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1 Positive Linear Programs

Positive linear programs are a large and interesting class of linear programs that arise in com-
binatorial optimization. These have some useful properties that can be exploited algorithmically
via iterative methods coming from first order optimization methods and this leads to fast approx-
imation solutions. Although these methods are old in optimization the formal analysis of these
methods with provable worst-case guarantees for concrete problems can be traced to the work of
faster algorithms for multicommodity flows [SM90] which was later abstracted to general classes of
linear programs [PST95, [GK94]. Parallel algorithms [LN93] were also derived via these methods.
There have been a large number of developments since then.

Positive linear programs, as the name suggests, are linear programs where the input to the
linear program consists of positive numbers. This allows one to discuss relative approximations.
There are three types of positive linear programs that we commonly work with.

e Packing LPs. A packing LP is of the form max ¢’z subject to Az < b,z > 0 where ¢ € RY,
and A € RT;™ and b € RZ,. Notice that all coefficients are non-negative. There are n
variables and m non-trivial constraints.

e Covering LPs are of the form min ¢’

A€ RIf™ and b € RY,.

x subjec to Az > b,z > 0 where where ¢ € Rgo and

e Mixex Packing and Covering LPs are typically cast in tersm of feasibility of inequalities
Az <b,Cx <d,z >0 where A € RT}*", b € RT},C € RI2™™, d € RUZ. Objectives of max or
min form can be converted to appropriate inequalities since packing and covering inequalities
are allowed.

An explicit LP is one in which all the data is specified in terms of the variables, constraints and
the non-negative entries in the inequalities. We will assume that the representation is given in the
sparse form. We will usually let n denote the number of variables, m the number of constraints
and N the number of non-zeroes in the matrices. Hence the input size of an explicitly specified
positive LP is O(N + m + n).

An implicit LP is one in which we have an underlying data such as a graph or geometric
object and an LP formulation that is specified implicitly based on that data. Many such LPs can
have exponential number of variables or constraints and often they can be solved efficiently or
approximately via the Ellipsoid method. In such settings we will not write down the explicit LP
and we will seek iterative methods that have a running time that depends on the size of the original
input that defines the LP. We give several examples below.

1.1 Examples

Max weight matching in bipartite graphs: Given a bipartite graph G = (V, E, w) with non-
negative edge weights the following LP gives an exact solution to the max weight bipartite matching



problem.
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One can see that this is a packing LP with N = 2|F|, n = |E| and m = |V|. Note that the notation
of n,m is confusing here from that of typical graph usage since we are using n for number of
variables and m for number of constraints. Although this LP is mainly used for bipartite matching,
it is sometimes useful even for non-bipartite graphs. One can show that its integrality gap is 2/3
for general graphs.

Tree packing: We considered the tree packing LP previously. We want to pack spanning trees
into the capacity of a given graph. This is an implicit packing LP with an exponential number of
variables and m = |F| constraints.

maximize Z yr subject to ZyT <c VeeE, yr>0 VT eT
TeT T>e

Max multicommodity flow: We considered the maximum multicommodity flow problem as
a relaxation for the Multicut problem. We are given graph G = (V, E) with non-negative edge
capacities u : E — Q4 and k source-sink pairs (s1,t1),...,(Sk, tr). We let P; denote the set of all
si-t; paths in G. We have a variable x;, for each path p € W;P; to denote the amount of flow that
is being routed on path p. We want to maximize the total flow sent between all pairs.
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The above is also an ¢mplicit packing LP.

We can write this as an explicit LP with variables f(e,) which is the amont of flow on e for
pair ¢. However, that LP will involve flow conservation constraints and will not be a positive LP.
The disadvantage of the explicit LP is that it has a large number of variables and constraints and
typical explicit LP solvers use memory that is qudratic in the number of variables to do matrix
operations while solving the LP via the Simplex or interior point method, and this makes the
memory a bottleneck.



