CS 583: Approximation Algorithms

Chandra Chekurit

January 28, 2026

Dept. of Computer Science, University of Illinois, Urbana, IL 61820. Email:
chekuri@illinois.edu. Work on these notes partially supported by NSF grants over the
years. Comments, suggestions, and corrections are welcome.

Contents

1 Introduction
1.1 Formal Aspects
1.1.1 NP Optimization Problems,
1.1.2 Relative Approximation
1.1.3 Additive Approximation L.
1.1.4 Hardness of Approximation
1.2 Designing Approximation Algorithms

2 Covering Problems
2.1 Greedy for Ser Covir and MaxiMmum COVERAGE
21.1 Greedy Algorithm
2.1.2 Analysisof GREEDY COVER
2.1.3 DOMINATINGSET v v it it e et e e e e e
2.2 VERTEXCOVER v i it ittt e e e e e e e e e
22.1 A 2-approximation for VERTEX COVER
2.2.2 Ser Cover with small frequencies
23 VertexCoverviaLP
24 SetCoverviaLP
241 DeterministicRounding
242 Randomized Rounding
243 Dualfitting o
244 Greedy for implicit instances of SErCover
25 Submodularity.o
251 SUBMODULARSETCOVER v vt i i i i i i e e
2.5.2 SuBMODULAR MAXIMUM COVERAGE v v v v v v ..
2.6 Covering Integer Programs (CIPs)

3 Knapsack
3.1 TheKnapsack Problem
311 AGreedy Algorithm

CONTENTS

3.1.2 A Polynomial Time Approximation Scheme
3.1.3 Roundingand Scaling
32 OtherProblems

4 Packing Problems

41 Maximum Independent Set Problem in Graphs
41.1 Elimination Ordersand MIS

4.2 The efficacy of the Greedy algorithm for a class of Independence
Families.

43 Randomized Rounding with Alteration for Packing Problems

44 Packing Integer Programs (PIPs)
4.4.1 Randomized Rounding with Alteration for PIPs

5 Load Balancing and Bin Packing
5.1 Load Balancing / MultiProcessor Scheduling
511 Problem Description
512 Greedy Algorithm
51.3 A PTAS for Multi-Processor Scheduling
514 SectionNotes
52 BinPacking
52.1 Problem Description
522 Greedy Approaches
5.2.3 (Asymptotic) PTAS for Bin Packing
524 Asymptotic PTAS for Bin Packing
525 SectionNotes

6 Unrelated Machine Scheduling and Generalized Assignment
6.1 Scheduling on Unrelated Parallel Machines
6.2 Generalized Assignment Problem
6.2.1 Shmoys-TardosRounding
6.2.2 [IterativeRounding
6.3 Maximization versionof GAP
6.4 BibilographicNotes

7 Congestion Minimization in Networks
7.1 Congestion Minimization and VLSI Routing
7.2 Min-max Integer Programs

8 Introduction to Local Search
8.1 Local Search for MaxCuT i i ittt
8.2 Local Search for Submodular Function Maximization

38
40
41

42
43
46

CONTENTS

9 Clustering and Facility Location

10

11

12

13

9.1

9.2

9.3

94
9.5
9.6

k-Center
9.1.1 Gonzalez’s algorithm and nets in metric spaces
9.1.2 Hochbaum-Shmoys bottleneck approach
9.1.3 Related Problems and Discussion
Uncapacitated Facility Location
921 LPRounding
922 Primal-Dual
923 LocalSearch
k-Median
931 LocalSearch
k-Means
Lloyd’s algorithm, D?-sampling and k-Means ++.
BibliographicNotes

Introduction to Network Design
10.1 The Steiner Tree Problem

10.1.1 The MST Algorithm
10.1.2 The Greedy/Online Algorithm
10.1.3 LPRelaxation
10.1.4 Other Results on Steiner Trees

10.2 The Traveling Salesperson Problem (TSP)

10.2.1 TSP in Undirected Graphs
10.2.2 LP Relaxation
10.2.3 TSPin Directed Graphs
10.24 LPRelaxation

Steiner Forest Problem

Primal Dual for Constrained Forest Problems
12.1 Classes of Functionsand Setup

12.2 A Primal-Dual Algorithm for Covering Uncrossable Functions . . .

12.2.1 Proofof Lemma12.6

Survivable Network Design Problem
13.1 Augmentationapproach
13.2 Iterated rounding based 2-approximation

13.2.1 Basic feasible solutions and laminar family of tight sets . . .
13.2.2 Countingargument

101
102
103
104
105
106
106
108
117
118
119
123
123
125

126
127
128
130
131
132
133
133
136
138
140

141

146
147

. 150

152

157
158
161

. 163

CONTENTS

14

15

16

17

18

19

Introduction to Cut and Partitioning Problems
14.1 s-t mincut via LP Rounding and Maxflow-Mincut

14.2 A Catalog of Cut and Partitioning Problems

Multiway Cut

15.1 Isolating Cut Heuristic
15.2 Distance based LP Relaxation
15.3 A Partitioning View and Geometric Relaxation . .
15.4 Node-weighted and Directed Multiway Cut

Multicut

16.1 Upper Bound on the Integrality Gap
16.2 Lower Bound on the Integrality Gap
16.2.1 Expander Graphs
16.2.2 The Multicut Instance

Sparsest Cut

17.1 LP Relaxation and Maximum Concurrent Flow . .
17.2 Rounding LP via Connection to Multicut
17.3 Rounding via {; embeddings
17.3.1 A digression through trees
17.3.2 Cut metrics, line metrics, and ¢; metrics . .
17.3.3 Brief introducton to metric embeddings . .
17.3.4 Utilizing the {; embedding
17.4 SDP and Spectral Relaxations

(Spanning) Tree Embeddings
SDP Based Approximation

Basic Feasible Solutions to LPs and the Rank Lemma

A0.1 SomeExamples
A.0.2 Connection to Caratheodary’s Theorem . .

Probabilistic Inequalities

Chapter 1

Introduction

These are lecture notes for a course on approximation algorithms.

Course Objectives

1. To appreciate that not all intractable problems are the same. NP optimization
problems, identical in terms of exact solvability, can appear very different
from the approximation point of view. This sheds light on why, in practice,
some optimization problems (such as Knapsack) are easy, while others (like
CLIQuUE) are extremely difficult.

2. To learn techniques for design and analysis of approximation algorithms, via
some fundamental problems.

3. To build a toolkit of broadly applicable algorithms/heuristics that can be used
to solve a variety of problems.

4. To understand reductions between optimization problems, and to develop the
ability to relate new problems to known ones.

The complexity class P contains the set of problems that can be solved in
polynomial time. From a theoretical viewpoint, this describes the class of tractable
problems, that is, problems that can be solved efficiently. The class NP is the set of
problems that can be solved in non-deterministic polynomial time, or equivalently,
problems for which a solution can be verified in polynomial time. NP contains many
interesting problems that often arise in practice, but there is good reason to believe
P # NP. That is, it is unlikely that there exist algorithms to solve NP optimization
problems efficiently, and so we often resort to heuristic methods to solve these
problems.

Heuristic approaches include backtrack search and its variants, mathematical
programming methods, local seach, genetic algorithms, tabu search, simulated

5

CHAPTER 1. INTRODUCTION 6

annealing etc. Some methods are guaranteed to find an optimal solution, though
they may take exponential time; others are guaranteed to run in polynomial time,
though they may not return a (optimal) solution. Approximation algorithms are
(typically) polynomial time heuristics that do not always find an optimal solution
but they are distinguished from general heuristics in providing guarantees on the
quality of the solution they output.

Approximation Ratio: To give a guarantee on solution quality, one must first
define what we mean by the quality of a solution. We discuss this more carefully
later. For now, note that each instance of an optimization problem has a set of feasible
solutions. The optimization problems we consider have an objective function
which assigns a (real/rational) number/value to each feasible solution of each
instance I. The goal is to find a feasible solution with minimum objective function
value or maximum objective function value. The former problems are minimization
problems and the latter are maximization problem:s.

For each instance I of a problem, let OPT(I) denote the value of an optimal
solution to instance I. We say that an algorithm A is an a-approximation algorithm
for a problem if, for every instance I, the value of the feasible solution returned
by A is within a (multiplicative) factor of a of OPT(I). Equivalently, we say that
A is an approximation algorithm with approximation ratio a. For a minimization
problem we would have a > 1 and for a maximization problem we would have
a < 1. However, it is not uncommon to find in the literature a different convention
for maximization problems where one says that A is an @-approximation algorithm
if the value of the feasible solution returned by A is at least % - OPT(I); the reason
for using convention is so that approximation ratios for both minimization and
maximization problems will be > 1. In this course we will for the most part use
the convention that & > 1 for minimization problems and a < 1 for maximization
problems.

Remarks:

1. The approximation ratio of an algorithm for a minimization problem is the
maximum (or supremum), over all instances of the problem, of the ratio
between the values of solution returned by the algorithm and the optimal
solution. Thus, it is a bound on the worst-case performance of the algorithm.

2. The approximation ratio @ can depend on the size of the instance I, so one
should technically write a(|I]).

3. A natural question is whether the approximation ratio should be defined
in an additive sense. For example, an algorithm has an a-approximation for
a minimization problem if it outputs a feasible solution of value at most
OPT(I) + « for all I. This is a valid definition and is the more relevant one

CHAPTER 1. INTRODUCTION 7

in some settings. However, for many NP problems it is easy to show that
one cannot obtain any interesting additive approximation (unless of course
P = NP) due to scaling issues. We will illustrate this via an example later.

Pros and cons of the approximation approach: Some advantages to the approxi-
mation approach include:

1.
2.

It explains why problems can vary considerably in difficulty.

The analysis of problems and problem instances distinguishes easy cases from
difficult ones.

The worst-case ratio is robust in many ways. It allows reductions between
problems.

Approximation allgorithmic ideas/tools/relaxations are valuable in develop-
ing heuristics, including many that are practical and effective.

Quantification of performance via a concrete metric such as the approximation
ratio allows for innovation in algorithm design and has led to many new ideas.

As a bonus, many of the ideas are beautiful and sophisticated, and involve connec-
tions to other areas of mathematics and computer science.

Disadvantages include:

1.

The focus on worst-case measures risks ignoring algorithms or heuristics that
are practical or perform well on average.

Unlike, for example, integer programming, there is often no incremen-
tal/continuous tradeoff between the running time and quality of solution.

Approximation algorithms are often limited to cleanly stated problems.

The framework does not (at least directly) apply to decision problems or those
that are inapproximable.

Approximation as a broad lens

The use of approximation algorithms is not restricted solely to NP-Hard optimization
problems. In general, ideas from approximation can be used to solve many problems
where finding an exact solution would require too much of any resource.

A resource we are often concerned with is time. Solving NP-Hard problems
exactly would (to the best of our knowledge) require exponential time, and so we

CHAPTER 1. INTRODUCTION 8

may want to use approximation algorithms. However, for large data sets, even
polynomial running time is sometimes unacceptable. As an example, the best exact
algorithm known for the MatcHING problem in general graphs requires O(m+/n)
time; on large graphs, this may be not be practical. In contrast, a simple greedy
algorithm takes near-linear time and outputs a matching of cardinality at least 1/2
that of the maximum matching; moreover there have been randomized sub-linear
time algorithms as well.

Another often limited resource is space. In the area of data streams/streaming
algorithms, we are often only allowed to read the input in a single pass, and given a
small amount of additional storage space. Consider a network switch that wishes
to compute statistics about the packets that pass through it. It is easy to exactly
compute the average packet length, but one cannot compute the median length
exactly. Surprisingly, though, many statistics can be approximately computed.

Other resources include programmer time (as for the MaTcHING problem,
the exact algorithm may be significantly more complex than one that returns
an approximate solution), or communication requirements (for instance, if the
computation is occurring across multiple locations).

1.1 Formal Aspects

1.1.1 NP Optimization Problems

In this section, we cover some formal definitions related to approximation algorithms.
We start from the definition of optimization problems. A problem is simply an
infinite collection of instances. Let Il be an optimization problem. IT can be either a
minimization or maximixation problem. Instances I of ITare a subset of ©* where X is
a finite encoding alphabet. For each instance I there is a set of feasible solutions S(I).
We restrict our attention to real/rational-valued optimization problems; in these
problems each feasible solution S € S(I) has a value val(S, I). For a minimization
problem IT the goal is, given I, find OPT(I) = mingeg() val(S, I).

Now let us formally define NP optimization (NPO) which is the class of
optimization problems corresponding to N P.

Definition 1.1. I1is in NPO if

* Given x € X7, there is a polynomial-time algorithm that decide if x is a valid instance
of I1. That is, we can efficiently check if the input string is well-formed. This is a basic
requirement that is often not spelled out.

e ForeachI,and S € S(I), |S| < poly(|1|). That is, the solution are of size polynomial
in the input size.

CHAPTER 1. INTRODUCTION 9

* There exists a poly-time decision procedure that for each I and S € X, decides if
S € S(I). This is the key property of NP; we should be able to verify solutions

efficiently.
* val(1, S) is a polynomial-time computable function.

We observe that for a minimization NPO problem I, there is a associated
natural decision problem L(IT) = {(I,B) : OPT(I) < B} which is the following:
given instance I of IT and a number B, is the optimal value on I at most B? For
maximization problem IT we reverse the inequality in the definition.

Lemma 1.1. L(IT) is in NP if ITis in NPO.

1.1.2 Relative Approximation

When ITis a minimization problem, recall that we say an approximation algorithm
A is said to have approximation ratio « iff

¢ Ais a polynomial time algorithm

e for all instance I of I'l, A produces a feasible solution A(I) s.t. val(A(I),I) <
a val (OPT(I),I). (Note that a > 1.)

Approximation algorithms for maximization problems are defined similarly. An
approximation algorithm (A is said to have approximation ratio « iff

* Ais a polynomial time algorithm

e for all instance I of Il, A produces a feasible solution A(I) s.t. val(A(I),I) >
a val (OPT(I),I). (Note that a < 1.)

For maximization problem:s, it is also common to see use 1/a (which must be
> 1) as approximation ratio.

1.1.3 Additive Approximation

Note that all the definitions above are about relative approximations; one could
also define additive approximations. A is said to be an a-additive approximation
algorithm, if for all I, val(A(I)) < OPT(I) + a. Most NPO problems, however, do
not allow any additive approximation ratio because OPT(I) has a scaling property.

To illustrate the scaling property, let us consider Metric-TSP. Given an instance
I, let Ig denote the instance obtained by increasing all edge costs by a factor of
B. It is easy to observe that for each S € S(I) = S(lg), val(S, Ig) = poal(S, Ig) and
OPT(Ig) = B OPT(I). Intuitively, scaling edge by a factor of § scales the value by the
same factor . Thus by choosing S sufficiently large, we can essentially make the
additive approximation(or error) negligible.

CHAPTER 1. INTRODUCTION 10

Lemma 1.2. Metric-TSP does not admit an « additive approximation algorithm for any
polynomial-time computable o unless P = NP.

Proof. For simplicity, suppose every edge has integer cost. For the sake of con-
tradiction, suppose there exists an additive a approximation A for Metric-TSP.
Given I, we run the algorithm on Iy and let S be the solution, where f = 2a.
We claim that S is the optimal solution for I. We have val(S, I) = val(S, Ig)/p <
OPT(Ig)/p + a/p = OPT(I) + 1/2, as A is a-additive approximation. Thus we
conclude that OPT(I) = val(S, I), since OPT(I) < val(S, I), and OPT(I), val(S, I) are
integers. This is impossible unless P = NP. []

Now let us consider two problems which allow additive approximations. In
the Planar Graph Coloring, we are given a planar graph G = (V, E). We are asked
to color all vertices of the given graph G such that for any vw € E, v and w have
different colors. The goal is to minimize the number of different colors. It is known
that to decide if a planar graph admits 3-coloring is NP-complete [146], while one
can always color any planar graph G with using 4 colors (this is the famous 4-color
theorem) [9, 152]. Further, one can efficiently check whether a graph is 2-colorable
(that s, if it is bipartite). Thus, the following algorithm is a 1-additive approximation
for Planar Graph Coloring: If the graph is bipartite, color it with 2 colors; otherwise,
color with 4 colors.

As a second example, consider the Edge Coloring Problem, in which we are
asked to color edges of a given graph G with the minimum number of different
colors so that no two adjacent edges have different colors. By Vizing’s theorem
[157], we know that one can color edges with either A(G) or A(G) + 1 different colors,
where A(G) is the maximum degree of G. Since A(G) is a trivial lower bound on the
minimum number, we can say that the Edge Coloring Problem allows a 1-additive
approximation. Note that the problem of deciding whether a given graph can be
edge colored with A(G) colors is NP-complete [86].

1.1.4 Hardness of Approximation

Now we move to hardness of approximation.

Definition 1.2 (Approximability Threshold). Given a minimization optimization prob-
lem 11, it is said that I1 has an approximation threshold a*(I1), if for any € > 0, IT admits a
a*(IT) + € approximation but if it admits a o*(I1) — € approximation then P = NP.

If a*(IT) = 1, it implies that IT is solvable in polynomial time. Many NPO
problems IT are known to have a*(IT) > 1 assuming that P # NP. We can say
that approximation algorithms try to decrease the upper bound on a*(I1), while
hardness of approximation attempts to increase lower bounds on a*(IT).

CHAPTER 1. INTRODUCTION 11

To prove hardness results on NPO problems in terms of approximation, there
are largely two approaches; a direct way by reduction from NP-complete problems
and an indirect way via gap reductions. Here let us take a quick look at an example
using a reduction from an NP-complete problem.

In the (metric) k-center problem, we are given an undirected graph G =
(V,E) and an integer k. We are asked to choose a subset of k vertices from V
called centers. The goal is to minimize the maximum distance to a center, i.e.
mingcy |s|=k MaXyey distg(v, S), where distg(v, S) = min, g distg(u, v).

The k-center problem has approximation threshold 2, since there are a few 2-
approximation algorithms for k-center and there is no 2 — € approximation algorithm
for any € > 0 unless P = NP. We can prove the inapproximability using a reduction
from the decision version of Dominating Set: Given an undirected graph G = (V, E)
and an integer k, does G have a dominating set of size at most k? AsetS C V is
said to be a dominating setin G if forallv € V, v € S or v is adjacent to some u in S.
Dominating Set is known to be NP-complete.

Theorem 1.3 ([89]). Unless P = NP, there is no 2 — € approximation for k-center for any
fixed € > 0.

Proof. LetI be an instance of Dominating Set Problem consisting of graph G = (V, E)
and integer k. We create an instance I’ of k-center while keeping graph G and k the
same. If | has a dominating set of size k then OPT(I’) = 1, since every vertex can
be reachable from the Dominating Set by at most one hop. Otherwise, we claim
that OPT(I") > 2. This is because if OPT(I’) < 2, then every vertex must be within
distance 1, which implies the k-center that witnesses OPT(I’) is a dominating set
of I. Therefore, the (2 — €) approximation for k-center can be used to solve the
Dominating Set Problem. This is impossible, unless P = NP. []

1.2 Designing Approximation Algorithms

How does one design and more importantly analyze the performance of approx-
imation algorithms? This is a non-trivial task and the main goal of the course is
to expose you to basic and advanced techniques as well as central problems. The
purpose of this section is to give some high-level insights. We start with how we
design polynomial-time algorithms. Note that approximation makes sense mainly
in the setting where one can find a feasible solution relatively easily but finding an
optimum solution is hard. In some cases finding a feasible solution itself may involve
some non-trivial algorithm, in which case it is useful to properly understand the
structural properties that guarantee feasibility, and then build upon it.

Some of the standard techniques we learn in basic and advanced undergraduate
algorithms courses are recursion based methods such as divide and conquer,

CHAPTER 1. INTRODUCTION 12

dynamic programming, greedy, local search, combinatorial optimization via duality,
and reductions to existing problems. How do we adapt these to the approximation
setting? Note that intractability implies that there are no efficient characterizations
of the optimum solution value.

Greedy and related techniques are often fairly natural for many problems and
simple heuristic algorithms often suggest themselves for many problems. (Note
that the algorithms may depend on being able to solve some existing problem
efficiently. Thus, knowing a good collection of general poly-time solvable problems
is often important.) The main difficulty is in analyzing their performance. The key
challenge here is to identify appropriate lower bounds on the optimal value (assuming
that the problem is a minimization problem) or upper bounds on the optimal value
(assuming that the problem is a maximization problem). These bounds allow one
to compare the output of the algorithm and prove an approximation bound. In
designing poly-time algorithms we often prove that greedy algorithms do not work.
We typically do this via examples. This skill is also useful in proving that some
candidate algorithm does not give a good approximation. Often the bad examples
lead one to a new algorithm.

How does one come up with lower or upper bounds on the optimum value?
This depends on the problem at hand and knowing some background and related
problems. However, one would like to find some automatic ways of obtaining
bounds. This is often provided via linear programming relaxations and more
advanced convex programming methods including semi-definite programming,
lift-and-project hierarchies etc. The basic idea is quite simple. Since integer
linear programming is NP-Complete one can formulate most discrete optimization
problems easily and “naturally” as an integer program. Note that there may be
many different ways of expressing a given problem as an integer program. Of course
we cannot solve the integer program but we can solve the linear-programming
relaxation which is obtained by removing the integrality constraints on the variables.
Thus, for each instance I of a given problem we can obtain an LP relaxation LP(I)
which we typically can be solve in polynomial-time. This automatically gives a
bound on the optimum value since it is a relaxation. How good is this bound? It
depends on the problem, of course, and also the specific LP relaxation. How do
we obtain a feasible solution that is close to the bound given by the LP relaxation.
The main technique here is to round the fractional solution x to an integer feasible
solution x’ such that x”’s value is close to that of x. There are several non-trivial
rounding techniques that have been developed over the years that we will explore
in the course. We should note that in several cases one can analyze combinatorial
algorithms via LP relaxations even though the LP relaxation does not play any direct
role in the algorithm itself. Finally, there is the question of which LP relaxation to
use. Often it is required to “strengthen” an LP relaxation via addition of constraints
to provide better bounds. There are some automatic ways to strengthen any LP and

CHAPTER 1. INTRODUCTION 13

often one also needs problem specific ideas.

