
CS 598CSC: Topics in Graph Algorithms Lecture date: 09/05/2024
Instructor: Chandra Chekuri Scribe: CC

1 Steiner Mincut

Given a graph G = (V,E) with edge capacities c : E → R+, we will be interested in two problems.
The first is the global mincut problem that we already discussed. The second is a problem called
the Steiner mincut problem. In this problem we are given G and a subset of vertices T ⊆ V called
the terminals. The goal is to find a cut (S, V − S) of minimum capacity such that S ∩ T 6= ∅ and
(V − S) ∩ T 6= ∅; in other words a minimum capacity cut that separates some pair of terminals.
Note that if T = {s, t}, we have the familiar s-t mincut problem. When T = V we have the global
mincut problem. Thus Steiner mincut generalizes both. How can we compute Steiner mincut? It
is easy to compute it via |T | − 1 s-t mincut computations as follows. Say T = {t1, t2, . . . , tk}. Pick
t1 and find t1-tj mincut for each j > 1 and pick the cheapest among them. In fact for even the
global mincut problem this was the best known algorithm till the work of Nagamochi and Ibaraki.
Quite recently Li and Panigrahy [LP20] developed a simple yet striking approach that computes
the Steiner mincut with high probability using only O(log3 n) s-t cut computations! The approach
could have been discovered many years ago in terms of its simplicity. The core idea is based on
computing isolating cuts (see also independent work of Abboud et al [AKT21]) and this has been
very influential in the last few years for a number of problems.

1.1 Background on Submodularity

The isolating cut approach is essentially based on properties of symmetric submodular functions.
Although one can prove various properties by appealing to only graph theoretic facts, it is useful
to see that the proofs via submodularity. Here we give some background on submodularity and the
cut function of graphs.

We will work with set functions. Given a finite ground set V a real-valued set function f : 2V →
R assigns a number to each subset S ⊆ V . We are used to modular functions, that is functions that
satisfy the property that f(A)+f(B) = f(A∩B)+f(A∪B). We don’t think of modular functions
in this abstract fashion because a function is modular iff there is a weight function w : V → R and
a real valued shift parameter c such that f(A) = c +

∑
v∈Aw(v). It is worthwhile to prove this

claim as an exercise. We will be interested in a more general class.

Definition 1. A real-valued set function f : 2V → R is submodular iff f(A ∪ B) + f(A ∩ B) ≤
f(A) + f(B) for all A,B ⊆ V . A function f is supermodular iff −f is submodular, equivalently,
f(A ∪B) + f(A ∩B) ≥ f(A) + f(B) for all A,B ⊆ V .

A different definition of submodularity is based on diminishing marginal utility property. The
marginal value of an element v to a set A is defined as f(A+ v)− f(A) where we use the notation
A+v for A∪{v}. A function f is submodular iff f(A+v)−f(A) ≥ f(B+v)−f(B) for all A ⊂ B.

Exercise 1. Prove that the two definitions of submodularity are equivalent.

A useful observation is that if f and g are submodular functions, the function αf + βg is
submodular where α, β ≥ 0 are scalars. Note that negation can make a submodular function
supermodular. Modular functions are both submodular and supermodular.

Why is submodularity important for graphs? Two aspects of graphs are closely related to sub-
modular functions. Some properties of graphs are really about properties of submodular functions
and it is useful to know this.

Cut function of graphs: The following claim is a simple exercise which shows that the cut
function is submodular in undirected graphs. It naturally extends to non-negative capacities.

Claim 1. Let G = (V,E) be an undirected graph. For any two subsets A,B ⊆ V ,

|δ(A)|+ |δG(B)| = |δ(A ∩B)|+ |δ(A ∪B)|+ 2|E(A−B,B −A)| ≥ |δ(A ∩B)|+ |δ(A ∪B)|.

Claim 2. Let G = (V,E) be a directed graph. Prove that |δ+(·)| and hence by symmetry |δ−(·)|
are submodular.

A set function is symmetric if f(A) = f(V − A) for all A ⊆ V . Clearly the cut function of an
undirected graph is symmetric while it is not necessarily the case for directed graphs. Symmetric
submodular functions satisfy another important property.

Definition 2. A real-valued set function f : 2V → R is posi-modular iff f(A − B) + f(B − A) ≤
f(A) + f(B) for all A,B ⊆ V .

Exercise 2. Prove that if f is symmetric and submodular then f is also posi-modular.

Uncrossing properties of submodular functions: Uncrossing is a common and powerful
technique that is frequently used in working with submodular functions. We will illustrate this in
the context of minimum cuts.