Vertex Cover and Set Cover: We consider the well-known Set Cover problem. We are given
a collection of n sets St, 59,...,S5,, each a subset of U consisting of m elements. Each set .S; has a
cost ¢; and the goal is to pick a min-cost sub-collection whose union is . We can define a m x n
matrix A where A;; = 1 if j € S; and 0 otherwise. Then the LP relaxation for the Set Cover
problem is of the form

min ¢’ x subject to Ax >1,x>0

and it is known that its integrality gap is O(logm). The Vertex Cover problem is a further special
case when we wish to cover edges of a graph with the vertices (thus each element in this system is
in exactly two sets). The integrality gap of the LP for Vertex Cover is 2.

Covering Integer Programs with bound constraints: Covering Integer Programs (CIPs)
generalize Set Cover. A CIP is essentially an integer version of a covering program.

minclz  subject to Az > b,z € {0,1}"

We work with the LP relaxation which is a covering program. When A,b are arbitrary, the
integrality gap of the natural LP for CIP can be as large as m. One needs to add Knapsack-Cover
inequalities to strengthen the LP and then the LP becomes much more complex but nevertheless
one can solve it fast using MWU methods. See [CQ19] and references to work on CIPs. One can
also add bound constraint on CIPs where we can take a variable x; only up to a bound d;. Then we
get packing constraints and the LP becomes a mixed packing and covering LP, albeit in a simple
form.

minc’z  subject to Az > b,z <d,x € ZY

Again the natural LP is not good in terms of integrality gap and one needs Knapsack cover
inequalities.

Maximum concurrent flow: We saw the max concurrent flow LP in the context of the Sparsest
Cut problem. See below. If we guess A then it becomes a constant and we get a mixed packing and
covering LP. We can do binary search for A.
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Densest Subgraph: Another interesting mixed packing and cover LP comes up when solving
the Densest Subgraph problem. We refer the reader to [BGMI14].



1.2 Known approximation results for explicit packing LPs

There are several clean results known for explicit positive LPs. We refer the reader to [Qual9,
Wanl7] for a good overview. Here we state a few high-level results for sequential models.

e For mixed and packing covering LPs there is an MWU based algorithm that runs in de-
terministic O(N log N/€?) time and outputs a (1 — €)-approximate feasible solution [Youl4].
This implies, as a corollary (1 — €)-approximation algorithms for packing and covering in
O(N log N/€?)-time.

e For packing there is a randomized algorithm that yields a (1—¢)-approximation in O (N log N log(1/¢)/¢)
time [AZOT5].

e A similar time bound as above for covering [WRM15].

2 Multiplicative Weight Updates Method

The MWU method is a meta-algorithm that has many applications and arises in a number of areas
even though the central analysis approach is very similar. The survey of Arora, Hazan and Kale
[AHK12] outlines the utility of seeing the general approach. Here we are interested in applications
of MWU to solving positive LPs. Although one can derive some of these via the experts framework
outlines in [AHKI12| there are some limitations as well as the overhead of introducing the experts
framework.

Even within offline optimization, the use of MWU is varied and it is not always easy to figure
out the similarities and differences even among closely related papers. We will follow the ideas and
exposition from [CIVIFH].

2.1 Background

We consider a more abstract problem involving convex functions since it makes some of the ideas
and notation cleaner and more general, and also indicates where we use linearity and positivity
when we want refined results. Let f : R® — R be a concave function and let g; : R” — R, i € [m]
be a set of convex functions. Let P be a convex set in R™. We will assume that all functions are
continuous and bounded in the domain of interest, and ignore some of the technical difficulties
that arise when considering unbounded functions/domains. Even though we typically use P as the
non-negative orthant in R™, we can usually restrict the domain to be a box of sufficiently large size
in the non-negative orthant. Consider the following optimization problem which generalizes the
setting of packing LPs.

max f(x)
gi(z) < 1 i€m]
r € P

The preceding problem is a constrained convex optimization problem (we can think of maxi-
mizing f as minimizing —f which would make the objective also convex). Unconstrained convex



minimization is itself a non-trivial problem and is typically addressed via gradient descent, cut-
ting planes, and other methods. Here we use it as a modeling tool for explanation purposes and
eventually work with linear functions.