Local search is another powerful technique and the analysis here is not obvious.
One needs to relate the value of a local optimum to the value of a global optimum
via various exchange properties which define the local search heuristic. For a formal
analysis it is necessary to have a good understanding of the problem structure.

Finally, dynamic programming plays a key role in the following way. Its main
use is in solving to optimality a restricted version of the given problem or a subroutine
that is useful as a building block. How does one obtain a restricted version? This is
often done by some clever proprocessing of a given instance.

Reductions play a very important role in both designing approximation algo-
rithms and in proving inapproximability results. Often reductions serve as a starting
point in developing a simple and crude heuristic that allows one to understand the
structure of a problem which then can lead to further improvements.

Discrete optimization problems are brittle — changing the problem a little can
lead to substantial changes in the complexity and approximability. Nevertheless
it is useful to understand problems and their structure in broad categories so that
existing results can be leveraged quickly and robustly. Thus, some of the emphasis
in the course will be on classifying problems and how various parameters influence
the approximability.

Chapter 2

Covering Problems

Part of these notes were scribed by Abul Hassan Samee and Lewis Tseng.

Packing and Covering problems together capture many important problems
in combinatorial optimization. We will discuss several covering problems in this
chapter. Two canonical problems are Minimum VErTEX CoVER and its generalization
Minmvum Ser Cover. (Typically we will omit the use of the qualifiers minimum
and maximum since this is often clear from the definition of the problem and the
context.) They play an important (historical) role in the study of approximation
algorithms.

A vertex cover in an undirected graph G = (V,E) isaset S C V of vertices such
that for each edge e € E, at least one of its end points is in S. It is also called a node
cover. In the Verrex Cover problem, our goal is to find a smallest vertex cover of G.
In the weighted version of the problem, a weight function w : V. — R* is given, and
our goal is to find a minimum weight vertex cover of G. The unweighted version of
the problem is also known as CarbinaLiTy VERTEX CovER. Note that we are picking
vertices to cover the edges. VErTEX CovEr is NP-Hard and is on the list of problems
in Karp’s list.

In the Ser Cover problem the input is a set U of n elements, and a collection
S ={51,52,...,5u} of m subsets of U such that | J; S; = U. Our goal in the Ser
Cover problem is to select as few sets as possible from S such that their union is U.
In the weighted version each set S; has a non-negative weight w; the goal is to find
a set cover of minimim weight. It is easy to see VErTex Cover is a special case of Ser
Cover . Closely related to the SEr Cover problem is the Maximvum CovERAGE problem.
In this problem the input is a set system given by U and S and in addition there is
also an integer k < m. The goal is to select k sets from S such that the cardinality of
their union is maximized. Note that Ser Cover is a minimization problem while
Maxmmum COVERAGE is a maximization problem. Ser Cover is equivalent to the
Hirring SeT problem. In Hirring Skt the input is U and S but the goal is to pick the

14

CHAPTER 2. COVERING PROBLEMS 15

smallest number of elements of U that cover the given sets in S. In other words we
are seeking a set cover in the dual set system!.

Ser Cover has many applications. In the standard formulation the set system is
explicitly given. However, in many applications the set system is implicitly specified.
Ser Cover is an important problem because in discrete optimization. In the standard
definition the set system is given explicitly. In many applications the set system is
implicit, and often exponential in the explicit part of the input; nevertheless such set
systems are ubiquitious and one can often obtain exact or approximation algorithms.
As an example consider the well known MST problem in graphs. One way to phrase
MST is the following: given an edge-weighted graph G = (V, E) find a minimum
cost subset of the edges that cover all the cuts of G; by cover a cut S € V we mean
that at least one of the edges in 6(S) must be chosen. This may appear to be a
strange way of looking at the MST problem but this view is useful as we will see
later. Another implicit example is the following. Suppose we are given n rectangles
in the plane and the goal is to choose a minimum number of points in the plane
such that each input rectangle contains one of the chosen points. This is perhaps
more natural to view as a special case of the Hirting Ser problem. In principle the
set of points that we can choose from is infinite but it can be seen that we can confine
our attention to vertices in the arrangement of the given rectangles and it is easy to
see that there are only O(n?) vertices — however, explicity computing them may be
expensive and one may want to treat the problem as an implicit one for the sake of
efficiency. want to think of

Covering problems have the feature that a superset of a feasible solution is also
a feasible solution. More abstractly one can cast covering problems as the following.
We are given a finite ground set V' (vertices in a graph or sets in a set system) and a
family of feasible solutions 7 C 2" where 7 is upward closed; by this we mean that
if A€ 7 and A C B then B € 1. The goal is to find the smallest cardinality set A in
1. In the weighted case V has weights and the goal is to find a minimum weight set
in 7. In some case one can also consider more complex non-additive objectives that
assign a cost c(S) foreach S € 7.

2.1 Greedy for SEr Cover and MaxiMum COVERAGE

In this section we consider the unweighted version of Ser Cover.

1A finite set system is also viewed as a bipartite graph with one side corresponding to sets and the
other side corresponding to elements — there is an edge between a set vertex and an element vertex
iff the element belongs to the set. The dual set system corresponds to flipping the role of the sets and
elements in the same bipartite graph.

CHAPTER 2. COVERING PROBLEMS 16

211 Greedy Algorithm

A natural greedy approximation algorithm for these problems is easy to come up
with.

Greepy Cover(U, S)

1. repeat

A. pick the set that covers the maximum number of uncovered elements

B. mark elements in the chosen set as covered

2. until done

In case of SEr CovEr, the algorithm Greepy Cover is done when all the elements
in set U have been covered. And in case of Maxivum CovERAGE, the algorithm is
done when exactly k subsets have been selected from S.

We will prove the following theorem.

Theorem 2.1. Greepy Coverisa1l— (1 —1/k)* > (1 - %) ~ 0.632 approximation for
Maxmmum CoverAGe, and a (Inn + 1) approximation for SET COVER.

The following theorem implies that GReepy Cover is essentially the best possible
in terms of the approximation ratio that it guarantees.

Theorem 2.2 (Feige [57]). Unless NP C DTIME (1008108 ™) there is no (1 — o(1)) Inn
approximation for Ser Cover. Unless P=NP, for any fixed € > 0, there is no (1 — 1 —)
approximation for Maximum COVERAGE.

The preceding theorem has been strengthened so that the hardness holds under
the more standard assumption that P # NP [125].

2.1.2 Analysis of GREeDY COVER

We proceed towards the proof of Theorem 10.3 by providing analysis of GREeDY
Cover separately for SEr Cover and Maxmmum COVERAGE.

Analysis for Maximum COVERAGE

Let OPT denote the value of an optimal solution to the Maxmmum CoverRAGE problem;
this is the maximum number of elements that are covered by k sets in the given set
system. Let x; denote the number of new elements covered by the i-th set chosen by
Greepy Cover. Also, let y; = Z;zl x; be the total number of elements covered after i
iterations, and z; = OPT —y;. Note that, according to our notation, yo = 0 and yy is

CHAPTER 2. COVERING PROBLEMS 17

the number of elements chosen by Greepy Cover at the end of the algorithm, and
zo = OPT. The key to the analysis is the following simple claim.

Claim 2.1.1. For0 <i <k, xj11 > 7.

Proof. Let F* C U be the elements covered by some fixed optimum solution; we
have |F*| = OPT. Consider iteration i + 1. GReepy Cover selects the subset S; whose
inclusion covers the maximum number of uncovered elements. Since y; is the total
number of elements covered upto iteration i, at least z; = OPT —y; elements from F*
are uncovered. Let the set of uncovered elements from F* at the end of iteration i be
F;.‘. Since k sets together cover F*, and hence F;* as well, there must be some set in
that collection of k sets that covers at least |F}|/k elements. This is a candidate set
that can be chosen in iteration i + 1. Since the algorithm picks the set that covers the
maximum number of uncovered elements, the chosen set in iteration i + 1 covers at

least |F?|/k = % uncovered elements. Hence, x;1 > 3. [
i k k

Remark 2.1. It is tempting to make a stronger claim that x;,1 > % This is however
false, and it is worthwhile to come up with an example.

By definition we have yx = x1 + x2 + ... + xi is the total number of elements
covered by Greepy Cover. To analyze the worst-case we want to make this sum as
small as possible given the preceding claim. Heuristically (which one can formalize),
one can argue that choosing x;.1 = z;/k minimizes the sum. Using this one can
argue that the sum is at least (1 — (1 — 1/k)*) OPT. We give a formal argument now.

Claim 2.1.2. Fori > 0,z; < (1 - 1)" - OPT.

Proof. By induction on i. The claim is trivially true for i = 0 since zo = OPT. We
assume inductively that z; < (1 - %)l -OPT. Then

Zi+1 = Zi — Xi+1

<zi(l- %) [using Claim 2.1.1]

<(1- %)i“ -OPT.
]

The preceding claims yield the following lemma for algorithm Greepy Cover
when applied on MaxiMum COVERAGE.

Lemma 2.1. Greepy Coverisa 1 — (1 —1/k)* > 1 - L approximation for Maxmmum
COVERAGE.

Proof. It follows from Claim 2.1.2 that z < (1 - %)k OPT < &L, Hence, y =
OPT -z > (1-1)-OPT. n

We note that (1 —1/e) ~ 0.632.

CHAPTER 2. COVERING PROBLEMS 18

Analysis for Ser Cover

Let k* denote the value of an optimal solution to the SEr Cover problem. Then an
optimal solution value to the Maximum CovieRAGE problem with the same system
and k = k* would by n = |U| since it is possible to cover all the n elements in set U
with k* sets. From our previous analysis, zx- < Z. Therefore, at most Z elements
would remain uncovered after the first k* steps of GrReepy Cover. Similarly, after
2 - k* steps of GrReepy CovERr, at most e"—z elements would remain uncovered. This
easy intuition convinces us that GReepy Cover is a (Inn + 1) approximation for the
Ser Cover problem. A more formal proof is given below.

Lemma 2.2. Greepy Cover is a (Inn + 1) approximation for SEr COVER.

Proof. Since z; < (1 - %)i -1, after t = [k"In ;5] steps,
ze < n(1-1/k)F <pe % < k.

Thus, after ¢ steps, at most k* elements are left to be covered. Since GREepY COVER
picks at least one element in each step, it covers all the elements after picking at
most [k*In =] + k" < k*(Inn + 1) sets. [

A useful special case of SEr Cover is when all sets are “small”. Does the
approximation bound for Greedy improve? We can prove the following corollary
via Lemma 2.2.

Corollary 2.3. If each set in the set system has at most d elements, then GREEDY COVER is a
(Ind + 1) approximation for SEr COVER.

Proof. If each set has at most d elements then we have that k* > % and hence

In kﬂ < Ind. Then the claim follows from Lemma 2.2. []

Theorem 10.3 follows directly from Lemma 2.1 and 2.2.

A near-tight example for Greepy Cover when applied on Ser Cover : Let
us consider a set U of n elements along with a collection S of k + 2 subsets
{R1,R2,C1,Cs,...,Ci} of U. Let us also assume that |C;| = 2/ and |R; N C;| =
IR, N Ci| =271 (1 < i < k), as illustrated in Fig. 2.1.

Clearly, the optimal solution consists of only two sets, i.e., R1 and R,. Hence,
OPT = 2. However, Greepy Cover will pick each of the remaining k sets, namely
Ck,Ck-1,...,Cq. Sincen = 2 - Z;{:—Ol 21 =2. (2 - 1), we get k = Q(log n). One can
construct tighter examples with more involved analysis.

CHAPTER 2. COVERING PROBLEMS 19

I I I I
$cdots$ $cdots$
s)
$27{i—1}$ elements
\//
R_2 [%]
$cdots$ $cdots$
— — — —
C_1 $C_2% C_i C_k

Figure 2.1: A near-tight example for GReepy Cover when applied on Ser Cover

Remark 2.2. The preceding example is an instance of covering points by orthogonal
rectangles and demonstrates the greedy algorithm’s worst case behaviour holds
even in such restricted instances. For covering points by rectangles one can obtain
a constant factor approximation by other means. It should also be noted that
each element in the example is contained in two sets and hence one can view
it also as an instance of VErTex Cover in multigraphs for which we will see a 2
approximation soon. Thus, although greedy is worst-case optimal for Ser Cover in
its full generality, in special cases of interest, other techniques can be used to obtain
a better approximation.

Exercise 2.1. Consider the weighted version of the Ser Cover problem where a
weight function w : § — R* is given, and we want to select a collection S’ of
subsets from & such that Uxcs X = U, and } xcs w(X) is the minimum. One can
generalize the greedy heuristic in the natural fashion where in each iteration the
algorithm picks the set that maximizes the ratio of the number of elements to its
weight. Adapt the unweighted analysis to prove that the greedy algorithm yields
an O(Inn) approximation for the weighted version (you can be sloppy with the
constant in front of In n).

2.1.3 DOMINATING SET

A dominating set in a graph G = (V,E) isaset S C V such that for each u € V, either
u € S, or some neighbor v of 1 is in S. In other words S covers/dominates all the
nodes in V. In the DoMINATING SET problem, the input is a graph G and the goal is
to find a smallest sized dominating set in G.

Exercise 2.2. 1. Show that DomINATING SET is a special case of ST COVER.

CHAPTER 2. COVERING PROBLEMS 20

2. What is the greedy heuristi when applied to DoMINATING SET. Prove that it
yields an (In (A + 1) + 1) approximation where A is the maximum degree in
the graph.

3. Show that Ser Cover can be reduced in an approximation preserving fashion
to DomINATING SET. More formally, show that if DomMINATING SET has an a(n)-
approximation where 7 is the number of vertices in the given instance then
SeT Cover has an (1 — o(1))a(n)-approximation.

2.2 VErRTEX COVER

We have already seen that the VertEx Cover problem is a special case of the Ser
Cover problem. The Greedy algorithm when specialized to VeErTEX CoVER picks
a highest degree vertex, removes it and the covered edges from the graph, and
recurses in the remaining graph. It follows that the Greedy algorithm gives an
O(In A +1) approximation for the unweighted versions of the Verrex Cover problem.
One can wonder wheter the Greedy algorith has a better worst-case for VERTEX
Cover than the analysis suggests. Unfortunately the answer is negative and there
are examples where the algorithm outputs a solution with Q(log n - OPT) vertices.

We sketch the construction. Consider a bipartite graph G = (U, V, E) where
U ={uy,uy,...,up}. Vispartitioned into S1, Sz, ..., S, where S; has | 1/i] vertices.
Each vertex v in S; is connected to exactly i distinct vertices of U; thus, any vertex u;
is incident to at most one edge from S;. It can be seen that the degree of each vertex
uj € U is roughly h. Clearly U is a vertex cover of G since the graph is bipartite.
Convince yourself that the Greedy algorithm will pick all of V starting with the
lone vertex in S;, (one may need to break ties to make this happen but the example
can be easily perturbed to make this unnecessary). We have n = @(hlogh) and
OPT < h and Greedy outputs a solution of size (/1 log h).

2.2.1 A 2-approximation for VErTEx COVER

There is a very simple 2-approximation algorithm for the CArbINALITY VERTEX COVER
problem.

CHAPTER 2. COVERING PROBLEMS 21

MatcHING-VC (G)

1.5« 0
2. Compute a maximal matching M in G

3. for each edge (u,v) € M do
A. add both u and v to S

4. Output S

Theorem 2.4. MATcHING-VC is a 2-approximation algorithm.
The proof of Theorem 2.4 follows from two simple claims.

Claim 2.2.1. Let OPT be the size of the vertex cover in an optimal solution. Then
OPT > |M]|.

Proof. Any vertex cover must contain at least one end point of each edge in M since
no two edges in M intersect. Hence OPT > |M|. [

Claim 2.2.2. Let S(M) = {u,v|(u,v) € M}. Then S(M) is a vertex cover.

Proof. If S(M) is not a vertex cover, then there must be an edge ¢ € E such that
neither of its endpoints are in M. But then e can be included in M, which contradicts
the maximality of M. []

We now finish the proof of Theorem 2.4. Since S(M) is a vertex cover, Claim 2.2.1
implies that [S(M)| =2 - |[M]| < 2- OPT.

WEIGHTED VERTEX CovEr: The matching based heuristic does not generalize in a
straight forward fashion to the weighted case but 2-approximation algorithms for
the WEeiGHTED VERTEX COVER problem can be designed based on LP rounding.

2.2.2 Skt Cover with small frequencies

VErTEX COVER is an instance of SEr Cover where each element in U is in at most
two sets (in fact, each element was in exactly two sets). This special case of the Ser
Cover problem admits a 2-approximation algorithm. What would be the case if
every element is contained in at most three sets? More generally, given an instance
of SEr Cover, for each e € U, let f(e) denote the number of sets containing e. Let
f = max, f(e), which we call the maximum frequency.

Exercise 2.3. Give an f-approximation for SEr Cover, where f is the maximum
frequency of an element. Hint: Follow the approach used for VErTEx COVER .

CHAPTER 2. COVERING PROBLEMS 22

2.3 Vertex Cover via LP

Let G = (V,E) be an undirected graph with arc weights w : V. — R*. We can
formulate VerTEx COVER as an integer linear programming problem as follows. For
each vertex v we have a variable x,. We interpret the variable as follows: if x, = 1 if
v is chosen to be included in a vertex cover, otherwise x, = 0. With this interprtation
we can easily see that the minimum weight vertex cover can be formulated as the
following integer linear program.

min Z WyXy

veV
subject to
Xy+x, > 1 Ve = (u,v) € E
x, € {0,1} YoeV

However, solving the preceding integer linear program is NP-Hard since it
would solve VErTEX Cover exactly. Therefore we use Linear Programming (LP) to
approximate the optimal solution, OPT(I), for the integer program. First, we can
relax the constraint x, € {0, 1} to x, € [0, 1]. It can be further simplified to x, > 0,
YoeV.

Thus, a linear programming formulation for Vertex Cover is:

min Z WyXy

veV
subject to
Xy, +x, > 1 Ve = (u,v) € E
X, =2 0

We now use the following algorithm:

VERTEX COVER viA LP

1. Solve LP to obtain an optimal fractional solution x*
.1
2. Let S:{v|xvz§}

3. Output S

Claim 2.3.1. S is a vertex cover.

Proof. Consider any edge, e = (1,v). By feasibility of x*, x}, + x;, > 1, and thus

xj > % or x}, > 1. Therefore, at least one of u and v will be in S.]

CHAPTER 2. COVERING PROBLEMS 23

Claim 2.3.2. w(S) < 20PTp(I).
Proof. OPTp(I) = 3, wpx}, = %Zves Wy = %w(S). [

Therefore, OPTp(I) > OPTT(I) for all instances I.

Remark 2.3. For minimization problems: OPTp(I) < OPT(I), where OPTyp(I) is the
optimal solution found by LP; for maximization problems, OPTp(I) > OPT(I).

Integrality Gap: We introduce the notion of integrality gap to show the best
approximation guarantee we can obtain if we only use the LP values as a lower
bound.

Definition 2.5. For a minimization problem Il, the integrality gap for a linear programming
OPT(I)

relaxation/formulation LP for I1is sup,.,, P (D"

That is, the integrality gap is the worst case ratio, over all instances I of I, of the
integral optimal value and the fractional optimal value. Note that different linear
programming formulations for the same problem may have different integrality
gaps.

Claims 2.3.1 and 2.3.2 show that the integrality gap of the Vertex Cover LP
formulation above is at most 2.

Question: Is this bound tight for the Vertex Cover LP?

Consider the following example: Take a complete graph, K,,, with n vertices, and
each vertex has w, = 1. Itis clear that we have to choose n — 1 vertices to cover all
the edges. Thus, OPT(K,) = n — 1. However, x, = % for each v is a feasible solution
to the LP, which has a total weight of £. So gap is 2 — 1, which tends to 2 as n — oo.
One can also prove that the integrality gap is essentially 2 even in a class of sparse
graphs.

Exercise 2.4. The vertex cover problem can be solved optimally in polynomial time
in bipartite graphs. In fact the LP is integral. Prove this via the maxflow-mincut
theorem and the integrality of flows when capacities are integral.

Other Results on Vertex Cover

1. The current best approximation ratio for Vertex Cover is 2 — ©(——) [99].
gn

Vlo

2. It is known that unless P = NP there is a-approximation for VErTEx COVER
for @ < 1.36 [51]. Under a stronger hypothesis called the Unique Games
Conjecture it is known that there is no 2 — € approximation for any fixed € > 0
[104].

CHAPTER 2. COVERING PROBLEMS 24

3. There is a polynomial time approximation scheme (PTAS), thatis a (1 + €)-
approximation for any fixed € > 0, for planar graphs. This follows from a
general approach due to Baker [18]. The theorem extends to more general
classes of graphs.

24 SetCovervialP

The input to the Set Cover problem consists of a finite set U = {1,2,...,n}, and m
subsets of U, S1, 52, ..., Sw. Each set S; has a non-negative weigh w; and the goal
is to find the minimum weight collection of sets which cover all elements in U (in
other words their union is U).

A linear programming relaxation for Set Cover is:

min Z w;ixij
j
subject to

2%

jii€s;

\%

1 Vie{l,2,..n}

Xj

v
(a)
—_
IA
~.
A
3

And its dual is:

subject to

i o< w Vje{1,2,.,m)
iESj

yi > 0 VYiel2, ..,n

We give several algorithms for Set Cover based on this primal/dual pair LPs.

24.1 Deterministic Rounding

SeT COVER vIA LP

1. Solve LP to obtain an optimal solution x*, which contains fractional numbers.
2. Let P={i|x; >0}

3. Output {S;|j € P}

CHAPTER 2. COVERING PROBLEMS 25

Note that the above algorithm, even when specialized to VerTex CovEr is different
from the one we saw earlier. It includes all sets which have a strictly positive value
in an optimum solution to the LP.

