and l/sub 1/-embeddings of graphs. In 40th Annual Symposium on Foundations of
Computer Science (Cat. No. 99CB37039), pages 399–408. IEEE, 1999.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their appli-
cations. Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

[KPR93] Philip Klein, Serge A Plotkin, and Satish Rao. Excluded minors, network decom-
position, and multicommodity flow. In Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, pages 682–690, 1993.

[LLR95] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some
of its algorithmic applications. Combinatorica, 15(2):215–245, 1995.

[LR99] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM (JACM), 46(6):787–832,
1999. Conference version is from 1988.

[Rab08] Yuri Rabinovich. On average distortion of embedding metrics into the line. Discrete
& Computational Geometry, 39(4):720–733, 2008.

[Rao99] Satish Rao. Small distortion and volume preserving embeddings for planar and eu-
clidean metrics. In Proceedings of the fifteenth annual symposium on Computational
geometry, pages 300–306, 1999.

[Shm97] David B Shmoys. Cut problems and their application to divide-and-conquer. Approx-
imation algorithms for NP-hard problems, pages 192–235, 1997.

[SM90] Farhad Shahrokhi and David W Matula. The maximum concurrent flow problem.
Journal of the ACM (JACM), 37(2):318–334, 1990.

[SSZ04] Michael Saks*, Alex Samorodnitsky, and Leonid Zosin. A lower bound on the integrality
gap for minimum multicut in directed networks. Combinatorica, 24(3):525–530, 2004.

[WS11] David P Williamson and David B Shmoys. The design of approximation algorithms.
Cambridge university press, 2011.

	Introduction to Sparsest Cut
	LP Relaxation and Maximum Concurrent Flow
	Rounding LP via Connection to Multicut
	Rounding via 1 embeddings
	A digression through trees
	Cut metrics, line metrics, and 1 metrics
	Brief introducton to metric embeddings
	Utilizing the 1 embedding
	Line embeddings, 1 embeddings and tree embeddings

	SDP Relaxation
	Spectral Relaxation for Conductance
	Node capacities and Directed Graphs