The soft-max function: One way to view the multiple constraints is to think of it as a single
constraint h(r) <1 where h(x) = max;c|, gi(7). Note that h(x) is also a convex function but it is
not smooth even when the g; are. One can make it smooth by considering the so-called soft-max
function defined as follows. For a parameter n > 0,

nla) = L 10(3 explngi(a)

Claim 1. For all z, h(z) < gy(x) < h(z) + lnTm

It is known that g, is convex. By choosing n = (Inm)/e we can get a smooth proxy for h(x)
that has an additive error of at most e.

Lagrangean relaxation: A standard approach in continuous (convex and non-linear) optimiza-
tion is to replace a constrained problem by its Lagrangean relaxation. In the context of the above,
we would replace the constrained optimization problem by the following concave optimization prob-
lem:

max fu,(2) = max f(z) = 3 wilgi(x) = 1)
i€[m]
where wy, wa, . .., wy > 0 are Lagrange multipliers. The idea is that one penalizes the objective
for violating the constraints.
We have the following easy weak-duality claim.

Claim 2. For any non-negative weights wi, ..., Wy, maxXzep fu(x) > OPT where OPT is the
optimum value of the original optimization problem. Thus, min,>o maxgzep fu(x) > OPT.

For convex optimization problems, the duality theorem says that under some mild conditions
usually called Slater conditions, strong-duality holds, that is: min, > maxzep fi,(z) = OPT.

Although Lagrangean relaxation is nice, it is not obvious how to find good weights that lead
to good upper and lower bounds. One can combine the idea of soft-max function and Lagrangean
relaxation to reduce the problem to have a single constraint, namely g,(z) < 1. Thus we want
to solve the problem max,c f(x) subject to g,(z) < 1. One can use some gradient descent like
approach for solving this problem and the gradient of g,(x) is relevant in this context. We will
elaborate on this at a later time.

Oracle: Motivated by the Lagrangean relaxation approach we will assume that we have a black-
box oracle for the following problem for any given non-negative weights wy, wa, ..., Wp,.

m m

b' t t .- < .

max f(z) subject to z;wlgl(x) < Z;wz
i= i=

We will see later that there is a simple and easy oracle for the above problem when f and g;
are positive linear functions and P is the non-negative orthant.



2.2 From discrete to continuous and back

We consider an adaptive iterative algorithm that uses a notion of time that goes from 0 to 1. From
a discrete point of view we can think of taking T steps of size § = % where § is small. Thus,
after £ steps the time is t = £0. Later, for ease of analysis we will make this a continuous process.
The algorithm will maintain a set of non-negative weights w;(t), one for each constraint. The
non-negative weights represent the relative importance of each constraint at time ¢. Initially we
have no information so all weights are equally important and we set w;(t) = 1. An alternative view

is to think of the normalized weights Zle”;()?(t) as a probability distribution on the constraints. In

each step we will use the oracle to compute a solution v(t) for the Lagrangean relaxation defined
by the weights. Clearly f(v(t)) > OPT since we are solving a relaxation. At the end we will take
an average, or convex combination, of these solutions. The concavity of f will guarantee that we
are doing well on the objective value. We let z(t) = fg v(t) denote the evolving solution, as an
accumulation of the solutions computed so far with initial point at ¢ = 0 being x(0) = 0. The
main question is to deal with the constraint violation. For this we will maintain the invariant that
wi(t) = exp(n f(f gi(v(t)) which tries to keep track of the violation of constraint i.