Let x* be an optimal solution to the primal LP, y* be an optimum solution to the
dual, and let P = {j | x> 0}. First, note that by strong duality, ' wix; = 2i Y
Second, by complementary slackness if x}f > 0 then the corresponding dual constraint
is tight, that is Y;c5, y; = w;.

Claim 2.4.1. The output of the algorithm is a feasible set cover for the given instance.
Proof. Exercise. []

Claim 24.2. 3jcp w; < f 3 wjx; = OPTyp.

Proof.
Dwi= > wi= Y D=2 D, 1|<f),vi=FfOPTie(D).
jeP x>0 jix;>0 \i€s; i jii€S;x1>0 i

Notice that the the second equality is due to complementary slackness conditions
(if x; > 0, the corresponding dual constraint is tight), the penultimate inequality
uses the definition of f, and the last inequality follows from weak duality (a feasible
solution for the dual problem is a lower bound on the optimal primal solution).

Therefore we have that the algorithm outputs a cover of weight at most f OPTp.
We note that f can be as large as n in which case the bound given by the algorithm
is quite weak. In fact, it is not hard to construct examples that demonstrate the
tightness of the analysis.

Remark 2.4. The analysis cruically uses the fact that x* is an optimal solution. On
the other hand the algorithm for Vertex Cover is more robust and works with any
feasible solution x. It is easy to generalize the earlier rounding for VErTeEx Cover
to obtain an f-approximation. The point of the above rounding is to illustrate the
utility of complementary slackness.

2.4.2 Randomized Rounding

Now we describe a different rounding that yields an approximation bound that
does not depend on f.

CHAPTER 2. COVERING PROBLEMS 26

SET COVER viA RANDOMIZED ROUNDING

1. A=0, and let x* be an optimal solution to the LP

2. for k=1 to 2Inn do

A. pick each S]- independently with probability x;
B. if S; is picked, A =AU {j}

3. Output the sets with indices in A

Claim 2.4.3. P[i is not covered in an iteration| = H]';iesj (1- x}f) < %

Intuition: We know that >}; s, x; > 1. Subject to this constraint, if we want to

minimize the probability that element i is covered, one can see that the minimum is
achieved with x]*. = 1/¢ for each set S; that covers i; here ¢ is the number of sets that

cover i. Then the probability is (1 — %)e.

Proof. We use the inequality (1 —x) < e~ forall x € [0, 1].

%

_Zj:iesj Y <

x| =

P[i is not covered in an iteration] = l_[(1- Xj) < l_[e i <e
jii€s; jiies;

We then obtain the following corollaries:

Corollary 2.6. P[i is not covered at the end of the algorithm] < e~21°8" < L.
n

Corollary 2.7. P[all elements are covered, after the algorithm stops] > 1 — 1.

Proof. Via the union bound. The probability that i is not covered is at most
1/n?, hence the probability that there is some i that is not covered is at most
n-1/n*><1/n. n

Now we bound the expected cost of the algorithm. Let C; = cost of sets picked in
iteration t, then E[[C;] = }":1 w;j x}f, where E[X] denotes the expectation of a random
variable X. Then, let C = Zf:hl‘" Ct; we have E[C] = fol‘” E[C] < 2Inn OPTrp. By
Markov’s inequality, P[C > 2 E[C]] < %, hence P[C < 4Inn OPTrp| > % Therefore,
P[C < 4Inn OPTrp and all items are covered] > % - % Thus, the randomized

rounding algorithm, with probability close to 1/2 succeeds in giving a feasible

CHAPTER 2. COVERING PROBLEMS 27

solution of cost O(logn) OPTrp. Note that we can check whether the solution
satisfies the desired properties (feasibility and cost) and repeat the algorithm if it
does not.

1. We can check if solution after rounding satisfies the desired properties, such
as all elements are covered, or cost at most 2clogn OPTrp. If not, repeat
rounding. Expected number of iterations to succeed is a constant.

2. We can also use Chernoff bounds (large deviation bounds) to show that a
single rounding succeeds with high probability (probability at least 1 — m).

3. The algorithm can be derandomized. Derandomization is a technique of
removing randomness or using as little randomness as possible. There
are many derandomization techniques, such as the method of conditional
expectation, discrepancy theory, and expander graphs.

4. After a few rounds, select the cheapest set that covers each uncovered element.
This has low expected cost. This algorithm ensures feasibility but guarantees
cost only in the expected sense. We will see a variant on the homework.

Randomized Rounding with Alteration: In the preceding analysis we had to
worry about the probability of covering all the elements and the expected cost of
the solution. Here we illustrate a simple yet powerful technique of alteration in
randomized algorithms and analysis. Let d be the maximum set size.

SET COVER: RANDOMIZED ROUNDING WITH ALTERATION

1. A=0, and let x* be an optimal solution to the LP
2. Add to A each S; independently with probability min{l,lnd~x]*-}
3. Let U’ be the elements uncovered by the chosen sets in A
4. For each uncovered element i € U’ do
A. Add to A the cheapest set that covers i

5. Output the sets with indices in A

The algorithm has two phases. A randomized phase and a fixing/altering
phase. In the second phase we apply a naive algorithm that may have a high cost in
the worst case but we will bound its expected cost appropriately. The algorithm
deterministically guarantees that all elements will be covered, and hence we only
need to focus on the expected cost of the chosen sets. Let C; be the random cost of

CHAPTER 2. COVERING PROBLEMS 28

the sets chosen in the first phase and let C, be the random cost of the sets chosen in
the second phase. It is easy to see that E[C1] = Ind }; wjx} = Ind OPT.p. Let &; be

the event that element i is not covered after the first randomlzed phase.
Exercise 2.5. P[E;] <e ¥ < 1/4d.

The worst case second phase cost can be upper bounded via the next lemma.
Lemma 2.3. Let §; be the cost of the cheapest set covering i. Then) ; f; < d OPTpp.

Proof. Consider an element i. We have the constraint that ;. 5; x; > 1. Since each
set covering i has cost at least f;, we have . ;cs; c]-x; 2 Pi Ljies, x; > B;. Thus,

Zﬁl Z Z C]x c]x |S | < ch]x =dOPTp.

i jie€S; j

Now we bound the expected second phase cost.
Lemma 2.4. E[Cy] < OPTyp.

Proof. We pay for a set to cover element 7 in the second phase only if it is not covered
in the first phase. Hence C, = }; ;. Note that the events &; for different elements
i are not necessarily independent, however, we can apply linearity of expectation.

)= 2 Bl6iIpi = Y PIEIS: < 1/d 3 i < OPTe.

Combining the expected costs of the two phases we obtain the following theorem.

Theorem 2.8. Randomized rounding with alteration outputs a feasible solution of expected
cost (1 +1Ind)OPTyp.

Note that the simplicity of the algorithm and tightness of the bound.

Is expectation bound good enough? We proved that the preceding algorith
outputs a feasible solution but the cost was only in the expected sense. A natural
question is whether this is adequate. First, the analysis shows that there exists a
feasible integral solution whose cost is (1 + Ind) OPT;p (why?). From a practical
point of view we may want to not just settle for an expectation bound. We can
use standard tricks to convert an expectation bound into a stronger guarantee. Via
Markov’s inequality we can see that the probability that the cost of the output is

CHAPTER 2. COVERING PROBLEMS 29

more than (1 + €)u, where y is the expected value, is at most 1/(1 + €) =~ €. Hence, if
we repeat the experiment many times and take the minimum cost solution, we can
get arbitrarily close to the expected value. We will need Chernoff bounds for this but
we can argue that if repeat the experiment O(£ log n)-times, the probability that the
minimum among the solutions is more than (1 + €)u is at most 1/n¢. Thus we can
obtain a guarantee on the cost that is arbitrarily close to the expected value with high
probability. Typically we are satisfied with this for algorithmic purposes. In some
cases we may really want a deterministic guaratee. One can then try to derandomize
the algorithm via known ideas or come up with an alternative algorithm. We refer
the reader to books and resources on randomized algorithms for more on this.

Remark 2.5. If d = 2 the Ser Cover problem becomes the EDGe CovEer problem in
a graph which is the following. Given an edge-weighted graph G = (V, E), find
the minimum weight subset of edges such that each vertex is covered. Epce Cover
admits a polynomial-time algorithm via a reduction to the minimum-cost matching
problem in a general graph. However d = 3 for Ser Cover is NP-Hard via a reduction
from 3-D MATCHING.

2.4.3 Dual-fitting

In this section, we introduce the technique of dual-fitting for the analysis of
approximation algorithms. At a high-level the approach is the following:

1. Consider an algorithm that one wants to analyze.

2. Construct a feasible solution to the dual LP based on the structure of the
algorithm.

3. Show that the cost of the solution returned by the algorithm can be bounded
in terms of the value of the dual solution.

Note that the algorithm itself need not be LP based. Here, we use Ser Cover as
an example. See the previous section for the primal and dual LP formulations for
Ser COVER .

We can interpret the dual as follows: Think of y; as how much element i is
willing to pay to be covered; the dual maximizes the total payment, subject to the
constraint that for each set, the total payment of elements in that set is at most the
cost of the set.

We rewrite the Greedy algorithm for WeiGHTED SET COVER.

CHAPTER 2. COVERING PROBLEMS 30

GREEDY SET COVER

1. Covered =0
2. A=0;

3. While Covered # U do

Wi
[Sk N llncovered|);
B. Covered = Covered U S;;

c. A=AU{j}.

A j argmkin(

4. end while;

5. Output sets in A as cover

Let Hy =1+1/2+...+1/k be the kthe Harmonic number. It is well known that
Hy <1+Ink.

Theorem 2.9. Greepy Set CoveRr picks a solution of cost < Hy - OPTp, where d is the
maximum set size, i.e., d = max; |S;l.

To prove this, we augment the algorithm to keep track of some additional
information.

AUGMENTED GREEDY ALGORITHM OF WEIGHTED SET COVER

1. Covered =0

2. While Covered + U do
Wi)
|Sk N Uncovered|

A. j argmkin(
w]-)
IS; N Uncovered|’

B. if i is uncovered and i € S, set p; =

C. Covered = Covered U S;
. A=AU{j}.

W)

3. Output sets in A as cover

It is easy to see that the algorithm outputs a feasible cover.

Claim 2.4.4. ZjEA w] = Zi pi-

CHAPTER 2. COVERING PROBLEMS 31

Proof. Consider when j is added to A. Let S; C §; be the elements that are
uncovered before j is added. For each i € S} the algorithm sets p; = w;/ |S}|. Hence,
ZieS} pi = wj. Moreover, it is easy to see that the sets S;, j € A are disjoint and
together partition U. Therefore,

Yo% Y-S

jeA jeA ieS} iel

For each i, let y; = H%,Pi .
Claim 2.4.5. y’ is a feasible solution for the dual LP.

Suppose the claim is true, then the cost of Greepy SEr Cover’s solution =
2ipi=Ha), ylf < H; OPTpp. The last step is because any feasible solution for the
dual problem is a lower bound on the value of the primal LP (weak duality).

Now, we prove the claim. Let S; be an arbitrary set, and let |S]-| =t <d. Let
S; = {i1,i2,..., i}, where we the elements are ordered such that 7; is covered by
Greedy no-later than i, and 7, is covered no later than i3 and so on.

ZU]‘

Claim 2.4.6. For 1 < h <t,pi, < ;=-5-

Proof. Let Si be the set that covers i; in Greedy. When Greedy picked S; the
elements iy, iy41,...,1; from S; were uncovered and hence Greedy could have
picked S; as well. This implies that the density of S when it was picked was no

'(U]'

=1 Therefore p;, which is set to the density of Sj is at most . m

more than R

From the above claim, we have

wij
:E: Pi, < :E: Ei:7;:ji = agfﬂ < aﬁf{d.

1<h<t 1<h<t

Thus, the setting of y’ to be p; scaled down by a factor of Hy gives a feasible
solution.

2.4.4 Greedy for implicit instances of SEr Cover

Ser Cover and the Greedy heuristic are quite useful in applications because many
instances are implicit, nevertheless, the algorithm and the analysis applies. That
is, the universe U of elements and the collection S of subsets of U need not be
restricted to be finite or explicitly enumerated in the Ser Cover problem. For instance,
a problem could require covering a finite set of points in the plane using disks of

CHAPTER 2. COVERING PROBLEMS 32

unit radius. There is an infinite set of such disks, but the Greedy approximation
algorithm can still be applied. For such implicit instances, the Greedy algorithm can
be used if we have access to an oracle, which, at each iteration, selects a set having
the optimal density. However, an oracle may not always be capable of selecting an
optimal set. In some cases it may have to make the selections approximately. We call
an oracle an a-approximate oracle for some a > 1 if, at each iteration, it selects a set S

w(S) . A
such that =~ < a miny i collection A"

Exercise 2.6. Prove that the approximation guarantee of Greedy with an a-
approximate oracle would be a(Inn + 1) for Ser Cover, and (1 — &) for MaxiMum

COVERAGE.

We will see several examples of implicit use of the greedy analysis in the course.

2.5 Submodularity

Set Cover turns out to be a special case of a more general problem called SuBmobuLAR
Ser Cover. The Greedy algorithm and analysis applies in this more generality.
Submodularity is a fundamental notion with many applications in combinatorial
optimization and else where. Here we take the opportunity to provide some
definitions and a few results.

Definition 2.10. Given a finite set E, a real-valued set function f : 2F — R is submodular

iff
f(A)+ f(B)> f(AUB)+ f(ANB) YA,BCE.

Alternatively, f is a submodular function iff

F(AU{i}) - f(A)> f(BU{i}) - f(B) YACB,ieE\B.

The second characterization shows that submodularity is based on decreasing marginal
utility property in the discrete setting. Adding element i to a set A will help at least
as much as adding it to to a (larger) set B O A. It is common to use A + i to denote
AU {i} and A — i to denote A \ {i}.

Exercise 2.7. Prove that the two characterizations of submodular functions are
equivalent.

Many application of submodular functions are when f is a non-negative function
though there are several important applications when f can be negative. A
submodular function f(-) is monotone if f(A+1i) > f(A) foralli € Eand A C E.
Typically one assumes that f is normalized by which we mean that f(0) = 0; this can

CHAPTER 2. COVERING PROBLEMS 33

always be done by shifting the function by f(0). f is symmetric if f(A) = f(E\ A)
for all A C E. Submodular set functions arise in a large number of fields including
combinatorial optimization, probability, and geometry. Examples include rank
function of a matroid, the sizes of cutsets in a directed or undirected graph, the
probability that a subset of events do not occur simultaneously, entropy of random
variables, etc. In the following we show that the Ser Cover and Maxivum COVERAGE
problems can be easily formulated in terms of submodular set functions.

Exercise 2.8. Let U be a set and let S = {51, S,...,S,,} be a finite collection of
subsets of U. Let N = {1,2,...,m}, and define f : 2N 5 Ras: f(A) =|Ujea Si| for
A C E. Show that f is a monotone non-negative submodular set function.

Exercise 2.9. Let G = (V,E) be a directed graph and let f : 2V — R where
f(S) = [67(S) is the number of arcs leaving S. Prove that f is submodular. Is the
function monotone?

2.5.1 SuBMODULAR SET COVER

When formulated in terms of submodular set functions, the SEr Cover problem is
the following. Given a monotone submodular function f (whose value would be
computed by an oracle) on N = {1,2,...,m}, find the smallest set S C N such that
f(S) = f(N). Our previous greedy approximation can be applied to this formulation
as follows.

GREEDY SUBMODULAR (f, N)

1. 5«0
2. While f(S) # f(N) do

A. find i to maximize f(S+1i)— f(S)
B. S« SU{i}

3. Output S

Not so easy exercise.

Exercise 2.10. 1. Prove that the greedy algorithmis a 1+In(f(N)) approximation
for SumopuLAR SET COVER?

2. Prove that the greedy algorithm is a 1 + In(max; f(i)) approximation for
SusmoDULAR SET COVER.

The above results were first obtained by Wolsey [161].

CHAPTER 2. COVERING PROBLEMS 34

2.5.2 SuBMODULAR MaxiMmuM COVERAGE

By formulating the Maxivum CoveraGe problem in terms of submodular functions,
we seek to maximize f(S) such that |S| < k. We can apply algorithm Greepy
SuBmoDULAR for this problem by changing the condition in line 2 to be: while
|S| < k.

Exercise 2.11. Prove that greedy gives a (1 — 1/e)-approximation for Susmopu-
LAR Maxivum CoveraGE problem when f is monotone and non-negative. Hint:
Generalize the main claim that we used for Maximum COVERAGE .

The above and many related results were shown in the influential papers of
Fisher, Nemhauser and Wolsey [62, 129].

2.6 Covering Integer Programs (CIPs)

There are several extensions of Ser Cover that are interesting and useful. SuBMoDULAR
Ser Cover is a very general problem while there are intermediate problems of interest
such as Ser Mmurticover. We refer to the reader to the relevant chapters in the
two reference books. Here we refer to a general problem called CovERING INTEGER
ProGrawms (CIPs for short). The goal is to solve the following integer program where
A € RI™ is a non-negative matrix. We can assume without loss of generality that w
and b are also non-negative.

n
min Z w]-x]-
j=1

subject to
Ax > b
xj < d; 1<j<m
xji 2 0 1<j<m
xj € Z 1<j<m

Ax > b model covering constraints and x; < d; models multiplicity constraints.
Note that Ser Cover is a special case where A is simply the incidence matrix of the
sets and elements (the columns correspond to sets and the rows to elements) and
dj =1 for all j. What are CIPs modeling? It is a generalization of Ser Cover . To
see this, assume, without loss of generality, that A, b are integer matrices. For each
element corresponding to row i the quantity b; corresponds to the requirement of
how many times 7 needs to be covered. A;; corresponds to the number of times set
S; covers element i. d; is an upper bound on the number of copies of set S; that are
allowed to be picked.

CHAPTER 2. COVERING PROBLEMS 35

Exercise 2.12. Prove that CIPs are a special case of Submodular Set Cover.

One can apply the Greedy algorithm to the above problem and the standard
analysis shows that the approximation ratio obtained is O(log B) where B = }}; b;
(assuming that they are integers). Even though this is reasonable we would prefer a
strongly polynomial bound. In fact there are instances where B is exponential in n
and the worst-case approximation ratio can be poor. The natural LP relaxation of
the above integer program has a large integrality gap in constrat to the case of Ser
Cover . One needs to strengthen the LP relaxation via what are known as knapsack
cover inequalities. We refer the reader to the paper of Kolliopoulos and Young [107]
and recent one by Chekuri and Quanrud [41] for more on this problem.

Chapter 3

Knapsack

In this lecture we explore the Knapsack problem. This problem provides a good
basis for learning some important procedures used for approximation algorithms
that give better solutions at the cost of higher running time.

3.1 The Knapsack Problem

In the Knapsack problem we are given a number (knapsack capacity) B > 0, and a set
N of n items; each item i has a given size s; > 0 and a profit p; > 0. We will assume
that all the input numbers are integers (or more generally rationals). Given a subset
of the items A C N, we define two functions, s(A) = Y ;cx si and p(A) = Yica Pi,
representing the total size and profit of the group of items respectively. The goal is
to choose a subset of the items, A, such that s(A) < B and p(A) is maximized. We
will assume, without loss of generality, that s; < B for all i; we can discard items
that do not satisfy this constraint.

It is not difficult to see that if all the profits are identical (say 1), the natural
greedy algorithm that inserts items in the order of non-increasing sizes yields.
Assuming the profits and sizes are integral, we can still find an optimal solution to
the problem using dynamic programming in either O(nB) or O(nP) time, where
P =", pi. These are standard exercises. While these algorithms appear to run
in polynomial time, it should be noted that B and P can be exponential in the
size of the input written in binary. We call such algorithms pseudo-polynomial time
algorithms as their running times are polynomial when numbers in the input are
given in unary. Knarsack is a classical NP-Hard problem and these results (and the
proof of NP-Hardness) show that the hardness manifests itself when the numbers
are large (exponential in n which means that the number of bits in the size or profit
are polynomial in n).

36

CHAPTER 3. KNAPSACK 37

3.1.1 A Greedy Algorithm

Consider the following greedy algorithm for the Knapsack problem which we will
refer to as GREEDYKNAPSACK We sort all the items by the ratio of their profits to
their sizes so that &£ > £ 22 > > ’si Afterward, we greedily take items in this
order as long as addmg an item to our collection does not exceed the capacity of the
knapsack. It turns out that this algorithm can be arbitrarily bad. Suppose we only
have two items in N. Let s; =1, p1 = 2, s = B, and p, = B. GrReepyKnaprsack will
take only item 1, but taking only item 2 would be a better solution and the ratio of
the profits in the two cases is 2/B which can be made arbitrarily small. As it turns
out, we can easily modify this algorithm to provide a 2-approximation by simply
taking the best of GREEDYKNAPsAcK’s solution or the most profitable item. We will
call this new algorithm MopIFIEDGREEDY.

Theorem 3.1. MopirieEDGREEDY has an approximation ratio of 1/2 for the Knapsack
problem.

Proof. Let k be the index of the first item that is not accepted by GrREeDYKNAPSACK.
Consider the following claim:

Claim 3.1.1. p1 + p2 +...px = OPT. In fact, p1 + p2 + --- + apx > OPT where

o = Bleuvsattsic) 4o g, fraction of item k that can still fit in the knapsack after packing

S
the first k — 1 items.