Lemma 3. Let G = (V,E) be a graph and let A,B be two s-t mincuts. Then A∪B and A∩B are
also s-t mincuts.

Proof. We note that s ∈ A, t ∈ V − A since A is an s-t cut. Similarly for B. We also see that
s ∈ A ∩B, t ∈ V − (A ∩B) and hence A ∩B is also an s-t cut. Similarly A ∪B is also an s-t cut.
By submodularity of |δ(·)| we have

|δ(A)|+ |δ(B)| ≥ |δ(A ∩B)|+ |δ(A ∪B)|

and we also have
|δ(A)|+ |δ(B)| ≤ |δ(A ∩B)|+ |δ(A ∪B)|

because A,B are s-t mincuts while A ∩B and A ∪B are s-t cuts so their value cannot be smaller
than that of the mincuts. Thes two inequalities can be true only if |δ(A ∩ B)| = |δ(A ∪ B)| =
|δ(A)| = |δ(B)|. �

Corollary 4. In a graph G = (V,E) there is a unique minimal s-t cut and there is a unique
maximal s-t cut.

Proof. Suppose A,B are two s-t mincuts and both are minimal and distinct. This implies that
A − B 6= ∅ and B − A 6= ∅ for otherwise one will be contained in the other contradicting the
minimality. Then, by the preceding lemma A∩B is also an s-t mincut and A∩B is a strict subset
of A and B, but again this is a contradiction of minimality of A,B. Similar argument shows the
uniqueness of a maximal s-t mincut. �

Exercise 3. Show that one can find the unique minimal and unique maximal s-t-mincuts from an
s-t maxflow in linear time.

Note that the proof applies also to directed graphs. Since we only used submodularity, we can
apply it to other settings on submodular cuts.

Graphic matroid: A second aspect of submodularity in graphs comes via matroids. We will not
discuss it here but the rank function of a matroid is a special class of submodular functions; and
in a formal sense matroid rank functions are building blocks for all submodular functions. Given
an undirected graph G = (V,E) there is a fundamental matroid associated with the edge set of G
called the graphic matroid (there are other matroids that are also defined from graphs including the
dual graphic matroid for instance). Several properties of trees and forests can be better understood
in the context of the graphic matroid including the Tutte-Nash-Williams theorem we saw on tree
packing. See notes and books on combinatorial optimization.

1.2 Isolating Cuts via Poly-log Maxflow Computations

Let G = (V,E) be a capacitated graph and let T ⊆ V be set of terminals. Let T = {t1, t2, . . . , tk}.
We say that a cut (S, V − S) is a ti-isolating cut if ti ∈ S and tj ∈ V − S for all j 6= i. In other
words the cut isolates ti from the rest of the terminals. The minimum capacity ti-isolating cut
can be found by a single maxflow computation — we can shrink the terminals in T − {ti} into
a single vertex s and compute a ti-s cut. Thus, we can compute all isolating cuts via k maxflow
computations. It turns out that we can compute them in O(log k) maxflow computations1.

Via submodularity discussion earlier, we have the following.

Lemma 5. There is a unique minimal ti-isolating mincut (S∗i , V − S∗i). That is, if (Si, V − Si) is
any ti-isolating mincut then S∗i ⊆ Si.

Now we describe the algorithm for computing the isolating mincuts. Let h = dlog ke. We con-
sider h bipartitions of T : into (A1, B1), (A2, B2), . . . , (Ah, Bh) as follows. Consider the binary rep-
resentation of k. It has h bits. We set A` = {ti | binary representation of i has 1 in `’th position}.
B` = T −A`.

1. For ` = 1 to h compute a A`-B` mincut (X`, Y`)

2. For i = 1 to k define Ui = (∩`:ti∈A`
X`) ∩ (∩`:ti∈B`

Y`).

1The terminology of isolating cuts was already in use in the context of a simple approximation algorithm for
the Multiway Cut problem. For instance see the chapter on Multiway Cut in Chandra’s notes https://courses.

grainger.illinois.edu/cs583/fa2021/approx-algorithms-lecture-notes.pdf for pointers and discussion.

https://courses.grainger.illinois.edu/cs583/fa2021/approx-algorithms-lecture-notes.pdf
https://courses.grainger.illinois.edu/cs583/fa2021/approx-algorithms-lecture-notes.pdf

e Ye

Lemma 6. For each i ∈ [k], (Ui, V −Ui) is a ti-isolating cut. Further, U1, U2, . . . , Uk are pairwise
disjoint sets.