MWUUniformStep(f,g1,...,9m, P,n,0):
w;(0) =1 for i € [m]
x(0) =0
t=0
While ¢t <1 do
Use oracle with weights to find optimum solution v(t)
For i € [m] do
wi(t + 0) = w;(t)en9: (1)
z(t+9) = x(t) + dv(t)
t=t+4
endWhile
return o, = x(1).

Suppose we make § — 0. Then we obtain a continuous time algorithm whose analysis can be
done simply and is illuminating. For that we set up a differential equation on the evolution of the
weights. The algorithm sets w;(t 4 6) = w;(t)e™9%(®)  If we make the step size go to 0,

wi(t 4 0) — w;(t) i wi(t)(enlsgi(v(t)) _1)

dt 550 5 iy 5 = w;(t)ngi(v(?))

by using the fact that ¢* — 1 — x when z — 0.
This leads to the following continuous-time algorithm.



MWUContinuous(f, g1, .., 9m, P,n):
w;(0) =1 for i € [m)]
For t =0 to 1 do continuously
Use oracle with weights to find optimum solution v(t)
For i € [m] do
i = wilt)ngi(v(t)
endWhile
return Toyt = fot v(t)

We now analyze the continuous algorithm.

The first claim shows the optimality of the output.

Claim 3. Suppose f is concave. Then f(xou) > OPT.

Proof. By concavity, f ( fo dt) > fo (t))dt. And f(v(t)) > OPT since v(t) is an optimum
solution to a Lagrangean relaxation of the orlgmal problem. This gives the desired claim. |

We now express the constraint values in terms of the weights.

Claim 4. For each i € [m], gi(Tout) < %ln(wi(l)).

Proof. By convexity g (fol v(t)dt) < fol g(v(t))dt. From the algorithm dwl() = nw;(t)g;(v(t)).

Hence,
! Udw(t) 1 Vdwi(t) -
/0 g(v ())dt< i wi(t)dté/o wi ) = lnw;(1) — Inw;(0).

n
We have Inw;(0) = 0 since w;(0) = 1. [

We do not have a direct way of bound w;(1) but we will bound w;(1) by >, w;(1). For this we
wil see how the sum of weights evolves.

Claim 5. Let w(t) =Y, wi(t). Then w(t) < e"w(0). Hence w(l) < me.

Proof. Here is where we use the fact that we solve the Lagrangean relaxation. Note that v(t) satisfies
the constraint that >, w;(t)gi(v(t)) < >, w;(t). We have d“:;t(t) = nw;(t)gi(v(t)) for i € [m]. Hence,

P =3 20 = S o) < 3wt =

7

Thus the total weight satisfies the differential equation dﬁ—y) < nw(t) which implies that w(t)

<
emw(0) = e"m. [
Putting together the claims we obtain the following lemma.

Lemma 6. The output of MWUCONTINUOUS, Zoy:, Satisfies the property that (i) f(zou) > OPT
and (1) gi(Tour) < 1+ lnTm for alli € [m]. If there is a point xog € P such that g;(z¢) = 0 for all
i € [m] then xl,, = 0xou + (1 — 0)x0 is feasible, in that g;(x),,) <1 for all i and x,,, € P.



Proof. The only thing to verify is that g;(zeut) < 1+ me which follows from
1 1 1
9i(Tout) < —In(w;(1)) < —=In(w(1)) < —In(e"m) < (1 + —).
n n n n

The second part of the lemma is easy to verify. |

Remark 7. The second part of the preceding lemma allows us to obtain a feasible solution x!,,
since Tyt does not necessarily satisfy the constraints. The impact of using x,,,, instead of Toyr in
terms of the objective function f is less easy to see. Howewver, for mon-negative linear objectives
we see that f(x),,) > 0f(xout) and thus we get an approzimation to the objective while making the
solution feasible.

Remark 8. To obtain a (1 + €) in the constraint violation we can choose 1 = lnTm

Remark 9. The analysis of MWUCONTINOUS does not use non-negativity of f or that of the g;s.
Hence the analysis can also be applied to have constraints of the form h;(z) > 1 where h; is concave
which can be modeled as a convex constraint —h;(x) +2 < 1.