The proof of Theorem 3.1 follows immediately from the claim. In particular,
either p1 + p2 + - - + pr—1 or px must be at least OPT /2. We now only have to prove
Claim 3.1.1. We give an LP relaxation of the KNnaprsack problem as follows: Here,

€ [0, 1] denotes the fraction of item i packed in the knapsack.

maximize Z pixi
i=1
n
subject to Z six; < B
i=1
xi <lforalliin{l...n}
x; > 0foralliin {1...n}

Let OPTrp be the optimal value of the objective function in this linear pro-
gramming instance. Any solution to Knapsack is a feasible solution to the LP
and both problems share the same objective function, so OPT;p > OPT. Now set
X1 =Xxp=---=x;_1=1,xr =a,and x; = 0forall i > k. This is a feasible solution to
the LP. We leave it as an exercise to the reader to argue that is an optimum solution.
Therefore, p1 + p2 + - -+ + apy = OPT’ > OPT. The first statement of the lemma
follows from the second as a < 1. [|

CHAPTER 3. KNAPSACK 38

3.1.2 A Polynomial Time Approximation Scheme

Using the results from the last section, we make a few simple observations. Some of
these lead to a better approximation.

Observation 3.2. Ifforall i, p; < € OPT, GReepYKNAPsack gives a (1 — €) approximation.
Proof. Follows easily from Claim 3.1.1.]

Observation 3.3. There are at most [1] items with profit at least € OPT in any optimal
solution.

The next claim is perhaps more interesting and captures the intuition that the
bad case for greedy happens only when there are “big” items.

Claim 3.1.2. Ifforall i, s; < € B, GREEDYKNAPsack gives a (1 — €) approximation.

Proof. We give a proof sketch via the LP relaxation. Recall that k is the first item that
did not fit in the knapsack. We make the following observation. Recall that OPT;p
is the optimum value of LP relaxation. Suppose we reduce the knapsack capacity to
B’ =51 + 5y +...5k1 while keeping all the items the same. Let OPT} , be the value
for the new size. We claim that OPT; , > % OPTp — this is because we can take
any feasible solution to the original LP and scale each variable by B’/B to obtain
a feasible solution with the new capacity. What is OPT; ,? We note that Greedy
will fill B’ to capacity with the first k — 1 items and hence, OPT’LP =p1+...+Pr-1.
Combining, we obtain that

’

B’ B
p1+...+tPk—1 = gOPTLp > EOPT.

We note that B’ + s > B since item k did not fit, and hence B* > B—s; > B—¢B >
(1 — €)B. Therefore B’/B > (1 — €) and this finishes the proof. [

We may now describe the following algorithm. Let € € (0, 1) be a fixed constant
and let i = [1]. We will try to guess the & most profitable items in an optimal
solution and pack the rest greedily.

CHAPTER 3. KNAPSACK 39

Guess H + GrReepy (N, B)

1. For each S C N such that |S| < h and s(S5) < B do

A. Pack S in knapsack of size at most B

B. Let i be the least profitable item in S. Remove all items j € N —S where
pj > pi-
C. Run GreepYKNAPsack on remaining items with remaining capacity B —Zsi
i€eS

2. Output best solution from above

Theorem 3.4. GuEss H + GREEDY gives a (1 — €) approximation and runs in O(n!/€1+1)
time.

Proof. For the running time, observe that there are O(n") subsets of N. For each
subset, we spend linear time greedily packing the remaining items. The time initially
spent sorting the items can be ignored thanks to the rest of the running time.

For the approximation ratio, consider a run of the loop where S actually is the
h most profitable items in an optimal solution and the algorithm’s greedy stage
packs the set of items A’ C (N — S). Let OPT’ be the optimal way to pack the
smaller items in N — S so that OPT = p(S) + OPT'. Let item k be the first item
rejected by the greedy packing of N —S. We know py < € OPT so by Claim 3.1.1
p(A’) = OPT’ —e OPT. This means the total profit found in that run of the loop is
p(S) +p(A’) = (1 -¢€)OPT. []

Note that for any fixed choice of € > 0, the preceding algorithm runs in
polynomial time. This type of algorithm is known as a polynomial time approximation
scheme or PTAS. The term “scheme” refers to the fact that the algorithm varies
with €. We say a maximization problem IT has a PTAS if for all € > 0, there
exists a polynomial time algorithm that gives a (1 — €) approximation ((1 + €) for
minimization problems). In general, one can often find a PTAS for a problem by
greedily filling in a solution after first searching for a good basis on which to work.
As described below, Knapsack actually has something stronger known as a fully
polynomial time approximation scheme or FPTAS. A maximization problem IT has a
FPTAS if for all € > 0, there exists an algorithm that gives a (1 — €) approximation
((1 + €) for minimization problems) and runs in time polynomial in both the input
size and 1/e.

CHAPTER 3. KNAPSACK 40

3.1.3 Rounding and Scaling

Earlier we mentioned exact algorithms based on dynamic programming that run
in O(nB) and O(nP) time but noted that B and P may be prohibitively large. If we
could somehow decrease one of those to be polynomial in n without losing too
much information, we might be able to find an approximation based on one of these
algorithms. Let pmax = max; p; and note the following.

Observation 3.5. pmax < OPT < #1pmax

Now, fix some € € (0,1). We want to scale the profits and round them to be
integers so we may use the O(nP) algorithm efficiently while still keeping enough
information in the numbers to allow for an accurate approximation. For each i, let
pi= L%ﬁpd- Observe that p] < ¢ so now the sum of the profits P’ is at most ”?2
Also, note that we lost at most n profit from the scaled optimal solution during
the rounding, but the scaled down OPT is still at least Z. We have only lost an €
fraction of the solution. This process of rounding and scaling values for use in exact
algorithms has use in a large number of other maximization problems. We now
formally state the algorithm Rounp&ScaLk and prove its correctness and running
time.

Rounbp&Scare(N, B)

. , n 1
1. For each i set p; = I‘Ep
max

2. Run exact algorithm with run time O(nP’) to obtain A

pil

3. Output A

Theorem 3.6. Rounp&Scatk gives a (1 — €) approximation and runs in O(”;) time.

Proof. The rounding can be done in linear time and as P’ = O(”?z), the dynamic

programing portion of the algorithm runs in O(”;) time. To show the approximation
ratio, let a = %ﬁ and let A be the solution returned by the algorithm and A" be
the optimal solution. Observe that for all X € N, ap(X) — |X| < p’(X) < ap(X) as
the rounding lowers each scaled profit by at most 1. The algorithm returns the best

choice for A given the scaled and rounded values, so we know p’(A) > p’(A%).

1, L, w_n

CHAPTER 3. KNAPSACK 41

It should be noted that this is not the best FPTAS known for Knapsack. In
particular, [112] shows a FPTAS that runs in O(n log(1/€) + 1/€*) time. There have
been several improvements and we refer the reader to Chan'’s paper for the latest
[33].

3.2 Other Problems

There are many variants of Knapsack and it is a fundamental problem of interest
in integer programming as well in several other areas. One can find a book length
treatment in [103]. We close with an interesting variant.

Multiple Knapsack: The input now consists of m knapsacks with capacities
By, By, ..., By and n items with sizes and profits as in Knaprsack. We again wish
to pack items to obtains as large a profit as possible, except now we have more
than one knapsack with which to do so. An interesting special case is when all the
knapsack capacities are the same quantity B which is related to the well known Bin
Packing problem.

Chapter 4

Packing Problems

In the previous lecture we discussed the Knapsack problem. In this lecture we
discuss other packing and independent set problems. We first discuss an abstract
model of packing problems. Let N be a finite ground set. A collection of 7 c 2N
of subsets of N is said to be down closed if the following property is true: A € 1
implies that for all B € A, B € 7. A down closed collection is also often called
and independence system. The sets in I are called independent sets. Given an
independence family (N, 7)) and a non-negative weight function w : N — R* the
maximum weight independent set problem is to find maxser w(S). That is, find an
independent set in 7 of maximum weight. Often we may be interested in the setting
where all weights are 1 in which case we wish to find the maximum cardinality
independent set. We discuss some canonical examples.

Example 4.1. Independent sets in graphs: Given a graph G = (V,E)

I = {S c V | there are no edges between nodes in S}. Here the ground set is
V. There are many interesting special cases of the graph problem. For instance
problems arising from geometric objects such as intervals, rectangles, disks and
others.

Example 4.2. Matchings in graphs: Given a graph G = (V,E)let 7 = {M C E |
M is a matching in G}. Here the ground set is E.

Example 4.3. Matroids: A matroid M = (N, 1) is defined as a system where 7 is
down closed and in addition satisfies the following key property: if A, B € I and
|B| > |A| then there is an element e € B \ A such that AU {e} € 7. There are many
examples of matroids. We will not go into details here.

Example 4.4. Intersections of independence systems: given some k independence
systems on the same ground set (N, I7), (N, I3), ..., (N, i) the system defined by
(N, I1 N 1...N I;) is also an independence system. Well-known examples include
intersections of matroids.

42

CHAPTER 4. PACKING PROBLEMS 43

4.1 Maximum Independent Set Problem in Graphs

A basic graph optimization problem with many applications is the maximum
(weighted) independent set problem (MIS) in graphs.

Definition 4.1. Given an undirected graph G = (V, E) a subset of nodes S C V is an
independent set (stable set) iff there is no edge in E between any two nodes in S. A subset of
nodes S is a clique if every pair of nodes in S have an edge between them in G.

The MIS problem is the following: given a graph G = (V, E) find an independent
set in G of maximum cardinality. In the weighted case, each node v € V has an
associated non-negative weight w(v) and the goal is to find a maximum weight
independent set. This problem is NP-Hard and it is natural to ask for approximation
algorithms. Unfortunately, as the famous theorem below shows, the problem is
extremely hard to approximate.

Theorem 4.2 (Hastad [81]). Unless P = NP there is no #—approximation for MIS for
any fixed € > 0 where n is the number of nodes in the given graph.

Remark 4.1. The maximum clique problem is to find the maximum cardinality
clique in a given graph. It is approximation-equivalent to the MIS problem; simply
complement the graph.

The theorem basically says the following: there are a class of graphs in which
the maximum independent set size is either less than 1° or greater than n'~° and it
is NP-Complete to decide whether a given graph falls into the former category or
the latter.

The lower bound result suggests that one should focus on special cases, and
several interesting positive results are known. First, we consider a simple greedy
algorithm for the unweighted problem.

GRreepY(G)
1. 5«0
2. While G is not empty do

A. Let v be a node of minimum degree in G
B. S« SU{v}

C. Remove v and its neighbors from G

3. Output S

CHAPTER 4. PACKING PROBLEMS 44

Theorem 4.3. Greedy outputs an independent set S such that |S| > n /(A + 1) where A is
the maximum degree of any node in the graph. Moreover |S| > a(G)/A where a(G) is the
cardinality of the largest independent set. Thus Greedy is a 1/ approximation.

Proof. We upper bound the number of nodes in V' \ S as follows. A node u is in
V '\ S because it is removed as a neighbor of some node v € S when Greedy added
v to S. Charge u to v. Anode v € S can be charged at most A times since it has at
most A neighbors. Hence we have that |V \ S| < A[S|. Since every node is either in
SorV \ Swehave |S|+ |V \ S| = n and therefore (A + 1)|S| > n which implies that
IS| > n/(A+1).

We now argue that |S| > a(G)/A. Let S* be a largest independent set in G. As in
the above proof we can charge eachnode vin S*\ Stoanode u € S\ S* which is a
neighbor of v. The number of nodes charged to anode u € S\ S* is at most A. Thus
[S*\ S| < A|S\ S

|

Exercise 4.1. Show that Greedy outputs an independent set of size at least %
where d is the average degree of G.

Remark 4.2. The well-known Turan’s theorem shows via a clever argument that there

is always an independent set of size r7i7; where d is the average degree of G.

Remark 4.3. For the case of unweighted graphs one can obtain an approximation
ratio of Q(%) where d is the average degree. Surprisingly, under a complexity
theory conjecture called the Unique-Games conjecture it is known to be NP-Hard to

2
approximate MIS to within a factor of O(lOgA A) in graphs with maximum degree A

when A is sufficiently large.

Exercise 4.2. Consider the weigthed MIS problem on graphs of maximum degree
A. Alter Greedy to sort the nodes in non-increasing order of the weight and show
that it gives a +-approximation. Can one obtain an Q(1/d)-approximation for the
weighted case where d is the average degree?

LP Relaxation: One can formulate a simple linear-programming relaxation for
the (weighted) MIS problem where we have a variable x(v) for each node v € V
indicating whether v is chosen in the independent set or not. We have constraints
which state that for each edge (u, v) only one of u or v can be chosen.

maximize Z w(v)x(v)

veV
subject to x(u) + x(v) <1 (u,v) e E
x(v) € [0,1] veV

CHAPTER 4. PACKING PROBLEMS 45

Although the above is a valid integer programming relaxation of MIS when the
variabels are constrained to be in {0, 1}, it is not a particularly useful formulation
for the following simple reason.

Claim 4.1.1. For any graph the optimum value of the above LP relaxation is at least w(V) /2.
In particular, for the unweighted case it is at least n /2.

Simply set each x(v) to 1/2!
One can obtain a strengthened formulation below by observing that if S is clique
in G then any independent set can pick at most one node from S.

maximize Z w(v)x(v)
veV
subject to Z x(v) <1 Sisacliquein G
veS

x(v) € [0,1] veV

The above linear program has an exponential number of constraints, and it
cannot be solved in polynomial time in general, but for some special cases of
interest the above linear program can indeed be solved (or approximately solved)
in polynomial time and leads to either exact algorithms or good approximation
bounds.

Approximability of VErTex Cover and MIS: The following is a basic fact and is
easy to prove.

Fact 4.1. In any graph G = (V,E), S is a vertex cover in G if and only if V' \ S is an
independent set in G. Thus a(G) + B(G) = |V| where a(G) is the size of a maximum
independent set in G and B(G) is the size of a minimum vertex cover in G.

The above shows that if one of Vertex Cover or MIS is NP-Hard then the other
is as well. We have seen that Vertex Cover admits a 2-approximation while MIS
admits no constant factor approximation. It is useful to see why a 2-approximation
for Vertex Cover does not give any useful information for MIS even though
a(G) +B(G) = |V|. Suppose S* is an optimal vertex cover and has size > |V|/2. Then
a 2-approximation algorithm is only guaranteed to give a vertex cover of size |V|!
Hence one does not obtain a non-trivial independent set by complementing the
approximate vertex cover.

Some special cases of MIS: We mention some special cases of MIS that have been
considered in the literature, this is by no means an exhaustive list.

* Interval graphs; these are intersection graphs of intervals on a line. An exact
algorithm can be obtained via dynamic programming and one can solve more
general versions via linear programming methods.

CHAPTER 4. PACKING PROBLEMS 46

* Note that a maximum (weight) matching in a graph G can be viewed as a
maximum (weight) independent set in the line-graph of G and can be solved
exactly in polynomial time. This has been extended to what are known as
claw-free graphs.

* Planar graphs and generalizations to bounded-genus graphs, and graphs that
exclude a fixed minor. For such graphs one can obtain a PTAS due to ideas
originally from Brenda Baker.

* Geometric intersection graphs. For example, given n disks on the plane find
a maximum number of disks that do not overlap. One could consider other
(convex) shapes such as axis parallel rectangles, line segments, pseudo-disks
etc. A number of results are known. For example a PTAS is known for disks in

the plane. An Q(loén)-approximation for axis-parallel rectangles in the plane

when the rectangles are weighted and an Q(m)—approximation for the

unweighted case. For the unweighted case, very recently, Mitchell obtained a
constant factor approximation!

4.1.1 Elimination Orders and MIS

We have seen that a simple Greedy algorithm gives a A-approximation for MIS in
graphs with max degree A. One can also get a A approximation for a larger class of
A-degenerate graphs. To motivate degenerate graphs consider the class of planar
graphs. The maximum degree of a planar graph need not be small. Nevertheless,
via Euler’s theorem, we know that every planar graph has a vertex of degree at most
5 since the maximum number of edges in a planar graph is at most 3n — 6. Moreover,
every subgraph of a planar graph is planar, and hence the Greedy algorithm will
repeatedly find a vertex of degree at most 5 in each iteration. From this one can show
that Greedy gives a 1/5-approximation for MIS in planar graphs. Now consider the
intersection graph of a collection of intervals on the real line. That is, we are given
n intervals Iy, I, . .., I, where each I; = [a;, b;] for real numbers a; < b;. The goal is
to find a maximum number of the intervals in the given set of intervals which do
not overlap. This is the same as finding MIS in the intersection graph of the intervals -
the graph is obtained by creating a vertex v; for each I;, and by adding edges v;v; if
I; and I; overlap. It is well-known that greedily picking intervals in earliest finish
time order (ordering them according to b; values) is optimal; the reader should try
to prove this. Can one understand the analysis of all these examples in a unified
fashion? Yes. For this purpose we consider the class of inductive k-independent
graphs considered by by Akcoglu et al. [7] and later again by Ye and Borodin [162].

For a vertex v in a graph we use N(v) denote the neighbors of v (not including v
itself). For a graph G = (V,E) and S C V we use G[S] to denote the subgraph of G
induced by S.

CHAPTER 4. PACKING PROBLEMS 47

Definition 4.4. An undirected graph G = (V,E) is inductive k-independent if there
is an ordering of the vertices v1,vy,...,v, such that for 1 < i < n, a(G[N(v;) N
{vis1,...,04}]) < k.

Graphs which are inductively 1-independent have a perfect elimination ordering
and are called chordal graphs because they have an alternate characterization. A
graph is chordal iff each cycle C in G has a chord (an edge connecting two nodes of
C which is not an edge of C), or in other words there is no induced cycle of length
more than 3.

Exercise 4.3. Prove that the intersection graph of intervals is chordal.

Exercise 4.4. Prove that if A(G) < k then G is inductively k-independent. Prove that
if G is k-degenerate then G is inductively k-independent.

The preceding shows that planar graphs are inductively 5-independent. In fact,
one can show something stronger, that they are inductively 3-independent. Given
a graph G one can ask whether there is an algorithm that checks whether G is
inductively k-independent. There is such an algorithm that runs in time O(k?n**2)
[162]. A classical result shows how to recognize chordal graphs (k = 1) in linear
time. However, most of the useful applications arise by showing that a certain class
of graphs are inductively k-independent for some small value of k. See [162] for
several examples.

Exercise 4.5. Prove that the Greedy algorithm that considers the vertices in the
1 -

inductive k-independent order gives a -approximation for MIS.

Interestingly one can obtain a %—approximation for the maximum weight inde-
pendent set problem in inductively k-independent graphs. The algorithm is simple
and runs in linear time but is not obvious. To see this consider the weighted problem
for intervals. The standard algorithm to solve this is via dynamic programming.
However, one can obtain an optimum solution for all chordal graphs (given the
ordering). We refer the reader to [162] for the algorithm and proof (originally from
[7]). Showing a Q(1/k)-approximation is easier.

4.2 The efficacy of the Greedy algorithm for a class of Inde-
pendence Families

The Greedy algorithm can be defined easily for an arbitrary independence system.
It iteratively adds the best element to the current independent set while maintaining
teasibility. Note that the implementation of the algorithm requires having an oracle
to find the best element to add to a current independent set S.

CHAPTER 4. PACKING PROBLEMS 48

GReepY(N, 1)

1. 5«0

2. While (TRUE)
A. Let A—{eeN\S|S+ecT}
B. If A =0 break

C. e « argmax,caw(e)

D. S« SU{e}

3. Output S

Exercise 4.6. Prove that the Greedy algorithm gives a 1/2-approximation for the
maximum weight matching problem in a general graph. Also prove that this bound
is tight even in bipartite graphs. Note that max weight matching can be solved
exactly in polynomial time.

Remark 4.4. It is well-known that the Greedy algorithm gives an optimum solution
when (N,) is a matroid. Kruskal’s algorithm for min/max weight spanning tree
is a special case of this fact.

It is easy to see that Greedy does poorly for MIS problem in general graphs.
A natural question is what properties of 7 enable some reasonable performance
guarantee for Greedy. A very general result in this context has been established due
to Jenkyn'’s generalizing several previous results. In order to state the result we set
up some notation. Given an independence system (N, 7)) we say thata set A € I is
a base if it is a maximal independent set. It is well-known that in a matroid M all
bases have the same cardinality. However this is not true in general independence
system.

Definition 4.5. An independence system (N, I') is a k-system if for any two bases A, B € 1,
|A| < k|B|. That is, the ratio of the cardinality of a maximum base and the cardinality of a
minimum base is at most k.

The following theorem is not too difficult but not so obvious either.

Theorem 4.6. Greedy gives a 1/k-approximation for the maximum weight independent set
problem in a k-system.

The above theorem generalizes and unifies several examples that we have seen
so far including MIS in bounded degree graphs, matchings, matroids etc. How does

CHAPTER 4. PACKING PROBLEMS 49

one see that a given independence system is indeed a k-system for some parameter
k? For instance matchings in graphs form a 2-system. The following simple lemma
gives an easy way to argue that a given system is a k-system.

Lemma 4.1. Suppose (N, I') is an independence system with the following property: for
any Ae I ande € N\ AthereisasetY C Asuchthat |Y| < kand (A\Y)U {e} e I.
Then I is a k-system.

We leave the proof of the above as an exercise.
We refer the reader to [60, 121] for analysis of Greedy in k-systems and other
special cases.

4.3 Randomized Rounding with Alteration for Packing Prob-
lems

The purpose of this section to highlight a technique for rounding LP relaxations
for packing problems. We will consider a simple example, namely the maximum
weight independent set problem in interval graphs. Recall that we are given n
intervals Iy, I, . . ., I, with non-negative weights w;, ..., w, and the goal is to find
a maximum weight subset of them which do not overlap. Let I; = [4;,b;] and let
p1,P2, .-, Pm be the collection of end points of the intervals. We can write a simple
LP relaxation for this problem. For each interval i we have a variable x; € [0, 1]
to indicate whether I; is chosen or not. For each point p;, among all intervals that
contain it, at most one can be chosen. These are clique constraints in the underlying
interval graph.

n
maximize Z WiXi
i=1
subject to insl 1<j<m
i:p/‘EIj

x; €[0,1] 1<i<n

Note that it is important to retain the constraint that x; < 1. Interestingly it is
known that the LP relaxation defines an integer polytope and hence one can solve
the integer program by solving the LP relaxation! This is because the incidence
matrix defining the LP is totally unimodular (TUM). We refer the reader to books on
combinatorial optimization for further background on this topic. Here we assume
that we do not know the integer properties of the LP. We will round it via a technique
that is powerful and generalizes to NP-Hard variants of the interval scheduling
problem among many others.