Proof. If ti ∈ A`, then ti ∈ X`. Similarly, if ti ∈ B` then ti ∈ Y`. Thus ti ∈ Ui. Consider tj where
j 6= i. Since i 6= j there is some index ` in the binary representation of i and j differ in the bit
position. Suppose i has 1 in the `’th position and j has 0 (the other case is similar). Then ti ∈ A`

and tj ∈ B`. Thus ti ∈ X` and tj 6∈ X`. Which implies that tj 6∈ Ui.
The same reasoning as above shows that no vertex v can be in both Ui and Uj for i 6= j. There

must be some ` such that ti ∈ A` and tj ∈ B` or vice-versa. Suppose it is first case; if v ∈ X` then
v cannot be in Uj and if v ∈ Y` then v cannot be in Ui and hence v cannot be on both Ui and Uj .
The other case is similar. �

Israels

Ui
Us

t

Uy

Exercise 4. Show how to compute U1, . . . , Uk in O((m+ n) log k) time given (X`, Y`) for ` ∈ [h].

The key lemma is the following. In other words, the unique minimal ti-isolating cut is contained
in Ui.

Lemma 7. For each i, S∗i ⊆ Ui.

Proof. Consider the computation of an (A`, B`) mincut for some `. Suppose ti ∈ A`. We claim that
S∗i ∈ X` and derive a contradiction by assuming that it is not true. We observe that S∗i ∩X` is a
strict subset of S∗i and is also a ti-isolating cut, and hence by minimality of S∗i , |δ(S∗i ∩X`)| > |δ(S∗i)|.

We observe that S∗i ∪ X` is an A`-B` cut (why?) and hence |δ(S∗i ∪ X`)| ≥ |δ(X`)| since X` is a
A`-B` mincut. But these facts contradict the inequality that we have via submodularity:

|δ(S∗i)|+ |δ(X`)| ≥ |δ(S∗i ∩X`)|+ |δ(S∗i ∪X`|.

A similar argument show that when ti ∈ B`, S
∗
i ⊆ Y`. Thus, S∗i ⊆ Ui based on the definition of

Ui. �

e Ye

Be

Figure 1: Figure for proof of Lemma 7.

The last step of the algorithm is the following. For each i we have an isolating cut (Ui, V −Ui).
The preceding lemma guarantees us that there is a minimum cost ti-isolating cut (S∗i , V − S∗i)
where S∗i ⊆ Ui. Thus, to compute S∗i we can do the following. Construct a graph Hi = (Vi, Ei)
where we shrink V − Ui to a single vertex si. We ask the reader to prove this for themselves.

Claim 8. The min ti-si cut in Hi is the minimum cost ti-isolating cut in G.

Idents

Us

t

Uy

Figure 2: V − Ui is shrunk to si to create graph Hi. U
∗
i is found by computing ti-si cut in Hi.

Thus the isolating cut algorithm becomes the following.

1. For ` = 1 to h compute a A`-B` mincut (X`, Y`)

2. For i = 1 to k define Ui = (∩`:ti∈A`
X`) ∩ (∩`:ti∈B`

Y`).

3. For i = 1 to k, create Hi and compute a min ti-si cut (S∗i , Vi − S∗i).

4. For i = 1 to k output S∗i as the min-cost ti-isolating cut.

Analyzing the running time: It is easy to see that the first step can be done with O(log k)-
maxflow computations on G. In the third step we are actually doing k-maxflow computations so
it seems that we did not meet our promise. However, let us understand the size of Hi. It is ni + 1
vertices where ni = |Ui| and it has mi edges where mi = |E[Ui]|+ |δ(Ui)|. Thus, the running time
of maxflow on Hi is T (ni + 1,mi) where T (a, b) is the running-time of maxflow on graph with a
nodes and b edges. We observe that

∑
i(ni + 1) ≤ 2n since the Ui are disjoint. We also note that∑

imi ≤ 2m. Why? Consider any edge uv ∈ E. If uv ∈ E[Ui] for some i then it does not contribute
to any other Hj . If uv ∈ δ(Ui) for some i then it can be in δ(Uj) for only one index j 6= i. Thus
each uv can be part of only two of the graphs Hi, i ∈ [k]. Thus the total time to compute all the k
maxflows is

∑
i T (ni,mi) ≤ T (2n, 2m)) under reasonable assumption that T (a, b) is super-additive.

This may not be satisfactory explanation to claim that we have reduced the problem to O(log k)-
maxflow computations but we can make it more formal as follows. We can create a single H that
includes each Hi as a copy in it and we can run a single maxflow on H to recover all the maxflow
values in each Hi. H will have O(n) vertices and O(m) edges — we leave the construction of such
a graph H as an exercise.