Remark 10. Our analysis relied on keeping track of the total weight w(t) in a careful manner. In
some works, the potential function ¢(t) = %lnw(t) or prozies for it are used. Potential functions
can be powerful tools that can yield strong results though they can sometimes be mysterious. See

|BG17] for potential function analysis of first order methods in optimization.

Duality: One can prove a duality theorem via the continuous argument. For packing LPs this
also allows one to recover an approximate dual LP solution form the MWU algorithm. Details
TODO.

2.3 Analysis of Discretized Algorithms For Packing Problems

In this section we want to obtain algorithm that terminate in a small number of iterations. For
this we will work with the extra condition that g;(x) > 0 for all z € P. This models the packing
constraints of interest and is needed for the algorithms/analysis unlike the continuous algorithm.

Width dependent time bound for uniform step size: We first consider the simple uniform
step size algorithm MW UUNIFORMSTEP. We will assume for simplicity that § is chosen such that
T =1/¢ is an integer. Thus, the algorithm runs for T time steps. How small can we make T' (or
how large can we make ¢) such that the discrete implementation ensures that the constraints are
approximately satisfied? It turns out that we can use a parameter called the width of the given
instance defined as follows.

Definition 1. The width p of the given instance is SUpgc picim) 9i(2)-

In other words it is asking how much can some arbitrary point in P violate a specific constraint
((in a relative sense since we have normalize the rhs of each constraint to 1 by considering g;(z) < 1
as the constraint). Why is this parameter natural to consider in the context of the algorithm we
discussed. Recall that we solve a Lagrangean relaxation in each step and find a point v(t). v(¢) can



violate some specific constraint ¢ by a significant factor since we are only solving the relaxation by
taking weighted sum of the constraints. p allows us to bound the worst-case violation.

It may seem that p is unbounded for even simple instances because g; may be an increasing
function and P is typically the non-negative orthant. However, for many problems of interest there
are implicit bounds on the variables and P can be implicitly taken to be a bounding box that
restrict p. We will give some examples later on to illustrate this. Suppose for now that p is some
bounded number.

Inm

Theorem 11. Suppose we set n = == and § = % and € € (0,1/2). Then the output of MW U-
UNIFORMSTEP will output a point oy such that (i) f(xour) > OPT and (i) gi(xour) < 14 2¢ for

all i € [m]. The algorithm terminates in O(plean) iterations.

Sk

We will derive the analysis of the preceding theorem in the context of the non-uniform step size
analysis. Notice that the dependence on € is now 1/e? when compared to the continuous algorithm.
One can view this factor as the price for discretization since we cannot follow the continuous
algorithm precisely.

Non-uniform step size and a width independent algorithm and analysis: Garg and
Konemann [GKO07|] obtained a width-independent algorithm and analysis by a seemingly simple
but important tweak to the algorithm. The motivation for the non-uniform step-size would be
more clear if one does the uniform step size analysis first but we will simply mention the choice
of the step and ask the reader to do the uniform step size analysis post-facto. The non-uniform
step size can be thought of as choosing the maximum step size at any point greedily so that the
analysis goes through. Surprisingly this yields an algorithm that bounds the number of iterations
to O(mlogm/e?) which depends only on the number of constraints and e. This is the reason this is
called width-independent. Note that step size choice requires each g; to be postive over the domain
P, the algorithm is not well-defined otherwise.

MWUNonUniformStep(f,g1,...,9m, P,n):

w;(0) =1 for i € [m]

z(0) =0

t=0

While ¢t < 1 do
Use oracle with weights w; () to find optimum solution v(t)
Let 0 be max step size such that dng;(v(t)) < e for all i € [m)]
0 = min(d, 1 —t)
For i € [m] do

wi(t + 0) = w;(t)en9: (1)

z(t+9) = x(t) + dv(t)
t=t+0

endWhile

return o, = x(1).