CHAPTER 4. PACKING PROBLEMS 50

Suppose we solve the LP and obtain an optimum fraction solution x*. We have
2iwix; > OPT. How do we round to obtain an integer solution whose value is
close to that of OPT? Suppose we randomly choose I; with probablility cx? for some
c < 1. Let R be the random set of chosen intervals. Then the expected weight of R,
by linearity of expectation, is ¢ }}; w;x; > ¢ - OPT. However, it is highly likely that
the random solution R is not going to be feasible. Some constraint will be violated.
The question is how we can fix or alter R to find a subset R’ C R such that R" is a
feasible solution and the expected value of R” is not too much smaller than that of R.
This depends on the independence structure.

Here we illustrate this via the interval problem. Without loss of generality we
assume that Iy, ..., I, are sorted by their right end point. In other words the order
is a perfect elimination order for the underlying interval graph.

ROUNDING-WITH-ALTERATION

1. Let x be an optimum fractional solution

2. Round each i to 1 independently with probability x;/2. Let x’ be rounded
solution.

3. Re={i|x;=1}
4. S0
5. For i=n downto 1 do
A. If (i€ R) and (SU{i} is feasible) then S « SU {i}

6. Output feasible solution S

The algorithm consists of two phases. The first phase is a simple selection phase
via independent randomized rounding. The second phase is deterministic and is a
greedy pruning step in the reverse elimination order. To analyze the expected value
of S we consider two binary random variables for each i, Y; and Z;. Y;is 1if i € R
and 0 otherwise. Z;is 1if i € S and 0 otherwise.

By linearity of expectation,

Claim 4.3.1. E[w(S)] = X; w;E[Z;] = X, w; P[Z; = 1].
Via the independent randomized rounding in the algorithm.
Claim 4.3.2. P[Y; = 1] = x;/2.

How do we analyze P[Z; = 1]? The random variables Zi,...,Z, are not
independent and could be highly correlated even though Y3, . .., Y, are independent.

CHAPTER 4. PACKING PROBLEMS 51

For this purpose we try to understand P[Z; = 0 | ¥; = 1] which is the conditional
probability that an interval I; that is chosen in the first step is rejected in the pruning
phase. We often would not be able to get an exact estimate of this quantity but
we can upper bound it as follows. Here the ordering plays a crucial role. Why
would I; be rejected in the pruning phase? Note that when I; is considered in the
pruning phase, the only intervals that have been considered have their right end
points after the right end point of I;. Let A; = {j | j > i and I; and I; intersect at b; }
be the potential set of intervals that can cause i to be rejected. Recall that the LP
implies the following constraint:
X; + Z xj<1

jeA
at the point b;. Let & be the event that I; is rejected in the pruning phase. Let
&Ec be the event that at least one of the intervals in A is selected in the first phase.

Note that &; can happen only if & happens. Thus P[&1] < P[&;]. In general we try
to upper bound P[&E;]. In this simple case we have an exact formula for it.

P[&]=1- HP[Y]- =0]=1-]_[(1 ~x;/2).

jEA jeA

We claim that P[&;] < D) jeA Xj /2 < 1/2. One can derive this by showing that
HjeA(l — x;/2) subject to YjeA xj/2 < 1/2is at least 1/2. Another way of doing
this is via Markov’s inequality. Let T = }};c4 ¥j be the number of intervals from
A selected in the first phase. E[T] < }jesxj/2 < 1/2. By Markov’s inequality
P[T > 2E[T]] < 1/2. &; is the event that P[T > 1].

Using the claim,

P[Zi=1|Y;=1]=1-P[Z; =0[Y; = 1] > 1/2.

This allows us to lower bound the expected weight of the solution output by the
algorithm, and yields a randomized 1/4 approximation.

Claim 4.3.3. E[w(S)] > X, wix;/4.
Proof. We have

E[w(S)] = Zwl [Z:=1] = ZwlP[Y—l] P[Zi=1]|Yi=1]> Zw(——)>2wixi/4.

This type of rounding has applications to a variety of settings - see [CVZ] for
applications and the general framework called contention resolution schemes.

CHAPTER 4. PACKING PROBLEMS 52

4.4 Packing Integer Programs (PIPs)

We can express the Knapsack problem as the following integer program. We scaled
the knapsack capacity to 1 without loss of generality.

n
maximize Z piXi
i=1
subject to Z six; <1
i
x; € {0,1} 1<i<n

More generally if have multiple linear constraints on the “items” we obtain the
following integer program.

Definition 4.7. A packing integer program (PIP) is an integer program of the form
max{wx | Ax <1,x € {0,1}"} where w is a 1 X n non-negative vector and Aisam X n
matrix with entries in [0, 1]. We call it a {0, 1}-PIP if all entries are in {0, 1}.

In some cases it is useful /natural to define the problem as max{wx | Ax < b, x €
{0,1}"} where entries in A and b are required to rational/integer valued. We can
convert it into the above form by dividing each row of A by b;.

When m the number of rows of A (equivalently the constraints) is small the
problem is tractable. It is some times called the m-dimensional knapsack and one
can obtain a PTAS for any fixed constant m. However, when m is large we observe
that MIS can be cast as a special case of {0, 1}-PIP. It corresponds exactly to the simple
integer/linear program that we saw in the previous section. Therefore the problem
is at least as hard to approximate as MIS. Here we show via a clever LP-rounding
idea that one can generalize the notion of bounded-degree to column-sparsity in PIPs
and obtain a related approximation. We will then introduce the notion of width of
the constraints and show how it allows for improved bounds.

Definition 4.8. A PIP is k-column-sparse if the number of non-zero entries in each column
of A is at most k. A PIP has width W if max; j A;j/b; < 1/W.

441 Randomized Rounding with Alteration for PIPs

We saw that randomized rounding gave an O(logn) approximation algorithm
for the Ser Cover problem which is a canonical covering problem. Here we will
consider the use of randomized rounding for packing problems. Let x be an
optimum fractional solution to the natural LP relaxation of a PIP where we replace
the constraint x € {0, 1}" by x € [0, 1]". Suppose we apply independent randomized

CHAPTER 4. PACKING PROBLEMS 53

rounding where we set x’ to 1 with probability x;. Let x” be the resulting integer
solution. The expected weight of this solution is exactly }}; w;x; which is the LP
solution value. However, x” may not satisfy the constraints given by Ax < b. A
natural strategy to try to satisfy the constraints is to set x] to 1 with probability cx;
where ¢ < 1 is some scaling constant. This may help in satisfying the constraints
because the scaling creates some room in the constraints; we now have that the
expected solution value is ¢ }}; w;x;, a loss of a factor of c. Scaling by itself does not
allow us to claim that all constraints are satisfied with good probability. A very
useful technique in this context is the technique of alteration; we judiciously fix/alter
the rounded solution x” to force it to satisfy the constraints by setting some of the
variables that are 1 in x” to 0. The trick is to do this in such a way as to have a handle
on the final probability that a variable is set to 1. We will illustrate this for the
Knapsack problem and then generalize the idea to k-sparse PIPs. The algorithms
we present are from [19]. See [CVZ] for further applications and related problems.

Rounding for Knapsack: Consider the Knapsack problem. It is convenient to think
of this in the context of PIPs. So we have ax < 1 where a; now represents the size
of item i and the knapsack capacity is 1; w; is the weight of item. Suppose x is a
fractional solution. Call an item i “big” if a; > 1/2 and otherwise it is “small”. Let
S be the indices of small items and B the indices of the big items. Consider the
following rounding algorithm.

RoOUNDING-WITH-ALTERATION FOR KNAPSACK

1. Let x be an optimum fractional solution

2. Round each i to 1 independently with probability x;/4. Let x’ be rounded

solution.

4. If (x; =1 for exactly one big item i)
A. For each j#1i set x;.' =0

5. Else If (Z six; >1 or two or more big items are chosen in x")
ieS
A. For each j set x;’ =0

6. Output feasible solution x”

In words, the algorithm alters the rounded solution x’ as follows. If exactly one
big item is chosen in x’ then the algorithm retains that item and rejects all the other
small items. Otherwise, the algorithm rejects all items if two or more big items are

CHAPTER 4. PACKING PROBLEMS 54

chosen in x” or if the total size of all small items chosen in x” exceeds the capacity.
The following claim is easy to verify.

Claim 4.4.1. The integer solution x" is feasible.

Now let us analyze the probability of an item 7 being present in the final solution.
Let &1 be the event that) ;.q a l-x; > 1, that is the sum of the sizes of the small items
chose in x” exceeds the capacity. Let & be the event that at least one big item is
chosen in x’.

Claim 4.4.2. P[&E1] < 1/4.

Proof. Let X5 = };es aix; be the random variable that measures the sum of the sizes
of the small items chosen. We have, by linearity of expectation, that

E[Xs] = Zai[E[x;] = thixi/él <1/4.

i€eS i€eS
By Markov’s inequality, P[X; > 1] < E[X]/1 < 1/4. [
Claim 4.4.3. P[&,] < 1/2.

Proof. Since the size of each big item in B is at least 1/2, we have 1 > }};.ga;x; >
i Xi/2. Therefore };.p xi/4 < 1/2. Event & happens if some item i € B is chosen
in the random selection. Since i is chosen with probability x;/4, by the union bound,
P[&y] < Yiepxi/4 < 1)/2. L

Lemma 4.2. Let Z; be the indicator random variable that is 1 if x” = 1 and 0 otherwise.
Then E[Z;] = P[Z; = 1] = x;/16.

Proof. We consider the binary random variable X; which is 1 if x; = 1. We have
E[Xi] = P[X; = 1] = x;/4. We write

P[Zz-:l]:P[Xizl]-P[Zizl|Xi:1]:%P[Z,-:1|Xi:1].

To lower bound P[Z; = 1 | X; = 1] we upper bound the probability P[Z; = 0|X; = 1],
that is, the probability that we reject i conditioned on the fact that it is chosen in the
random solution x’.

First consider a big item i that is chosen in x’. Then i is rejected iff if another big
item is chosen in x’; the probability of this can be upper bounded by P[&1]. If item i
is small then it is rejected if and only if & happens or if a big item is chosen which
happens with P[&;]. In either case

P[Z; = 0|X; = 1] < P[&] + P[&] < 1/4+1/2 = 3/4.

CHAPTER 4. PACKING PROBLEMS 55

Thus,

P[Zizl]:P[Xi=1]'P[Zi:1|Xi:1]:%(1_P[Zizolxi:1])2f_é'

One can improve the above analysis to show that P[Z; = 1] > x;/8.

Theorem 4.9. The randomized algorithm outputs a feasible solution of expected weight at
least ", wix;/16.

Proof. The expected weight of the output is
[E[Z wix!] = Z w;E[Z;] > Z wix;/16
i i i

where we used the previous lemma to lower bound E[Z;]. [

Rounding for k-sparse PIPs: We now extend the rounding algorithm and analysis
above to k-sparse PIPs. Let x be a feasible fractional solution to max{wx | Ax <
1,x € [0,1]"}. For a column index i we let N(i) = {j | Aj; > 0} be the indices of
the rows in which i has a non-zero entry. Since A is k-column-sparse we have that
IN(i)| < k for 1 < i < n. When we have more than one constraint we cannot classify
an item/index i as big or small since it may be big for some constraints and small
for others. We say that i is small for constraint j € N(i) if Aj; < 1/2 otherwise i is
big for constraint j. Let S; = {i | j € N(i), and i small for j} be the set of all small
columns for j and B; = {i | j € N(i), and i small for j} be the set of all big columns
for j. Note that S; N B; is the set of all i with A; ; > 0.

CHAPTER 4. PACKING PROBLEMS 56

ROUNDING-WITH-ALTERATION FOR k-sPaRsE PIPs

1. Let x be an optimum fractional solution

2. Round each i to 1 independently with probability x;/(4k). Let x’ be rounded
solution.

4. For j=1 to m do

A. If (x;=1 for exactly one i € B))
1. For each h € S;UB; and h #1i set x; =

B. Else If (ZA]-,ix; >1 or two or more items from B; are chosen in x")
iES]'

1. For each h € S;UB; set x}/ =0

5. Output feasible solution x”

The algorithm, after picking the random solution x’, alters it as follows: it
applies the previous algorithm’s strategy to each constraint j separately. Thus an
element i can be rejected at different constraints j € N(i). We need to bound the
total probability of rejection. As before, the following claim is easy to verify.

Claim 4.4.4. The integer solution x” is feasible.

Now let us analyze the probability of an item i being present in the final solution.
Let &1(j) be the event that Zies]- Ajix} > 1, that is the sum of the sizes of the items
that are small for j in x” exceed the capacity. Let E;(j) be the event that at least one
big item for j is chosen in x’. The following claims follow from the same reasoning
as the ones before with the only change being the scaling factor.

Claim 4.4.5. P[E:(j)] < 1/(4k).
Claim 4.4.6. P[E(j)] < 1/(2k).

Lemma 4.3. Let Z; be the indicator random variable that is 1 if x? = 1 and 0 otherwise.
Then E[Z;] = P[Z; = 1] > x;/(16k).

Proof. We consider the binary random variable X; which is 1 if x] = 1 after the
randomized rounding. We have E[X;] = P[X; = 1] = x;/(4k). We write

P[Zizl]:P[Xi:1]~P[Zi:1|Xi:1]:z—]iP[Zi:1|Xi:1].

CHAPTER 4. PACKING PROBLEMS 57

We upper bound the probability P[Z; = 0|X; = 1], that is, the probability that
we reject i conditioned on the fact that it is chosen in the random solution x’. We
observe that

P[Z; = 01X, =11 < Y (P[&1())] + P[&x())] < k(1/(4K) +1/(2K)) < 3/4.
jeN(i)
We used the fact that N (i) < k and the claims above. Therefore,

Xi
16k
[|

P[Zizl]:P[Xizl]-P[Zizl|Xi:1]:z—li(l—P[ZizolXizl])z

The theorem below follows by using the above lemma and linearity of expectation
to compare the expected weight of the output of the randomized algorithm with
that of the fractional solution.

Theorem 4.10. The randomized algorithm outputs a feasible solution of expected weight at
least Y, wix;/(16k). There is 1/(16k)-approximation for k-sparse PIPs.

Larger width helps: We saw during the discussion on the Knapsack problem
that if all items are small with respect to the capacity constraint then one can
obtain better approximations. For PIPs we defined the width of a given instance
as W if max;; A;j/b; < 1/W; in other words no single item is more than 1/W
times the capacity of any constraint. One can show using a very similar algorithm
and anaylisis as above that the approximation bound improves to Q(1/kM"1) for
instance with width W. Thus if W = 2 we get a Q(1/Vk) approximation instead of
Q(1/k)-approximation. More generally when W > clog k/e for some sufficiently
large constant ¢ we can get a (1 — €)-approximation. Thus, in the setting with
multiple knapsack constraints, the notion of small with respect to capacities is that
in each constraint the size of the item is < @ times the capacity of that constraint.

Chapter 5

Load Balancing and Bin Packing

This chapter is based on notes first scribed by Rachit Agarwal.

In the last lecture, we studied the Knapsack problem. The Knapsack problem is
an NP-hard problem but does admit a pseudo-polynomial time algorithm and can be
solved efficiently if the input size is small. We used this pseudo-polynomial time
algorithm to obtain an FPTAS for Knarsack. In this lecture, we study another class
of problems, known as strongly NP-hard problems.

Definition 5.1 (Strongly NP-hard Problems). An NPO problem 7t is said to be strongly
NP-hard if it is NP-hard even if the inputs are polynomially bounded in combinatorial size
of the problem 1.

Many NP-hard problems are in fact strongly NP-hard. If a problem IT is strongly
NP-hard, then I'T does not admit a pseudo-polynomial time algorithm. We study
two such problems in this lecture, MuLTIPROCESSOR SCHEDULING and BN PAckING.

5.1 Load Balancing / MultiProcessor Scheduling

A central problem in scheduling theory is to design a schedule such that the
finishing time of the last jobs (also called makespan) is minimized. This problem is
often referred to as the Loap BaLanciNng, the MINiMUM MAKESPAN SCHEDULING Or
MULTIPROCESSOR SCHEDULING problem.

5.1.1 Problem Description

In the MULTIPROCESSOR SCHEDULING problem, we are given m identical machines
M;i,...,My andnijobsJi,Jo,...,]s. Job J; has a processing time p; > 0 and the goal

1An alternative definition: A problem 7 is strongly NP-hard if every problem in NP can be
polynomially reduced to 7t in such a way that numbers in the reduced instance are always written in
unary

58

CHAPTER 5. LOAD BALANCING AND BIN PACKING 59

is to assign jobs to the machines so as to minimize the maximum load?.

51.2 Greedy Algorithm

Consider the following greedy algorithm for the MULTIPROCESSOR SCHEDULING
problem which we will call GREEDY MULTIPROCESSOR SCHEDULING.

GREEDY MULTIPROCESSOR SCHEDULING:

Order (list) the jobs arbitrarily

Fori=1ton do
Assign Job J; to the machine with least current load
Update load of the machine that receives job J;

This algorithm is also called a list scheduling algorithm following Graham'’s
terminology from his paper from 1966 [69]. The list is the order in which the jobs
are processed and changing it creates different schedules. We prove that the GrReepy
MULTIPROCESSOR SCHEDULING algorithm gives a (2 — 1/m)-approximation.

Theorem 5.2. GREEDY MULTIPROCESSOR SCHEDULING algorithm gives a (2— %)-approximation
for any list.

To prove the theorem, we will make use of two lower bounds on the length of
the optimal schedule which we denote by OPT.

Zi pi

m

Observation 5.3. OPT >

Observation 5.4. OPT > max; p;.
We leave the proofs of the observations as easy exercises.

Proof of Theorem 5.2. Fix the list and let L denote the makespan of the Greeby
MULTIPROCESSOR SCHEDULING algorithm. Let L; denote the load of machine M; and let
M- be the most heavily loaded machine in the schedule by GREEDY MULTIPROCESSOR
ScHEDULING algorithm.

Let Ji be the last job assigned to M;-. Since GREEDY MULTIPROCESSOR SCHEDULING
algorithm assigns a job to the machine that is least loaded, all machines must be
loaded at least L — py at the time of assigning Jx. Hence, we have:

(Z Pi) —pk = m (L - px) (6.1)
io1

2The load of a machine is defined as the sum of the processing times of jobs that are assigned to
that machine.

CHAPTER 5. LOAD BALANCING AND BIN PACKING 60

which implies:

n . —
[— P < (21'21 Pz) Pk
m
hence
n .
Lo Zimp) + P (1 - l)
m m
< OPT+OPT (1 - l)
m
= OPT (2 - l)
m
where the third step follows from the two lower bounds on OPT. [

The above analysis is tight, i.e., there exist instances where the greedy algorithm
produces a schedule which has a makespan (2 — 1/m) times the optimal. Consider
the following instance: m(m — 1) jobs with unit processing time and a single job
with processing time m. Suppose the greedy algorithm schedules all the short jobs
before the long job, then the makespan of the schedule obtained is (2m — 1) while the
optimal makespan is m. Hence the algorithm gives a schedule which has makespan
2 — 1/m times the optimal.

It may seem from the tight example above that an approximation ratio a <
(2—1/m) could be achieved if the jobs are sorted before processing, which indeed is
the case. The following algorithm, due to [70], sorts the jobs in decreasing order of
processing time prior to running GREEDY MULTIPROCESSOR SCHEDULING algorithm.

MobIFIED GREEDY MULTIPROCESSOR SCHEDULING:
Sort the jobs in decreasing order of processing times
Fori=1tondo
Assign Job J; to the machine with least current load
Update load of the machine that receives job J;

Graham [70] proved the following tight bound.

Theorem 5.5. MobpiriED GREEDY MULTIPROCESSOR SCHEDULING algorithm gives a (4/3 —
1/3m)-approximation for the MULTIPROCESSOR SCHEDULING problem.

We will not prove the preceding theorem which requires some careful case
analysis. Instead we will show how one can obtain an easier bound of 3/2 via the
following claim.

Claim 5.1.1. Suppose p; > p; forall i > j and n > m. Then, OPT 2 py + p+1.

CHAPTER 5. LOAD BALANCING AND BIN PACKING 61

Proof. Since n > m and the processing times are sorted in decreasing order, some
two of the (m + 1) largest jobs must be scheduled on the same machine. Notice that
the load of this machine is at least p;;, + pm+1. []

Exercise 5.1. Prove that MopiriED GREEDY MULTIPROCESSOR SCHEDULING gives a
(3/2 = 1/2m)-approximation using the preceding claim and the other two lower
bounds on OPT that we have seen already.

Before going to the description of a PTAS for MULTIPROCESSOR SCHEDULING
problem, we discuss the case when the processing times of the jobs are bounded
from above.

Claim 5.1.2. If p; < € - OPT, Vi, then MopiriED GREEDY MULTIPROCESSOR SCHEDULING
gives a (1 + €)-approximation.

5.1.3 A PTAS for Multi-Processor Scheduling

We will now give a PTAS for the problem of scheduling jobs on identical machines.
We would like to use the same set of ideas that were used for the Knapsack problem
(see Lecture 4): that is, given an explicit time T we would like to round the job
lengths and use dynamic programming to see if they will fit within time T. Then
the unrounded job lengths should fit within time T(1 + €).

Big Jobs, Small Jobs and Rounding Big Jobs: For the discussion that follows, we
assume that all the processing times have been scaled so that OPT = 1 and hence,
Pmax <1l

Given all the jobs, we partition the jobs into two sets: Big jobs and Small jobs. We
call ajob J; “big” if p; > €. Let B and S denote the set of big jobs and small jobs
respectively, ie., B={]; : pi 2 e}and S ={J; : p; < €}. The significance of such
a partition is that once we pack the jobs in set B, the jobs in set S can be greedily
packed using list scheduling.