Theorem 9 ([LP20]). There is a determininstic algorithm that given G = (V,E) and terminal set
T ⊆ V with |T | = k computes all the isolating cuts using O(log k)-maxflow computations on graphs
with |V | vertices and |E| edges each.

Remark 10. Another perspective on the bipartititions is that they are a way to derandomize a
natural randomized algorithm that picks some O(log k) bipartitions of T at random and computes
the cuts between them. With high probability every ti and tj, i 6= j will be separated in at least one
of the random bipartitions.

1.3 Randomized algorithm for Steiner mincut via Isolating Cuts

Isolating cuts easily lead to a simple randomized algorithm for Steiner mincut. The basic idea is
quite simple. Consider an optimum Steiner mincut (S, V −S) and let T1 = S∩T and T2 = (V −S)∩T
and let k1 = |T1| and k2 = |T2. We observe that (S, V − S) is a min ti-tj cut for any ti ∈ T1 and
tj ∈ T2. Without loss of generality 1 ≤ k1 ≤ k2. Suppose we knew k1. We sample each terminal
in T independently with probability 1/k1 to obtain a susbet T ′. Simple probabilistic calculations
shows that with constant probability |T ′ ∩ T1| = 1 and |T ′ ∩ T2| ≥ 1. Suppose T ′ satisfies these
properties and let T1 = {ti}. Then one observes that (S, V − S) is a minimum cost ti-isolating
cut with respect to the terminal set T ′. Thus, computing the T ′-isolating cuts and choosing the
cheapest one identifies the minimum Steiner cut for T . But how do we know k1? We do not so we
can “guess” k1 within a factor of 2; alterantively, we try O(log k) different sampling probabilities.

1. min-so-far←∞.

2. For i = 0 to dlog ke do

(a) Choose T ′ by sampling each terminal in T with probability 1/2i.

(b) Compute T ′ isolating cuts and update min-so-far with the cheapest of the cuts found

3. Output min-so-far and the corresponding cut

Lemma 11. The algorithm finds the minum Steiner cut for T with probability at least 1/4.

Proof. We can assume that k1 > 1 for if k1 = 1 we obtain the correct solution deterministically
when i = 0 which corresponds to T ′ = T . Following the high-level explanation we will consider
when an index i such that 1

2i+1 <
1
k1
≤ 1

2i
. Such an index exists since we try i = 0 to dlog ke and

1 ≤ k1 ≤ k/2. Let ` = 2i so we have ` ≤ k1 ≤ 2`. Let E1 be the event that T1∩T ′ = 1, that is exactly
one terminal from T1 is chosen. We see that P[E1] = k1

1
` (1− 1/`)k1−1 ≥ (1− 1/`)2` ≥ 1/e2. Let E2

be the event that T2∩T ′ 6= ∅. We see that P[E2] ≥ 1− (1−1/`)k2 ≥ (1−1/`)` ≥ 1−1/e. Note that
E1 and E2 are independent events since T1 and T2 are disjoint sets. Thus P[E1 ∩ E2] ≥ (1− 1/e)/e2

which is a constant. �

It is easy to see that the algorithm runs O(log k) iterations of the isolating cut heuristic and
thus the total runtime is O(log2 k) maxflow computations. This gets us success probability of a
constant. To amplify this we can repeat the algorithm. If we want high probababily guarantee we
repeate it Θ(log n) times which corresponds to a total of O(log2 k log n)-maxflow computations.

Deterministic algorithm: Li and Panigrahy [LP20, LP21] also developed deterministic mincut
and Steiner mincut algorithms in graphs using additional ideas based on expander decompositions.

Submodularity: The core idea of isolating cuts relies only on submodularity and symmetry and
thus applies in much more generality and to several other problems. This is explicitly discussed in
[CQ21] though the ideas are implicit in [LP20].

Other applications: Isolating cuts have found many other uses including algorithms for vertex
connectivity, Gomory-Hu trees, cactus computation, etc. See [LP21] (full version of [LP20]) for
some pointers.

References

[AKT21] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Subcubic algorithms for
gomory–hu tree in unweighted graphs. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1725–1737, 2021.

[CQ21] Chandra Chekuri and Kent Quanrud. Isolating cuts, (bi-)submodularity, and faster al-
gorithms for global connectivity problems. CoRR, abs/2103.12908, 2021.

[LP20] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows.
In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),
pages 85–92. IEEE, 2020.

[LP21] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows.
CoRR, abs/2111.02008, 2021.

	Steiner Mincut
	Background on Submodularity
	Isolating Cuts via Poly-log Maxflow Computations
	Randomized algorithm for Steiner mincut via Isolating Cuts