We will mimic the continuous-time analysis in some ways and point out where the discretization
matters and how we bound the errors. First, we set up some notation. The algorithm runs for some



number T of iterations; we will use j to index the iterations and 7 as before to index the constraints.
We think of the time before the start of iteration j + 1 as ¢; and the step size in that iteration as
0j. We have tg = 0 and tj11 =t; +6; for j =0,2,...,7 —1. We have o9 + 1 + ...+ d7—1 = 1.
Note that in iteration j 4+ 1 we compute v(t;) and J; with respect to the weights w;(t;). In other
words tj41 is the time at the end of iteration j + 1.

The following is easy to prove even with a discrete step size.

Claim 12. Suppose f is concave. Then f(xoy) > OPT.
The following claim still holds in the discrete setting but the proof is useful to see.

Claim 13. For each i € [m], gi(Tout) < ln w;(1).

Proof. We have x,,; = Z;F;Ol d;v(t;) and hence by convexity of g;, g(xout) < ij-;l dig(v(ty)). We
see that in iteration j 4 1, the weight of constraint ¢ is updated as follows:

wi(tjr1) = wi(tj)enéjgi(’v(tj))
Hence 1
d;9i(v(t;)) = ; (Inw;(tjs1)) — Inwi(t;)) .

Thus, summing up the two sides over j and using telescoping implies that

xout Z 5] gl\v

1
5 (Inw;(1) — Inw;(0)).

The main technical claim is the one below that bounds the evolution of the total weight and
this is where the choice of the step size is crucial.

Claim 14. Let w(t;) = >, wi(t;). Then w(t;) < eUTIMiw(0). Hence w(l) < mel+om.
Proof. Here is where we use the fact that we solve the Lagrangean relaxation.

We ensured that 1d;g;(v(t;)) < € by our choice of ¢;. Note also that all the numbers involved
are postive since g; is positive on the domain as per our assumption. And ¢ < 1/2. We use the
fact that e* < 1+ a + a® when a € (0,1/2). For ease of notation let a; = nd;g;(v(t;)). Thus,
w(tj1) < wi(t;)(1+a; +a?) < w;i(t;)(1 + a;(1+ €)). Summing up over i,

sz (tjr1) < Zw, (14 a;(1+¢))
< Zwi t) + (L4 emd; > wilty)gi(v(ty))
- -
Zwi tj) + (1 +€)nd; sz t;)

<Zwl )(1+ (14 €)nd;).



We now use the fact that 1 4+ b < eb for all b > 0 to derive

D wiltisn) < €N wi(t).

Note that we now have essentially derived an exponential increase in the total weight in terms
of the step size §;. We thus rewrite the above as w(t;11) < e(F9Miw(t;) where w is the sum of
weights. The rest follows by summing over the steps. |

Remark 15. We note that the proof of the preceding theorem will go through easily for a fized step
size algorithm as long as the step size guarantees that no weight of a constraint goes up by more
than an e factor. This is satisfied by the choice of the step size based on the width! The rest of the
analysis is the same.

Theorem 16. Let x4y be the output of MWUNONUNIFORMSTEP. If n > thm then (i) f(xout) >

OPT and (i1) gi(zour) < 1+ 2€ for all i € [m]. Moreover, the algorithm terminates in O(mlfzgm)
iterations.