Claim 5.1.3. If there is an assignment of jobs in B to the machines with load L, then greedily
scheduling jobs of S on top gives a schedule of value no greater than max {L, (1 + €) OPT}.

Proof. Consider scheduling the jobs in § after all the jobs in 8 have been scheduled
(with load L). If all of these jobs in S finish processing by time L, the total load is
clearly no greater than L.

If the jobs in S can not be scheduled within time L, consider the last job to finish
(after scheduling the small jobs). Suppose this job starts at time T”. All the machines
must have been fully loaded up to T’, which gives OPT > T’. Since, for all jobs in S,
we have p; < € - OPT, this job finishes at T’ + € - OPT. Hence, the schedule can be

no more than T’ + € - OPT < (1 + €) OPT, settling the claim. [

CHAPTER 5. LOAD BALANCING AND BIN PACKING 62

Scheduling Big Jobs: We concentrate on scheduling the jobs in 8. We round
the sizes of all jobs in B using geometrically increasing interval sizes using the
following procedure:

RouNDING JoBs:
For each big job i do
Ifp; € (e(1+€),e(1+ €)™
Setp; = (1 +¢)i*!

Let 8’ be the set of new jobs.

Claim 5.1.4. If jobs in B can be scheduled with load 1, then the rounded jobs in B’ can be

scheduled with load (1 + €).
Claim 5.1.5. The number of distinct big job sizes after rounding is O(%).

Proof. Notice that due to scaling, we have p; < 1 for all jobs J;. Since the job sizes
are between € and 1 the number of geometric powers of (1 + €) required is k where

e(1+e)f

IA

1

=k

1 In(1/e
Ing1e) = = O(1/e)
€ €

IA

)
]

Lemma 5.1. If the number of distinct job sizes is k, then there is an exact algorithm that

returns the schedule (if there is one) and runs in time O(n?k).
Proof. Use Dynamic Programming. [|
Corollary 5.6. Big Jobs can be scheduled (if possible) with load (1 + €) in time nOE),

Once we have scheduled the jobs in 8B, using Claim 5.1.3, we can pack small
items using greedy list scheduling on top of them. The overall algorithm is then
given as:

PTAS MULTIPROCESSOR SCHEDULING:

1. Guess OPT

2. Define 8 and S

3. Round B to B’

4. If jobs in B’ can be scheduled in (1 + €) OPT
Greedily pack S on top

Else

Modify the guess and Repeat.

In the following subsection, we comment on the guessing process.

CHAPTER 5. LOAD BALANCING AND BIN PACKING 63

Guessing: We define a (1 + €)-relaxed decision procedure:
Definition 5.7. Given € > 0 and a time T, a (1 + €)-relaxed decision procedure returns:
* Output a schedule (if there is one) with makespan load (1 + €) - T or

* Output correctly that there is no schedule with makespan T.

Define
1
L = max m]axpj, - ;p]-

L is a lower bound on OPT as we saw earlier. Furthermore, an upper bound on OPT
is given by the GREEDY MULTIPROCESSOR SCHEDULING algorithm, which is 2L. Consider
running the decision procedure with guess L + ieL for each integer i € [[2/€e]]. We
will choose the schedule with the best makespan among all the successful runs. If
L* is the optimum load then the algorithm will try the decision procedure with
L* + €L < (1 + €)L". For this guess we are guaranteed a solution and the decision
procedure will succeed in outputting a schedule with load (1+¢€)(1+¢€)L* < (1+3€)L*
for sufficiently small e. We run the decision procedure O(1/¢€) times. This gives us
the desired PTAS.

Remark 5.1. A PTAS indicates that the problem can approximated arbitrarily well in
polynomial time. However, a running time of the form 1/ is typically not very
interesting. We have seen that an FPTAS is ruled out for the makespan minimization
problem. However, it does admit what is now called an Efficient PTAS (EPTAS)

whose running time is 201/ e*(log(1/€)) 4 poly(n). See [94].

5.1.4 Section Notes

MuLTIPROCESSOR SCHEDULING is NP-hard as we can reduce 2-PartiTioN to MuLTI-
PROCESSOR SCHEDULING on two machines. Note that this reduction only proves
that MuLTIPROCESSOR SCHEDULING is weakly NP-hard. When m is a fixed constant
Horowitz and Sahni [88] give an FPTAS. However MULTIPROCESSOR SCHEDULING
problem is strongly NP-hard when m is part of the input (by a reduction from
3-PartITiON [63]). Thus, there can not exist an FPTAS for the MULTIPROCESSOR
ScHEDULING problem in general, unless P = NP. However, Hochbaum and Shmoys
[84] gave a PTAS which is the one we described. EPTASes have been developed
for several problems and a key technique is the use of integer linear programming
solvers with a small number of variables.

CHAPTER 5. LOAD BALANCING AND BIN PACKING 64

5.2 Bin Packing

5.2.1 Problem Description

In the Bin PackiNG problem, we are given a set of n items {1,2,...,n}. Item i has
size s; € (0,1]. The goal is to find a minimum number of bins of capacity 1 into
which all the items can be packed.

One could also formulate the problem as partitioning {1,2,...,n} into k sets
B1, 8By, ..., 8Bk such that ZZ‘EB], s; < 1and k is minimum.

5.2.2 Greedy Approaches
Consider the following greedy algorithm for bin packing:

GREEDY BIN PACKING:
Order items in some way
Fori=1ton
If item i can be packed in some open bin
Pack it
Else
Open a new bin and pack 7 in the new bin

In Greepy BN Packing algorithm, a new bin is opened only if the item can not be
packed in any of the already opened bins. However, there might be several opened
bins in which the item i could be packed. Several rules could be formulated in such
a scenario:

e First Fit: Pack item in the earliest opened bin
e Last Fit: Pack item in the last opened bin

* Best Fit: Pack item in the bin that would have least amount of space left after
packing the item

* Worst Fit: Pack item in the bin that would have most amount of space left after
packing the item

Irrespective of what strategy is chosen to pack an item in the opened bins, one
could get the following result:

Theorem 5.8. Any greedy rule yields a 2-approximation.
Observation 5.9. OPT > };s;.

We call a bin a-full if items occupy space at most a.

CHAPTER 5. LOAD BALANCING AND BIN PACKING 65

Claim 5.2.1. Greedy has at most 1 bin that is -full.

Proof. For the sake of contradiction, assume that there are two bins B; and B j that
are 3-full. WLOG, assume that Greepy Bin Packing algorithm opened bin B; before
B;. Then, the first item that the algorithm packed into B; must be of size at most
%. However, this item could have been packed into B; since B; is %-full. This is a
contradiction to the fact that GReepy Bin Packing algorithm opens a new bin if and
only if the item can not be packed in any of the opened bins.]

Proof of Theorem 5.8. Let m be the number of bins opened by Greepy Bin PackiNg
algorithm. From Claim 5.2.1, we have:

Zsi> m2—1

i

Using the observation that OPT > }; s;, we get:

m-—1

OPT
Z

which gives us:

m < 2-0PT+1
>m < 2-0PT

5.2.3 (Asymptotic) PTAS for Bin Packing

A natural question follows the discussion above: Can Bin Packing have a PTAS? In
this subsection, we settle this question in negative. In particular, we give a reduction
from an NP-complete problem to the Bin PackinG problem and show that a PTAS for
the Bin Packing problem will give us an exact solution for the NP-complete problem
in polynomial time. We consider the PartiTion problem:

In the PartITION problem, we are given a set of items {1,2,...,n}. Item 7 has
a size s;. The goal is to partition the {1,2, ..., n} into two sets A and B such that

ieA Si = Lies Sj-

Claim 5.2.2. If Bin PACKING has a (3 — €)-approximation for any € > 0, the PARTITION
problem can be solved exactly in polynomial time.

CHAPTER 5. LOAD BALANCING AND BIN PACKING 66

Proof. Given an instance I of the PartiTion problem, we construct an instance of
the Bin PackinG problem as follows: Scale the size of the items such that };; s; = 2.
Consider the scaled sizes of the items as an instance I’ of the Bin PackiNG problem. If
all items of I’ can be packed in 2 bins, then we have an “yes” answer to I. Otherwise,
the items of I’ need 3 bins and the answer to I is “no”.

OPT for I’ is 2 or 3. Hence, if there is a (% — €)-approximation algorithm for the
Bin PackING problem, we can determine the value of OPT which in turn implies that
we can solve I. Thus, there can not exist a (3 — €)-approximation algorithm for the
BiN PackinG problem, unless P = NP. []

Recall the scaling property where we discussed why many optimization problems
do not admit additive approximations. We notice that the Bin PackinG problem
does not have the scaling property. Hence it may be possible to find an additive
approximation algorithms. We state some of the results in this context:

Theorem 5.10 (Johnson "74 [97]). There exists a polynomial time algorithm such A such
that:

k%mg%omm+4
for all instances I of the BIN PACKING problem.

Theorem 5.11 (de la Vega, Lueker 81 [49]). For any fixed € > O there exists a polynomial
time algorithm such Ay, such that:

Arr(I) < (1 +€)OPT(I) +1
for all instances I of the BIN PACKING problem.

Theorem 5.12 (Karmarkar, Karp "82 [101]). There exists a polynomial time algorithm
such Ay such that:

Axx(I) < OPT(I) + O(log*(OPT(I)))
for all instances I of the BIN PAcKING problem.
This has been improved recently.

Theorem 5.13 (Hoberg and Rothvoss 2017 [83]). There exists a polynomial time algorithm
such Ay such that:
Axx(I) < OPT(I) + O(log(OPT(I)))

for all instances I of the BIN PACKING problem.
A major open problem is the following.

Open Question 5.14. Is there a polynomial-time algorithm A such that A(I) < OPT(I)+c,
for some fixed constant c¢? In particular is ¢ = 17

Exercise 5.2. Show that First Fit greedy rule yields a 3 OPT +1-approximation.

CHAPTER 5. LOAD BALANCING AND BIN PACKING 67

5.2.4 Asymptotic PTAS for Bin Packing

A recurring theme in last two lectures has been the rounding of jobs/tasks/items.
To construct an asymptotic PTAS for Bin PackinG problem, we use the same set of
ideas with simple in retrospect but non-obvious modifications. In particular, we
divide the set of items into big and small items and concentrate on packing the big
items first. We show that such a technique results in an asymptotic PTAS for the Bin
PAckING problem.

Consider the set of items, s1,s2,...,5,. We divide the items into two sets,
B={i:si2e}and S ={j : s; < €}. Similar to the MULTIPROCESSOR SCHEDULING
problem, where we rounded up the processing times of the jobs, we round up the
sizes of the items in the Bin PackiNG problem. Again, we concentrate only on the
items in B. Let n’ = |B| be the number of big items.

We observed earlier that OPT > }’; s; and hence OPT > € - n’ by just considering
the big items.

Claim 5.2.3. Suppose n’ > 4/€>. Then OPT > 4/e.
If there are very few big items one can solve the problem by brute force.

Claim 5.2.4. Suppose n’ < 4/€2. An optimal solution for the Bin PackiNg problem can be
computed in 200/€") time.

Proof Sketch. If the number of big items is small, one can find the optimal solution
using brute force search. []

The following gives a procedure to round up the items in B:

RoUNDING ITEM SizESs:

Sort the items such that s1 > sy, > -+ > s,/

Group items in k = 2/€? groups By, . . ., B such that each group has | n’/k] items
Round the size of all the items in group B; to the size of the smallest item in B;_;

Lemma 5.2. Consider the restriction of the bin packing problem to instances in which
the number of distinct item sizes is k. There is an n®®-time algorithm that outputs the
optimum solution.

Proof Sketch. Use Dynamic Programming. [

Claim 5.2.5. The items in B can be packed in OPT +|B| bins in time n0/e?),

Proof. Using RounpING ITEM SizEs, we have restricted all items but those in 8 to
have one of the k — 1 distinct sizes. Using lemma 5.2, these items can be packed
efficiently in OPT. Furthermore, the items in $; can always be packed in |8, | bins
(one per bin). Hence, the total number of bins is OPT +|5;|.

The running time of the algorithm follows since k = O(1/€?). [|

CHAPTER 5. LOAD BALANCING AND BIN PACKING 68

Lemma 5.3. Let € > 0 be fixed. Consider the restriction of the bin packing problem to
instances in which each items is of size at least €. There is a polynomial time algorithm that
solves this restricted problem within a factor of (1 + €).

Proof. Using Claim 5.2.5, we can pack 8 in OPT +|8;| bins. Recall that |8;| =
n’/k] < €*-n’/2 < e - OPT/8 where, we have used Claim 5.2.3 to reach the final
expression. n

Theorem 5.15. For any €, 0 < € < 1/2, there is an algorithm A, that runs in time
polynomial in n and finds a packing using at most (1 + 2€) OPT +1 bins.

Proof. Assume that the number of bins used to pack items in 8 is m and the total
number of bins used after packing items in S is m’. Clearly

o sofo 1)

since at most one bin must be (1 — €) full using an argument in GrReeby Bin Packine.

Furthermore,
{%} < (Z si) (1+2¢)+1

i
for € < 1/2. This gives the required expression. [|

The algorithm is summarized below:

Asymproric Ptas BiN PAckING:

Split the items in B (big items) and S (small items)

Round the sizes of the items in B to obtain constant number of item sizes
Find optimal packing for items with rounded sizes

Use this packing for original items in 8

Pack items in S using GRreepy Bin PackinG.

5.2.5 Section Notes

An excellent but perhaps somewhat dated survey on approximation algorithms
for Bin PackiNG problem is [98]. See [83] for some pointers to more recent work.
There has also been substantial recent work on various generalizations to multiple
dimensions.

Chapter 6

Unrelated Machine Scheduling and
Generalized Assignment

This chapter is based on notes first scribed by Alina Ene.

6.1 Scheduling on Unrelated Parallel Machines

We have a set | of 1 jobs, and a set M of m machines. The processing time of job i is
pij on machine j. Let f :] — M be a function that assigns each job to exactly one
machine. The makespan of f is maxi<j<m Xi.f(i)=; Pij, where X;.¢;)=; pij is the total
processing time of the jobs that are assigned to machine j. In the ScHEDULING ON
UNRELATED PARALLEL MACHINES problem, the goal is to find an assignment of jobs to
machines of minimum makespan.

We can write an LP for the problem that is very similar to the routing LP from
the previous lecture. For each job i and each machine j, we have a variable x;; that
denotes whether job i is assigned to machine j. We also have a variable A for the
makespan. We have a constraint for each job that ensures that the job is assigned
to some machine, and we have a constraint for each machine that ensures that the
total processing time of jobs assigned to the machines is at most the makespan A.

minimize A

subject to Z xij =1 Vie]
JEM
Z Xijpij < A VieM
i€]
xij >0 Vie],jeM

69

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENT70

The above LP is very natural, but unfortunately it has unbounded integrality
gap. Suppose that we have a single job that has processing time T on each of
the machines. Clearly, the optimal schedule has makespan T. However, the LP
can schedule the job to the extend of 1/m on each of the machines, i.e., it can set
x1; = 1/m for all j, and the makespan of the resulting fractional schedule is only
T/m.

To overcome this difficulty, we modify the LP slightly. Suppose we knew that
the makespan of the optimal solution is equal to A, where A is some fixed number. If
the processing time p;; of job i on machine j is greater than A, job i is not scheduled
on machine j, and we can strengthen the LP by setting x;; to 0 or equivalently, by
removing the variable. More precisely, let Sy = {(i,j) | i €],j € M, p;; < A}. Given
a value A, we can write the following LP for the problem.

LP(A)
Z xij =1 Vie]
j: (i,j)eSx
Z Xijpij < A VieM
i: (i,j)eSy
xij =0 V(i,j) € Sa

Note that the LP above does not have an objective function. In the following, we
are only interested in whether the LP is feasible, i.e, whether there is an assignment
that satisfies all the constraints. Also, we can think of A as a parameter and LP(A) as
a family of LPs, one for each value of the parameter. A useful observation is that, if
A is a lower bound on the makespan of the optimal schedule, LP(A) is feasible and it
is a valid relaxation for the SCHEDULING ON UNRELATED PARALLEL MACHINES problem.

Lemma 6.1. Let A* be the minimum value of the parameter A such that LP(A) is feasible.
We can find A* in polynomial time.

Proof. For any fixed value of A, we can check whether LP(7) is feasible using a
polynomial-time algorithm for solving LPs. Thus we can find A* using binary search
starting with the interval [0, ZZ-,]- piil- [|

In the following, we will show how to round a solution to LP(A*) in order to get
a schedule with makespan at most 21*. As we will see shortly, it will help to round
a solution to LP(A*) that is a vertex solution.

Let x be a vertex solution to LP(1*). Let G be a bipartite graph on the vertex set
J U M that has an edge ij for each variable x;; # 0. We say that job i is fractionally
set if x;; € (0,1) for some j. Let F be the set of all jobs that are fractionally set,

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENT71

and let H be a bipartite graph on the vertex set F U M that has an edge ij for each
variable x;; € (0,1); note that H is the induced subgraph of G on F U M. As shown
in Lemma 6.2, the graph H has a matching that matches every job in F to a machine,
and we will it in the rounding algorithm.

Lemma 6.2. The graph G has a matching that matches every job in F to a machine.

We are now ready to give the rounding algorithm.

SUPM-Rounding
Find A*
Find a vertex solution x to LP(A*)
For each 7 and j such that x;; = 1, assign job i to machine j
Construct the graph H
Find a maximum matching M in H
Assign the fractionally set jobs according to the matching M

Theorem 6.1. Consider the assignment constructed by SUPM-Rounding. Each job is
assigned to a machine, and the makespan of the schedule is at most 21"

Proof. By Lemma 6.2, the matching M matches every fractionally setjob to a machine
and therefore all of the jobs are assigned. After assigning all of the integrally set
jobs, the makespan (of the partial schedule) is at most A*. Since M is a matching,
each machine receives at most one additional job. Let i be a fractionally set job,
and suppose that i is matched (in M) to machine j. Since the pair (i, j) is in Sy-,
the processing time p;; is at most A*, and therefore the total processing time of
machine j increases by at most A after assigning the fractionally set jobs. Therefore
the makespan of the final schedule is at most 21", [

Exercise 6.1. Give an example that shows that Theorem 6.1 is tight. That is,
give an instance and a vertex solution such that the makespan of the schedule
SUPM-Rounding is at least (2 — 0(1))A".

Since A* is a lower bound on the makespan of the optimal schedule, we get the
following corollary.

Corollary 6.2. SUPM-Rounding achieves a 2-approximation.

Now we turn our attention to Lemma 6.2 and some other properties of vertex
solutions to LP(A). The following can be derived from the rank lemma which is
described in Chapter A. Here we give a self-contained proof.

Lemma 6.3. If LP(A) is feasible, any vertex solution has at most m + n non-zero variables
and it sets at least n — m of the jobs integrally.

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENT72

Proof. Let x be a vertex solution to LP(1). Let r denote the number of pairs in
S). Note that LP(A) has r variables, one for each pair (i,j) € Sy. If x is a vertex
solution, it satisfies r of the constraints of LP(1) with equality. The first set of
constraints consists of 7 constraints, and the second set of constraints consists of m
constraints. Therefore at least r — (m + n) of the tight constraints are from the third
set of constraints, i.e., at least ¥ — (m + n) of the variables are set to zero.

We say that job i is set fractionally if x;; € (0, 1) for some j; job i is set integrally
if x;; € {0,1} for all j. Let I and F be the set of jobs that are set integrally and
fractionally (respectively). Clearly, |I| + |F| = n. Any job i that is fractionally
set is assigned (fractionally) to at least two machines, i.e., there exist j # { such
that x;; € (0,1) and x;¢ € (0,1). Therefore there are at least 2|F| distinct non-zero
variables corresponding to jobs that are fractionally set. Additionally, for each job
i that is integrally set, there is a variable x;; that is non-zero. Thus the number of
non-zero variables is at least |I| + 2|F|. Hence |I| + |F| = n and |I| + 2|F| < m + n,
which give us that |I| is at least n — m. [

Definition 6.3. A connected graph is a pseudo-tree if the number of edges is at most the
number of vertices. A graph is a pseudo-forest if each of its connected components is a
pseudo-tree.

Lemma 6.4. The graph G is a pseudo-forest.

Proof. Let C be a connected component of G. We restrict LP(1) and x to the jobs
and machines in C to get LP’(1) and x’. Note that x’ is a feasible solution to LP’(A).
Additionally, x” is a vertex solution to LP’(A). If not, x” is a convex combination of
two feasible solutions x] and x;, to LP’(1). We can extend x] and x/, to two solutions
x1 and x, to LP(A) using the entries of x that are not in x". By construction, x; and
x; are feasible solutions to LP(A). Additionally, x is a convex combination of x; and
x2, which contradicts the fact that x is a vertex solution. Thus x’ is a vertex solution
to LP’(A) and, by Lemma 6.3, x” has at most n’ + m’ non-zero variables, where n’
and m’ are the number of jobs and machines in C. Thus C has n’ + m’ vertices and
at most n” + m’ edges, and therefore it is a pseudo-tree.]

Proof. of Lemma 6.2 Note that each job that is integrally set has degree one in G.
We remove each integrally set job from G; note that the resulting graph is H. Since
we removed an equal number of vertices and edges from G, it follows that H is a
pseudo-forest as well. Now we construct a matching M as follows.

Note that every job vertex has degree at least 2, since the job is fractionally
assigned to at least two machines. Thus all of the leaves (degree-one vertices) of
H are machines. While H has at least one leaf, we add the edge incident to the
leaf to the matching and we remove both of its endpoints from the graph. If H
does not have any leaves, H is a collection of vertex-disjoint cycles, since it is a

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENT73

pseudo-forest. Moreover, each cycle has even length, since H is bipartite. We
construct a perfect matching for each cycle (by taking alternate edges), and we add
it to our matching.]

Exercise 6.2. (Exercise 17.1 in [155]) Give a proof of Lemma 6.2 using Hall’s theorem.

6.2 Generalized Assignment Problem

The GENERALIZED ASSIGNMENT problem is a generalization of the ScHEDULING ON
UNRELATED PARALLEL MAcCHINES problem in which there are costs associated with
each job-machine pair, in addition to a processing time. More precisely, we have a
set | of n jobs, a set M of m machines, and a target A. The processing time of job i is
pij on machine j, and the cost of assigning job i to machine j is ¢;;. Let f :] = M be
a function that assigns each job to exactly one machine. The assignment f is feasible
if its makespan is at most A (recall that A is part of the input), and its cost is }; ¢;f(;).
In the GENERALIZED ASSIGNMENT problem, the goal is to construct a minimum cost
assignment f that is feasible, provided that there is a feasible assignment.

Remark 6.1. We could allow each machine M; to have a different capacity ¢; which
is more natural in certain settings. However, since p;; values are allowed to depend
on j we can scale them to ensure that ¢; = A for every j without loss of generality.

In the following, we will show that, if there is an assignment of cost C and
makespan at most A, then we can construct a schedule of cost at most C and
makespan at most 2A. In fact the assignment will have a stronger property that the
load on a a machine exceeds A due to at most one job.

As before, we let S) denote the set of all pairs (i, j) such that p;; < A. We can
generalize the relaxation LP(1) from the previous section to the following LP.

GAP-LP
min Z xi]'Ci]'
(1,7)eSa
subject to Z xij =1 Vie]
j:(i,j)esSa
Z Xijpij < A VieM
it (i,))eSy
xij =20 V(i, j) € Sx

Since we also need to preserve the costs, we can no longer use the previous
rounding; in fact, it is easy to see that the previous rounding is arbitrarily bad for

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENT74

the GENERALIZED AssIGNMENT problem. However, we will still look for a matching,
but in a slightly different graph.

But before we give the rounding algorithm for the GENERALIZED ASSIGNMENT
problem, we take a small detour into the problem of finding a minimum-cost
matching in a bipartite graph. In the Mintmum Cost BirariTE MATCHING problem, we
are given a bipartite graph B = (V7 U V,, E) with costs c, on the edges, and we want
to construct a minimum cost matching M that matches every vertex in V7, if there
is such a matching. For each vertex v, let 5(v) be the set of all edges incident to v.
We can write the following LP for the problem.

BipartiteMatching(B)

subject to Z Ve =1 Yo e Vy

> st Vo € Vs

Ye >0 Ve € E(B)

The following is well-known in combinatorial optimization [138].

Theorem 6.4. For any bipartite graph B, any vertex solution to BipartiteMatching(B)
is an integer solution. Moreover, given a feasible fractional solution y, we can find in
polynomial time a feasible solution z such that z is integral and

Z CeZe < Z Cele-

ecE(B) ecE(B)

In the rest of the section we give two different proofs that establish our claimed
result. One is based on the first work that gave this result [143], and the other is
based on iterative rounding [111].

6.2.1 Shmoys-Tardos Rounding

Let x be an optimal vertex solution to GAP-LP. As before, we want to construct
a graph G that has a matching M that matches all jobs. The graph G will now
have costs on its edges and we want a matching of cost at most C. Recall that for
ScHEDULING ON UNRELATED PARALLEL MAacHINES we defined a bipartite graph on the
vertex set] U M that has an edge ij for every variable x;; that is non-zero. We can
construct the same graph for GENERALIZED AssIGNMENT, and we can assign a cost

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENT75

cij to each edge ij. If the solution x was actually a fractional matching — that is,
if x was a feasible solution to BipartiteMatching(G) — Theorem 6.4 would give
us the desired matching. The solution x satisfies the constraints corresponding
to vertices v € |, but it does not necessarily satisfy the constraints corresponding
vertices v € M, since a machine can be assigned more than one job. To get around
this difficulty, we will introduce several nodes representing the same machine, and
we will use x to construct a fractional matching for the resulting graph.

The fractional solution x assigns };c; xij jobs to machine j; let kj = [X;¢; xij].
We construct a bipartite graph G as follows. For each job i, we have a node i.
For each machine j, we have k; nodes (j,1),- -+, (j, k;). We can think of the nodes
(,1),-++,(j, kj) as slots on machine j. Since now we have multiple slots on each of
the machines, we need a fractional assignment y that assigns a job to slots on the
machines. More precisely, y has an entry y; (; s) for each job i and each slot (j, s) that
represents the fraction of job i that is assigned to the slot. We give the algorithm that
constructs y from x below. Once we have the solution y, we add an edge between
any job i and any machine slot (j, s) such that y; ; ;) is non-zero. Additionally, we
assign a cost ¢; (j s to each edge (i, (j, s)) of G that is equal to c;;.

GREEDYPACKING(X)
y = 0 ((initialize y to 0))
s =1 (s is the current bin))
R =1 {(R is the space available on bin s))
fori=1toh
(pack x;; into the bins))
if x;j <R
Yiljs) = Xij
R=R- xi]-
ifR=0
s=s5+1
R=1

else
Yigs) =R
Yij,s+1) = xij — R ((pack xi; — R in the next bin))
R=T1~Yi,s+1)
s=s+1
return y

When we construct y, we consider each machine in turn. Let j be the current
machine. Recall that we want to ensure that i assigns at most one job to each slot;
as such, we will think of each slot on machine j as a bin with capacity 1. We “pack”
jobs into the bins greedily. We only consider jobs i such that p;; is at most A; let h
denote the number of such jobs. We assume without loss of generality that these
are labeled as 1,2,--- , h, and p1j > p2j > - -+ = ppj. Informally, when we construct

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENT76

Jobs Slots/Bins
yl,(j,l) =0.5
x1; = 0.5
Y Y2,(j,1) = 0.5
.CEQJ' =0.7
Y2,(52) = 0.2
35 =0.3 Ys,(j,2) = 0.3
y4’(j72) =0.2
z45 = 0.2 Ys,(52) = 03
y5,(j,3) =0.3
Ty = 0.6

Figure 6.1: Constructing v from x.

y, we consider thejobs 1,2, --- , I in this order. Additionally, we keep track of the
bin that has not been filled and the amount of space s available on that bin. When
we consider job i, we try to pack x;; into the current bin: if there is at least x;; space
available, i.e., x;; < s, we pack the entire amount into the current bin; otherwise, we
pack as much as we can into the current bin, and we pack the rest into the next bin.
(See Figure 1 for an example.)

Lemma 6.5. The solution y constructed by GREEDYPACKING is a feasible solution to
BIPARTITEMATCHING(G). Moreover,

Z Yis)Cifs) = Z XijCij.

(i,(j.$))€E(G) (i,/)eSa
Proof. Note that, by construction, x;; = ZIS(/: 1 Yij,s)- Therefore, for any job i, we have

ki
D Vi = D, D ¥ige=), xj=1

(1,(j,5))€d(i) j: (i,j)eSy s=1 j: (i,))eSa

Additionally, since we imposed a capacity of 1 on the bins associated with each slot,

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENT77

it follows that, for any slot (j, s),
Z Yigis) <1
(i,(j,$)€6((j,9)))
Therefore y is a feasible solution to BipARTITEMATCHING(G). Finally,

n

ki
Z yi,o,s)Ci,(j,s):Z Z Zl/z‘,o,s)cif: Z XijCij

(i,(j.5))€E(G) i=1 j: (i,j)eSy s=1 (i,)eSx

Theorem 6.4 gives us the following corollary.

Corollary 6.5. The graph G has a matching M that matches every job and it has cost at
most 3; iyes, XijCij. Moreover, we can find such a matching in polynomial time.

GAP-Rounding

let x be an optimal solution to GAP-LP

y = GREEDYPACKING(x)

construct the graph G

construct a matching M in G such that M matches every job
and the cost of M is at most }; s, XijCij

for each edge (7, (j,s)) e M
assign job i to machine j

Theorem 6.6. Let C = Z(i,]-)e s, Xijcij- The schedule returned by GAP-Rounding has cost
at most C and makespan at most 2A.

Proof. By Corollary 6.5, the cost of the schedule is at most C. Therefore we only
need to upper bound the makespan of the schedule.
Consider a machine j. For any slot (j, s) on machine j, let

gjs = max pj;
s Ziyi/(/‘,s)>0 Y

That s, gjs is the maximum processing time of any pair ij such that job i is assigned
(in y) to the slot (j, s). It follows that the total processing time of the jobs that M

. . .. k;
assigns to machine j is at most 3., q;s.

Since GAP-LP has a variable x;; only for pairs (7, j) such that p;; is at most A, it
follows that g1 is at most A. We restrict attention to the case when at least two slots
are assigned to j, for otherwise it is easy to see that the load is atmost A. Therefore

kj . . .
we only need to show that } ”, g;s is at most A as well. Consider a slot s on machine

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENT78

j such that s > 1. Recall that we labeled the jobs that are relevant to machine j —
thatis, jobs i such that p;j isatmost A —as 1,2, --- , h such that py; > paj > - > py;.
Consider a job ¢ that is assigned to slot s. Since GREeDYPACKING considers jobs in
non-increasing order according to their processing times, the processing time py; of
job € is at most the processing time of any job assigned to the slot s — 1. Therefore
pej is upper bounded by any convex combination of the processing times of the jobs
that are assigned to the slot s — 1. Since the slot s — 11is full, }’; y; (js-1) = 1 and thus
pej is at most }; y; (j,s—1)pij- It follows that

ki kj kj
Z qjs < Z Z Yifjs-)Pij S Z Z Yis)Pij
s=2 s=2 i s=1 i

By construction, 3 ; v js) = Xij, and therefore

S

kj
DD Vi = D Pi) Vi) =) Piikii
s=1 1 ' 1 i

1 s=

Since x is a feasible solution to the GAP-LP,

k,
Z] gjs < Zpi]-xi]- <A
s=2 i

which completes the proof. [

6.2.2 Iterative Rounding

Here we describe an alternative proof/algorithm that illustrates the iterative round-
ing framework that initially came out of Jain’s seminal work [91]. Since then it
has become a powerful technique in exact and approximation algorithms. We
need some additional formalism to describe the algorithm. We will consider the
input instance as being specified by a graph G = (] U M, E) where an edge ij € E
implies that i is allowed to be schedule on j and has size p;;. It is also important
to consider non-uniform capacities on the machines to allow for a recursive (or
iterative) algorithm. Thus we will assume that each machine M; has a capacity b;.
We will assume that p;; < b; for all ij € E; in fact this assumption will not be needed
until the very end when we analyze the approximation ratio. It is easy to generalize
the LP relaxation for GAP-LP to handle non-uniform capacities and to handle the
constraints specified by G. We will use the notation 6(i) and 6(j) to denote the edges
incident to job i and machine j respectively.

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENT79

GAP-LP
min Z Ci]‘x,‘]'

(i,j)eE

subject to Z xij =1 Vie]
ji (0,)es i)

> pijxy < by VieM

iz (i,j)eE
xij =2 0 V(i,j) € E

To explain the underlying intuition for iterated rounding approach in the specific
context of GAP, consider the situation where each machine j has infinite capacity.
In this case it is easy to find the minimum cost assignment. We simply assign each
job i to the machine j = argmin;, ;) cij which is the cheapest one that it is allowed
to be assigned to. We also observe that if we drop all the capacity constraints from
GAP-LP, and only leave the assignment constraints (3, jXij = 1 for each i), then the
optimum solution of this LP is the same as the one obtained by assigning each job to
its cheapest allowed machine (one can also argue that the LP is an integer polytope).
Now consider another scenario. Suppose each machine j has in-degree at most k in
G — that is, there are only k jobs that can ever be assigned to any machine j. Now
suppose we assign each job to its cheapest allowed machine. Clearly the cost is at
most the optimum cost of any feasible solution. But what about the load? Since
each machine had in-degree at most k we will load a machine j to at most kb;. Thus,
if k = 2 we will only violate the machine’s load by a factor of 2. However, this seems
to be very restrictive assumption. Now consider a less restrictive scenario where
there is one machine j such that its in-degree is at most 2. Then, in the LP relaxation,
we can omit the constraint that limits its load since we are guaranteed that at most
2 jobs can be assigned to it (note that we still have the job assignment constraints
which only allow a job to be assigned to machines according to the edges of G).
Omitting constraints in an iterative fashion by taking advantage of sparsity in the
basic feasible solution is the key idea.

To allow dropping of constraints we need some notation. Given an instance of
GAP specified by G = (J UM, E) and M’ C M, we let GAPLP(G, M’) denote the
LP relaxation for GAP where we only impose the load constraints for machines in
M’. In other words we drop the load constraints for M \ M’. Note that jobs are still
allowed to be assigned to machines in M \ M".

The key structural lemma that allows for iterated rounding is the following.

Lemma 6.6. Let y be a basic feasible solution to GAPLP(G, M’). Then one of the following
properties holds:

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENTS80

1. Thereis some ij € E such y;; = 0or y;; = 1.
2. There is a machine j € M’ such that d(j) < 1.
3. There is a machine j € M’ such that deg(j) = 2 and };; yij > 1.

Proof. Let y be a basic feasible solution. If y;; = 0 or y;; = 1 for some edge ij € E we
are done. Similarly if there is a machine j € M’ with d(j) < 1 we are done. Thus we
restrict our attention to the case when y;; is strictly fractional for every edge ij € E
and d(j) > 1 for each machine j € M’. Note that deg(i) > 2 for each job J; otherwise
deg(i) = 1 and in that case y;; = 1 for the lone edge ij incident to i. We will prove
that the third property holds.

GAPLP(G, M’) has n + m’ non-trivial constraints where n = |J| and m’ = |M’|.
Since y is a basic feasible solution, via the rank lemma, this implies that |[E| = n +m’.
But degree of every i and every j € M’ is at least 2. This implies that deg(i) = 2 for
every i € | and deg(j) = 2 for every j € M’ and deg(j) = O for every j € M \ M’.
Thus G consists of a collection of disjoint even cycles. Let S be any such cycle. For
every job i € S we have sum of }; yij = 1; hence };ics yij = |S|/2. Hence there is
some machine j € S such that };; yij > 1 and moreover its degree is exacly two as
we argued.]

GAP-ITER-ROUNDING (G)

1. F=0, M'=M
2. While (|F| < n) do
A. Obtain an optimum basic feasible solution y to GAPLP(G,M’)

B. If there is ij € E such that y;; =0 then G=G—ij

C. Else If there is ij € E such that yij = 1 then
F:FU{(l])}r G:G_l» bjzb]_pl]

D. Else If there j € M’ such that d(j)=1 or d(j) =2 and Zyij >1 then
i
M =M —].

3. Output assignment F

Theorem 6.7. Given an instance of GAP that is feasible and has optimum cost C, the
algorithm GAP-ITER-ROUNDING outputs an assignment whose cost is at most C and such
that each machine j has load at most 2b;.

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENTS81

The proof is by induction on the number of iterations. Alternatively, it is useful
to view the algorithm recursively. We will sketch the proof and leave some of
the formal details to the reader (who can also consult [111]). We observe that
the algorithm makes progress in each iteration via Lemma 6.6. The analysis will
consider the four cases that can happen in each iteration: (i) y;; = 0 for some ij € E
(ii) yij = 1 for some ij € E (iii) d(j) < 1 for some j € M’ and (iv) d(j) = 2 and
2ij Yij = 1 for some j € M.

Thus the algorithm terminates in polynomial number of iterations. It is also not
hard to see that F corresponds to an assignment of jobs to machines.

Observation 6.8. The algorithm terminates and outputs an assignment of jobs to machines,
and and job i is assigned to j implies ij € E.

Now we prove that the assignment has good properties in terms of the cost and
loads.

Lemma 6.7. The cost of the LP solution at the start of each iteration is at most C — ;e Cij-
Hence, at the end of the algorithm the cost of the assignment F is at most C.

Proof. This is true in the first iteration since F = () and the LP cost is less than that of
an optimum integer feasible solution. Now consider an iteration assuming that the
precondition holds.

If yi; = 0 we remove ij from E and we note that the cost of the LP for the next
iteration does not increase since y itself is feasible for the residual instance.

If y;j = 1 and we add ij to F, we can charge the cost of ij to what the LP has
already paid on the edge ij, and the solution y with ij removed is feasible to the
residual instance obtained by removing job i and reducing the capacity of j to

b; - pii.
] 1]
In the other cases we do not change F but drop constraints so the LP cost can
only decrease in the subsequent iteration. []

Now we upper bound the load on each machine ;.

Lemma 6.8. For each machine j, Y;icr pij < 2bj. In fact, a stronger property holds: for
each j, its load at the end of the algorithm is at most b; or there is a single job assigned to j
such that removing it reduces the load of j to at most b;.

Proof. The proof is by induction on iterations. We will sketch it. Consider a machine
j- If yij = 0 in some iteration we remove ij and the load on any machine does not
change. If y;; = 1 we add ij to F but for subsequent iterations we reduce b; by p;;
hence we account for the increase in load of j.

Thus, the only reason why the load of j may exceed b; is because we drop the load
constraint for j in some iteration. If we drop it when d(j) = 1, then at most one more
job can be assigned to j and hence its final load can be at most b; + p;; for some ij € E.

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENTS82

Thus, if p;; < bj for all i the load is at most 2b;. We can also drop the constraint for
j when d(j) = 2. However, in this case we have the property that y;, ; + y;,,; > 1
for some two jobs i, and i, which are the only edges incident to j in that iteration.
Since y was feasible, we also had the constraint that p;,jvi,; + pi,jVi,j < b;. where b;.
was the residual capacity of j in that iteration. Assume without loss of generality
that p;,; < p;,j; then it follows that b; > pi,j- Thus the final load of j is at most
bj - b;. + pi,j + piyj since both i, and i, can be assigned to j. But this load is at most

bj + pi,j < 2b;. We leave it to the reader to verify the refined property regarding the
load claimed in the lemma.]

Running time: The algorithm runs in polynomial number of iterations, and in
each iteration it requires an optimum basic feasible solution to the GAPLP(G, M’).
This can be done in polynomial time. We remark that the algorithm is deliberately
described in a simple iterative fashion to make the proof easier. One can speed
up the algorithm by considering all the cases together in each iteration. Although
iterated rounding is a powerful technique, the running time is typically expensive.
Finding faster algorithms that achieve similar guarantees is an open area of research.

6.3 Maximization version of GAP

We consider the maximization version which we refer to Max-GAP. We have n
items and m bins (instead of jobs and machines) where p;; is the size of item i in bin
j- BEach bin j has a capacity c¢; and assigning item i to bin j yields a profit/weight
wjj. The goal is to assign items to bins to maximize the weight while not violating
any capacities. When m = 1 we obtain the Knapsack problem.

Multiple Knapsack Problem (MKP): MKTP is a special case of Max-GAP in which
wij = w; forall i, j and p;; = p; for all 7, j. In other words the item characteristics do
not depend on where it is assigned to.

Exercise 6.3. Prove that MKP does not admit an FPTAS even for m = 2.

MKP admits a PTAS [39] and even an EPTAS [95]. Simply greedy algorithms
that pack bins one by one using an algorithm for Knapsack as a black box yield a
(1-1/e —€)and 1/2 — € approximation for MKP when the bins are indentical and
when the bins are arbitrary [39].

In contrast to MKP, Max-GAP does not admit a PTAS. There is an absolute
constant ¢ > 1 such that a ¢ — € approximation implies P = NP [39]. However, the
following is known.

Theorem 6.9. For every fixed m there is a PTAS for Max-GAP.

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENTS3

The preceding theorem can be shown by generalizing the ideas behind the PTAS
for Knapsack we discussed in an earlier chapter. An interested reader may try to
prove this by considering the case of m = 2.

A %-approximation: There is a simple yet clever way to achieve a %—approximation

for Max-GAP via the 2-approximation for the min-cost version that we already saw.
Recall that for the min-cost version the algorithm output a solution with cost no
more than the optimum cost while violating the capacity of each bin by at most one
item. We outline how one can use this to obtain a 2-approximation for Max-GAP
and leave the details are an exercise to the reader.

e Reduce the exact maximization version to the exact min-cost version in which
all items have to be assigned by adding an extra dummy bin.

¢ Use the result for min-cost version to obtain an assignment with weight at
least that of the optimum while violating each bin’s capacity by at most one
item.

¢ Use the preceding assignment to find a feasible packing of items that has
profit at least OPT/2.

For Max-GAP one can use a stronger LP relaxation and obtaina (1 —1/e + 6)-
approximation. We refer the reader to [59] for this result, and also to [29] for
connections to submodular function maximization. The latter connection allows
one to obtain an extremely simple 1/2 — € greedy approximation algorithm that is
not obvious to discover.

6.4 Bibilographic Notes

The 2-approximation for unrelated machine scheduling is by Lenstra, Shmoys and
Tardos [116]. The same paper showed that unless P = NP there is no 3/2 — e-
approximation for unrelated machine scheduling. Bridging this gap has been a
major open problem in scheduling. A special case called restricted assignment
problem has been extensively studied in this context; in such instances p;; € {p;, oo}
which means that a job specifies the machines it can be assigned to, but its processing
time does not vary among the machines it can be assigned to. The 3/2 hardness from
[116] applies to restricted assignement problem as well. Svensson [148] showed that
a strengthend form of LP relaxation (called the configuration LP) has an integrality
gap better than 2 for restricted assignment problem but so far there is no polynomial
time algorithm to actually output an assignment! The best algorithm that beats 2
for this case runs in quasi-polynomial time [96].

As we mentioned Shmoys and Tardos obtained the 2-approximation for GAP.
The iterated rounding proof is from [111].

CHAPTER6. UNRELATED MACHINE SCHEDULING AND GENERALIZED ASSIGNMENT84

The approximability of Max-GAP when m is not a fixed constant was studied
in [39] although a PTAS for fixed m was known quite early [34]. The current best
approximation ratio is via a configuration LP [59]. The precise integrality gap of the
configuration LP is an interesting open problem.