Proof. We already established (i). For (ii) we saw that g;(zout) < %ln w;i(1) and that Inw(1) <
(14 ¢)nlnm. Thus,

1 1 |
Gi(Towt) < ~Inw;(1) < ~Inw(l) < (1+e) + — < (14 2e).
n n n

Here, we switch to exponential weights instead of reasoning with logs since it will be useful
later. We will also use a loose argument though one can do a tighter analysis. We see that the total
weight w(1) at the end is e(")7m < m1+0+a/c = ;O00/9) Now consider the greedy step size. In
each iteration since we choose §; maximum, there is some ¢ in that iteration where nd;g¢;(v(t;)) = e.
But this implies that for that ¢ its weight w; increases by e€ multiplicative factor. Note that each
variables weight starts at 1. We established that total weight w(1) is m@(1/€). This implies that
no weight w; can have its weight updated by an e€ factor more than O(logm/e?) times. But
there are only m constraints and each iteration must increase at least one constraint’s weight by
a multiplicative factor of ef. Thus, we cannot have 7' more than c¢mlogm/e? for some small but
fixed constant ¢ that we leave the reader to figure out. |

Scaling weights: In the analysis so far we have used constraints of the form g;(z) < 1 which
makes the notation clean. Of course any constraint of the form g;(z) < b; with b; > 0 can be
scaled to achieve the standard form. However, in some combinatorial applications, when A the
packing matrix corresponds to an incidence matrix of a combinatorial object and b; represents
some capacity, scaling makes the matrix unnatural. We can avoid this by modifying the MWU
algorithm as follows. Suppose we have constraints of the form g;(z) < b;, ¢ € [m] where b > 0.
We start with w;(0) = b%, for each 7. Then we do the analysis with b;w; instead of w;. Since
the weights are updated in a multiplicative fashion the whole analysis goes through cleanly. Note
that with weights set up like this we still solve the oracle in each iteration with the constraint
Yo wigi(y) < >, w;; the by's are taken care of automatically.



3 Applications to Packing LPs, explicit and implicit

We show how the generic scheme that we have described via MWU can be used to derive fast
approximation algorithms for packing LPs. Recall that a packing LP is of the form

maxclz such thatAz <bzxz>0

In terms of the generic framework we have f(z) = ¢’z and g;(z) = > j=1 Aijzj corresponds to

the i’th row of A. And P corresponds to R%,. In some settings we think of P as a bounding box
implied by constraints with 0 < z; < u; where u; is an upper bound on z; implicitly implied by
the constraints in of Az < b. This often helps in figuring out the width of the system.

Oracle is efficient: Recall that we need an oracle that solve max f(x) subject to >, w;gi(z) <
>_;wi and > 0. This is the same as max ), ¢jz; subject to > ajz; < 1 and x > 0, where
o = ﬁ Zl w; Aj;j. Note that a; > 0 since all entries are positive. This is a continuous Knapsack

problem and an optimum solution is to pick the coordinate j* = arg max; cj/aj and set xj+ = 1/
and the rest of the values to 0. An important aspect of this solution is that there is an optimum
solution z* to the oracle whose support is a single coordinate. Note that the width-independent
analysis shows that the number of iterations depends only on the number of constraints m. Thus,
we can apply the method to implicit LPs with exponential (in some original problem size) number of
variables but a polynomial number of constraints as long as we can implement the oracle efficiently.

It is instructive to see what the oracle corresponds to when considering combinatorial problems.

Obtaining feasible solution via scaling down: Recall that the MWU method, as we described
it, naturally gives an optimum solution that violates the constraint. We can then scale the solution
down to obtain a feasible solution while losing a bit in the objective. This is particularly easy
for packing problems with linear objectives. Thus we can obtain a (1 — €)-approximation in the
objective while obtaining a feasible solution.

Approximate oracle: One of the nice aspects of the MWU method is that it accumulates a
series of solutions of Lagrangean relaxations by taking non-negative sums. In the positive settings
this means that we do not use subtraction at all. This is convenient for approximation. Suppose
we only have an a-approximate oracle in the relative sense. Then the process yields an (1 — €)a-
approximate solution. This is convenient not only in obtaining approximate solutions but also in
speeding up MWU based algorithms substantially by using various tricks and data structures that
can avoid updating information at every step since we are allowed to use an approximate oracle.
Note that if & = (1 —€) then (1 —€)a > 1 — 2e.

Interpreting the weights as exponential in “loads”: Note that in the MWU method we
are maintaining w;(t) as exp(n fg gi(v(t)). When g; is linear and P is the non-negative orthant,
fg gi(v(t)) is simply >, A;;z(t); where z(t) is the current accumulated vector. We think of this as
the total load ¢;(t) on constraint ¢ at time ¢ and hence w;(t) = exp(n¢;(t)).



3.1 Explicit Packing LPs

If we use the method the algorithm takes O(mlogm/e?) iterations. The oracle for each iteration
can be done in O(N) time easily and naively. Thus we can obtain a (1 — €)-approximate solution
in O(mN logm/e?) time. By being slightly careful and using a simple approximate oracle we can
reduce the running time to O(N logm/e?) which is near-linear. We will see it later in the notes.

3.2 Max weight matching

Consider the max-weight matching problem in bipartite graphs. The variables . correspond to the
edges and the constraints correspond to the vertices. Thus the MWU method maintains a weight
wy for each u € V. What is the oracle? Given vertex weights w, it finds the edge uv € E that
maximizes ce/(wy, + w,) in each step. Note that updating the weights is simple fast because we are
only touching two vertex weights. The bottleneck is finding the edge with the maximum ratio in
each iteration.

We can explore simple tricks that will help speed this up. First, we bucket edges into logarithmic
groups by considering weights in powers of (1 + ¢€); this affects the approximation factor only by
a (1 — e)-factor. Within each bucket we are trying to find the weight with the minumum weight
where the weight of an edge is the sum of the weights of its end points. We can keep a priority
queue for edges based on their weight. How do we update these weights? Suppose in teration
j of the algorithm we pick edge e; = (u,v). The algorithm updates w, and w,. Now we need
to update the weights of edges that are incident to u and v and these will affect the priority
queues. How many edges do we need to update? It is deg(u) + deg(v). This seems like a lot
but we make a crucial observation. Recall that the width-independent MWU analysis proves
that the weight of any specific constraint i is updated only O(logm/e?) times! In particular the
weight of a vertex u is updated only O(logn/e?) times. Hence the total number of updates is only
O3>, deg(u)logn/e?) = O(|E|logn/e?)! The priority queue operations have only a logarithmic
overhead. Thus we can see that with some basic observations we can implement the MWU algorithm
in O(|E|/€?) time.

3.3 Tree Packing

Now we consider the tree packing LP. This is an implicit LP with an exponential number of variables
but only m constraints where m = |F|. Note that the coefficient of each variable z7 in the objective
is 1. In this example the right hand side of the constraint corresponding to edge e is its capacity
u(e) and these are non-uniform. It now makes sense to use weights that start with w(e) = ﬁ
What is the oracle? Given weights w(e) on the edges we wish to find a tree T' that maximizes
m. Aha, this corresponds to finding the MST with respect to weights! Recall that MST is
the separation oracle for the dual LP! As you can see, the MWU oracle turns out to be the dual
LP separation oracle. Thus, each iteration of the algorithm simply needs to solve an MST problem
and update the weights of the edges in the chosen tree T. There are only O(mlogm/e?) iterations.
We will see later how to speed up the entire computation to run in O(m/e?) time.



3.4 Maximum Multicommodity Flow

Now we consider the maximum multicommodity flow. Once again we have an implicit packing LP
with an exponential number of variables corresponding to the paths for all the commodity pairs.
The number of constraints is m corresponding to the edges. The weights correspond to exponentials
of the loads on the edges where the load on an edge is the total flow routed so far on the edge.
What is the oracle? It is to find the shortest path among all the commodity pairs, according to the
weights on edges! We can find for each pair (s;,t;) a shortest s;-t; path and choose the minimum.
The algorithm routes some flow on that path and updates the weights and iterates. The bottleneck
is to compute the shortest paths.

4 Covering and Mixed Packing and Covering

TODO

5 Faster Implementations via Tricks and Data Structures

TODO. See [Qual9, Wanl7] and some papers.
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