Chapter 7

Congestion Minimization in
Networks

In Chapter 6 we saw the SCHEDULING ON UNRELATED PARALLEL MACHINES problem.
Here we consider two problems that also consider allocation with the objective of
minimizing load/congestion. We will first consider the CONGEsSTION MINIMIZATION
problem in graphs and then the abstract problem of MiN-MAx-INTEGER-PROGRAMS.

7.1 Congestion Minimization and VLSI Routing

A classical routing problem that was partly inspired by VLSI (very large scale
integrated) circuit design is the following. Let G = (V, E) be a directed graph and
let (s1,t1), ..., (sk, tx) be k source-sink pairs. We want to connect each pair (s;, t;) by
a path P; such that the paths do not share edges (or nodes). Alternatively we would
like to minimize the maximum number of paths that use any edge — this is called
the ConGesTioN MiNimIZATION problem. A special case is EDP which is to decide if
there are paths for the pairs that are edge-disjoint (NDP is the version where the
paths are required to be node-disjoint). EDP and NDP are classical NP-Complete
problems and have many impoartnat connections to multicommodity flows, routing,
cuts, and graph theory. Thus ConGesTioN MiNIMIZATION is an NP-Hard optimization
problem. Here we will consider two variants.

Choosing one path from a given collection: We consider a conceptually simpler
variant where we are given a finite path collection #; for each pair (s;, t;) where each
path P € P; connects s; to t;. The goal is to choose, for each pair (s;, t;), one path
from P; so as to minimize the maximum congestion on any edge. We can develop
an integer programming formulation as follows. For each i and each P € $; we have
a variable x; p which indicates whether we choose P to route pair i. The constraints
express that exactly one path is for each pair i. To minimize the maximum number

85

CHAPTER 7. CONGESTION MINIMIZATION IN NETWORKS 86

of paths using any edge we introduce a variable A and minimize it subject it to a
natural packing constraint.

minimize A
subject to Z xip=1 1<i<k
Pep;
k
Z Z xip <A Ve € E
i=1 PeP;,Poe
x,-,pe{O,l} 1<i<k,Pe®;

As usual we relax the integer constraints to obtain an LP relaxation where
we replace x;p € {0,1} with x; p € [0,1] (in this particular case we can simply
use x; p > 0 due to the other constraints). Note the similarities with the IP/LP
for ScHEDULING ON UNRELATED PARALLEL MacHINEs. The LP relaxation is of size
polynomial in the input size since the path collection #; is explicitly given for each i
as part of the input.

Let A* be the optimum LP solution value. There is a technicality that arises just
as we saw with ScHEDULING oN UNRELATED PARALLEL MAcHINES. It may happen that
Ax < 1 while we know that the optimum congestion is at least 1. Technically we
should find the smallest integer A* such that the preceding LP is feasible. We will
assume henceforth that A* is an integer.

How do we round? A simple stragegy is randomized rounding. In fact the
technique of randomized rounding and analysis via Chernoff bounds was developed
in the influential paper of Raghavan and Thompson [134] precisely for this problem!

RaNDOMIZED-ROUNDING

1. Solve LP relaxation and find optimum solution x*,A”.

2. For i=1 to k do

A. Pick exactly one path Q; € $; randomly where the probability of picking P

. *
is exactly Xip-

3. OUtpUt Ql/ QZ/* .. /Qk'

Note that the choices for the pairs done with independent randomness.
The analysis requires the use of Chernoff-Hoeffding bounds. See Chapter B.

Theorem 7.1. Randomized rounding outputs one path per pair and with probability at
logm

least (1 —1/m?) no edge is contained in more than c Toglog 7

- A" paths where c is an absolute

CHAPTER 7. CONGESTION MINIMIZATION IN NETWORKS 87

constant. Here m are the number of edges in the graph G. One can also show that for any

fixed € > 0 the congestion is at most (1 + €)A* + ¢ lofzm

with high probability.

Proof. The proof is a simple application of Chernoff-bounds and the union bound.
Fix an edge e € E. Let Y, be the random variable which is the total number of paths
in Q1,Q2,...,Qk that use e. Let Y, ; be the binary random variable that indicates
whether e € Q;. Note that Y, = Zle Y, .

The first observation is that the variables Y 1,Y;2,..., Y, are independent
since we used independent randomness for the pairs. Second we claim that
E[Ye,i] = P[Ye,i = 1] = Xpep, cep Xj p- Do you see why? Thus, by linearity of

expectation,
E[Y,] = Z E[Y,] = Z Z X p <A
i

i PeP;,ecP

where the last inequality follows from the LP constraint.
Since Y, is the sum of independent binary valued random variables and

E[Y,] < A" we can apply Chernoff-bounds to estimate P[Y, > Clol;ﬁ) ;,"m Al Ap-

plying Corollary B.5 we conclude that we can choose ¢ such that this probability is
at most 1/m3. Now we apply the union bound over all edges and conclude that

1
P[de €E,Y, > cﬂ%‘] <m/m® < 1/m>.
loglog m
Thus, with probability > 1 — 1/m? no edge is loaded to more that ¢ 10?1%) Zm A

The second bound can be derived in the same way by using the second Chernoff-
bound in Corollary B.5.]

Remark 7.1. We chose the bound (1 — 1/m?) for concreteness. A success probability
of the form (1 — 1/poly(n)) where n is the input size is typically called “with high
probability”.

Remark 7.2. The bound (1 + €)A* + clogm/e? implies that when A* > clogm we
obtain a constant factor approximation.

Remark 7.3. In a graph m = O(n?) and hence one often sees the bounds expressed in
terms of n rather than m. We chose to write in terms of m rather than n to highlight
the fact that the bound depends on the number of constraints via the union bound.
We will discuss later how column sparsity based bounds can give refined results
that avoid the union bound.

Implicitly given path collections: In the traditional version of ConGEsTION MIN-
IMIZATION we are only given G and the pairs, and the goal is to choose one path
P for each (s;, t;) pair from the set of all paths between s; and ¢;. In other words

CHAPTER 7. CONGESTION MINIMIZATION IN NETWORKS 88

P; = {P | Pisans;-t; pathin G}. P; is implicity defined and its size can be ex-
ponential in the graph size. It is not obvious that we can solve the LP relaxation
that we saw above. However, one can indeed solve it in polynomial-time via the
Ellipsoid method. First, we observe that the LP could have an exponential number
of variables but only a polynomial number of non-trivial constraints: k for the pairs
and m for the edges. Thus, one is guaranteed, by the rank lemma that there is an
optimum solution that has only k + m non-zero variables To see that one can indeed
find it efficiently, we need to look at the dual and notice that the separation oracle
for the dual is the shortest path problem.

Another way to see that the LP can solved is by writing a compact formulation
via the well-known multicommodity flow. We want to send one unit of flow from
s; to t; so that the total flow on any edge is at most A. We use variables f (e, i) to
denote a flow for pair i on edge e.

minimize A
subject to > fleiy= > fle,iy=1 1<i<k
e€d*(sg) ee€d=(s;)
Z fle,i) - Z fle,i)=0 1<i<koeV-{st}
e€dt(v) e€d~(v)
k
Zf(e,l)ﬁ/\ Ve € E
i=1
fle,i)>=0 1<i<k,ecE

The preceding multicommodity flow LP has a polynomial number of variables
and can be solved in polynomial-time. Given a flow, for each commodity/pair i we
can take the one unit of s;-t; flow and use standard flow-decomposition to obtain a
path-flow with at most m paths in the collection. We can then apply the rounding
that we saw above with an given explicit path collection in exactly the same way.

Remark 7.4. The Ellipsoid based algorithm may seem impractical. However, one can
approximately solve the implicit path based LP via multiplicative weight update
methods efficiently. The implicit formulation and Ellipsoid method is also useful
when one may want to restrict $; in some fashion. For instance we can set $; to be
the set of all s;-t; paths in G with at most d edges for some given parameter d. This
will ensure that we choose only “short” paths for each pair. It is not hard to see that
the separation oracle for the dual is another shortest path type problem that can be
solved efficiently (via Bellman-Ford type algorithm). This is not easy to capture/see
via the compact flow based formulation.

CHAPTER 7. CONGESTION MINIMIZATION IN NETWORKS 89

oo "
h A I
Vo /'\/\/_\ /\/L/\ T /—\/\/—\ \/K
/ :
a A
S '

Derandomization: Is there a deterministic algorithm with the roughly the same
approximation guarantee? The algorithm can be derandomized via the notion of
pessimistic estimators. CoNGEsTION MINIMIZATION Was one of the first instances with
a sophisticated use of this technique [133].

Integrality gap and Hardness of Approximation: There is simple yet clever ex-
ample demonstrating that the integrality gap of the flow relaxation in directed
graphs is Q(logm/loglogm) [115]. In a remarkable result, [45] showed that
O(logm/loglogm) is the hardness factor. The complexity of CoNGEsTION MINI-
MIZATION is less clear in undirected graphs. It is known that the LP integrality gap
and hardness of approximation are Q)(loglog n/logloglog 1) [8]. Closing the gap
betten the upper and lower bounds is a major open problem.

Here we outline the integrality gap example for directed graphs from [115]. The
graph G and the pairs are constructed in a recursive fashion. Let & be a parameter
that we will fix later. We start with a directed path vg, vy, ...,v,. We add a demand
pair (s1, t1) which connects to the path as follows. We partition the path into n/h
paths of equal length: add an arc to s to the start of each sub-path and an arc from
the end of each sub-path to t. See figure.

One can see from the figure that the pair (s, t) can splits its flow along i paths.
Now we consider each of the /1 sub-paths and recursively create an instance on the
path with length n/h — 1 (while keeping parameter & the same). Note that in the
second level of the recursion we add i new source-sink pairs, one for each sub-path.
We stop the recursion when the size of the sub-path is @(h). Let d be the depth of
the recursion.

We claim that there is a fractional routing of all demand pairs where the
congestion is at most d/h. This follows by splitting the flow of the pairs & ways. The
next claim is that some edge has congestion 4 in any integral routing. This can be
seen inductively. The top level pair (s, t) has to choose one amongst the /1 sub-paths
— all edges in that sub-path will be used by the route for (s, t). Inductively there is
some edge in that sub-path with congestion d — 1 and hence the congestion of that

CHAPTER 7. CONGESTION MINIMIZATION IN NETWORKS 90

edge will 4 when we add the path for (s, t).

It now remains to set the parameters. If we choose & = log®n say then
d = O(logn/loglogn). The fractional congestion is < 1 and integrally congestion is
O(logn/loglogn).

Short paths and improved congestion via Lovdsz-Local-Lemma: We consider
the congestion minimization problem when the path for each pair is required
to be “short”. By this we mean that we are required to route on a path with at
most d edges where d is some given parameter. One can imagine that in many
applications d is small and is a fixed constant, say 10. The question is whether the
approximation ratio can be improved. Indeed one can show that the LP integrality
gap is O(logd/loglogd). Thus, when d < n we get a substantial improvement.
However, proving this and obtaining a polynomial time algorithm are quite non-
trivial. One requires the use of the subtle Lovasz-Local-Lemma (LLL), a powerful
tool in probabilistic combinatorics. Typically LLL only gives a proof of existence
and there was substantial work in making LLL constructive/efficient. Srinivasan
obtained an algorithm via derandomization of LLL in this context with a lot of
technical work [145]. There was a breakthrough work of Moser and Tardos [124] that
gave an extremely simple way to make LLL constructive and this has been refined
and developed over the last decade. For the congestion minimization problem
we refer the reader to [76] which builds upon [124] and describes an efficient
randomized algorithm that outputs a solution with congestion O(log d/loglog d).
In fact the application is given in the context of a more abstract problem that we
discuss in the next section.

Integer flows and Unsplittable flows: We worked with the simple setting where
each pair (s;, t;) wishes to send one unit of flow. One can imagine a situation where
one wants to send d; units of flow for pair i where d; is some (integer) demand
value. There are two interesting variants. The first one requires integer valued flow
for each pair which means that we want to find d; paths for (s;, t;) that each carry
one unit of flow (the paths can overlap). This variant can be essentially reduced to
the unit demand flow by creating d; copies of (s;, t;) — we leave this as a simple
exercise for the reader. The second variant is that we want each pair’s flow of d; units
to be sent along a single path — this is called unsplittable flow. When discussing
unsplittable flow it is also natural to consider capacities on the edges. Thus, each
edge has a capacity 1, and one wants to minimize congestion relative to u.. The
techniques we discussed can be generalized relatively easily to this version as well
to obtain the same kind of bounds. The unsplittable flow problem is interesting
even in the setting where there is a single source/sink or when the graph is a simple
ring or a path. Interesting results are known here and we refer the reader to [2, 31,
50, 71, 123, 144] for further pointers.

CHAPTER 7. CONGESTION MINIMIZATION IN NETWORKS 91

7.2 Min-max Integer Programs

If one looks at the rounding and analysis for CoNGEsTION MINIMIZATION We notice
that the algorithm uses very little about the structure of the graph. This can be
thought about in two ways. One is that perhaps we can do better by exploiting
graph structure. Two, we can abstract the problem into a more general class where
the same technique applies. As we mentioned, in directed graphs the bound of
O(logn/loglogn) is tight but the bound may not be tight in undirected graphs
which admit more structure.

Here we consider the second point and develop a resource allocation view point
while making an analogy to CoNGEsTION MINIMIZATION so that the abstract problem
can be more easily understood. Suppose we have m resources ey, e, . . ., €;,. We have
k requests rq, 12, ..., 1. Each request i can be satisfied in ¢; ways — let ; denote a
collection of ¢; vectors v;1,v;2,...,0; . Each vector v; ; € P; is an m-dimensions:
for each k € [m], v; j x is a scalar that represents the load it induces on resource ey.
The goal is to choose, for each 7, exactly one j € [¢;] so as to minimize the maximum
load on any resource. One can write this conveniently as the following integer
program where we have variables x; j for 1 < i < kand 1 < j < {; which indicates
whether i chooses j.

minimize A
subject to Z xij=1 1<i<k
1<j<t;
k
2, D, vijktiy <A Ve
i=1 1<j<t;
xij € {0, 1} 1<i<kl<j<i

One can view the above integer program compactly as

minimize A

subject to Z xij=1 1<i<k
1<j<t;
Ax < AT
xi; € {0,1} 1<i<kl1<j<y

where A is a non-negative matrix with m rows. As with ScHEDULING ON
UNRELATED PARALLEL MAcHINES we need to be careful when relaxing the IP to an LP

CHAPTER 7. CONGESTION MINIMIZATION IN NETWORKS 92

since the optimum solution to the LP can be a poor lower bound unless we ensure
that x; ; = 0if v; j x > A. We will assume that we have indeed done this.

One can do randomized rounding exactly as we did for CoNGEsTION MINIMIZATION
and obtain an O(log m /loglog m) approximation. We say that A is d-column-sparse
if the maximum number of non-zeroes in any column of A is at most d. This
corresponds to paths in Congestion MiNimizaTION being allowed to have only d
edges. One can obtain an O(log d/loglog d)-approximation in this more general
setting as well [76].

Chapter 8

Introduction to Local Search

Local search is a powerful and widely used heuristic method (with various extensions).
In this lecture we introduce this technique in the context of approximation algorithms.
The basic outline of local search is as follows. For an instance I of a given problem
let S(I) denote the set of feasible solutions for I. For a solution S we use the term
(Iocal) neighborhood of S to be the set of all solutions S’ such that S’ can be obtained
from S via some local moves. We let N(S) denote the neighborhood of S.

LOCALSEARCH:
Find a “good” initial solution Sy € S(I)
S« So
repeat
If (3S’ € N(S) such that val(S’) is strictly better than val(S))
Se§
Else
S is a local optimum
return S
EndIf
Until (True)

For minimization problems S’ is strictly better than S if val(S’) < val(S) whereas
for maximization problems it is the case if val(S") > val(S).

The running time of the generic local search algorithm depends on several
factors. First, we need an algorithm that given a solution S either declares that S is a
local optimum or finds a solution S” € N(S) such that val(S’) is strictly better thatn
val(S). A standard and easy approach for this is to ensure that the local moves are
defined in such a way that [N (S)| is polynomial in the input size |I| and N(S) can be
enumerated efficiently; thus one can check each S’ € N(S) to see if any of them is
an improvement over S. However, in some more advanced settings, N(S) may be

93

CHAPTER 8. INTRODUCTION TO LOCAL SEARCH 94

exponential in the input size but one may be able to find a solution in S” € N(S)
that improves on S in polynomial time. Second, the running time of the algorithm
depends also on the number of iterations it takes to go from Sy to a local optimum.
In the worst case the number of iterations could be | OPT —val(Sg)| which can be
exponential in the input size. One can often use a standard scaling trick to overcome
this issue; we stop the algorithm unless the improvement obtained over the current
S is a significant fraction of val(S). Finally, the quality of the initial solution Sy also
factors into the running time.

Remark 8.1. There is a distinction made sometimes in the literature between oblivious
and non-oblivious local search. In oblivious local search the algorithm uses f as a
black box when comparing S with a candidate solution S’; the analysis and the
definition of local moves are typically based on properties of f. In non-oblivious
local search one may use an auxiliary function g derived from f in comparing S
with §’. Typically the function g is some kind of potential function that aids the
analysis. This allows one to move to a solution S’ even though f(S’) may not be an
improvement over f(S).

Remark 8.2. There are several heuristics that are (loosely) connected to local search.
These include simulated annealing, tabu search, genetic algorithms and others.
These fall under the broad terminology of metaheuristics.

8.1 Local Search for Max Cur

We illustrate local search for the well-known Max Cut problem. In Max Cut we are
given an undirected graph G = (V, E) and the goal is to partition V into (S, V' \ S)
so as to maximize the number of edges crossing S, that is, |0¢(S)|; we will use 6(S)
when G is clear. For a vertex v we use 6(v) instead of 6({v}) to simplify notation.
In the weighted version each edge e has a non-negative weight w(e) the goal is to
maximize the weight of the edges crossing S, that is, w(6(S)); here w(A) for a set A
denotes the quantity >, w(e).

We consider a simple local search algorithm for Max Cur that starts with an
arbitrary set S C V and in each iteration either adds a vertex to S or removes a
vertex from S as long as it improves the cut value 6(S).

CHAPTER 8. INTRODUCTION TO LOCAL SEARCH 95

LocaLSEarRcH FOR Max Cur:
S0
repeat
If (3v € V' \ S such that w(6(S + v)) > w(6(S)))
S—S+v
Else If (3v € S such that w(6(S — v)) > w(6(S)))
S«—S-v
Else
S is a local optimum
return S
EndIf
Until (True)

We will first focus on the quality of solution output by the local search algorithm.

Lemma 8.1. Let S be the output of the local search algorithm. Then for each vertex v,
w(0(S) N o(v)) = w(d(v))/2.

Proof. Let a, = w(6(S) N 6(v)) be the weight of edges among those incident to v
that cross the cut S. Let f, = w(6(v)) — a.

We claim that a, > 8, foreach v. If v € V' \ S and a, < B, then moving v to S
will strictly increase w(6(S)) and S cannot be a local optimum. Similarly if v € S
and a, < By, we would have w(6(S — v)) > w(6(S)) and S would not be a local
optimum. [

Corollary 8.1. If S is a local optimum then w(5(S)) > w(E)/2 > OPT/2.

Proof. Since each edge is incident to exactly two vertices we have w(6(S)) =
1 Seer w(8(S) N 6(v)). Apply the above lemma,

wE(S) = 5 wb()N6)
veV
> % D" w(5(v))/2
veV
1
2 %OPT,
since OPT < w(E). [

The running time of the local search algorithm depends on the number of local
improvement iterations; checking whether there is a local move that results in an

CHAPTER 8. INTRODUCTION TO LOCAL SEARCH 96

improvement can be done by trying all possible vertices. If the graph is unweighted
then the algorithm terminates in at most |E| iterations. However, in the weighted
case, it is known that the algorithm can take an exponential time in |V| when
the weights are large. A very interesting problem is whether one can find a local
optimum efficiently — note that we do not need to find a local optimum by doing
local search! It is believed that finding a local optimum for Max Cur in the weighted
case is hard. There is a complexity class called PLS that was defined by Johnson,
Papadimitrioiu and Yannakakis for which Max Cur is known to be a complete
problem. PLS plays an important role in algorithmic game theory in recent times.
We refer the reader to the Wikipedia page on PLS for many pointers.

Many local search algorithms can be modified slightly to terminate with an
approximate local optimum such that (i) the running time of the modified algorithm
is strongly polynomial in the input size and (ii) the quality of the solution is very
similar to that given by the original local search. We illustrate these ideas for Max
Cur. Consider the following algorithm where € > 0 is a parameter that can be
chosen. Let n be the number of nodes in G.

Mopbiriep LocaLSEARCH FOR Max Curt(e):
S « {v*} where v* = argmax,, w(5(v))
repeat
If (Jv € V'\ S such that w(6(S +v)) > (1 + 5)w(6(S)))
S«—S+v
Else If (3v € S such that w(6(S —v)) > (1 + £)w(5(5)))
S«—S-v
Else
return S
EndIf
Until (True)

The above algorithm terminates unless the improvement is a relative factor of
(1 + £) over the current solution’s value. Thus the final output S is an approximate
local optimum.

Remark 8.3. An alert reader may wonder why the improvement is measured with
respect to the global value w(6(S)) rather than with respect to w(6(v)). One reason
is to illustrate the general idea when one may not have fine grained information
about the function like we do here in the specific case of Max Cut. The global
analysis will also play a role in the running time analysis as we will see shortly.

Lemma 8.2. Let S be the output of the modified local search algorithm for Max Cur. Then

w(6(S)) > Mw(E).

CHAPTER 8. INTRODUCTION TO LOCAL SEARCH 97

Proof. As before let a, = w(6(S) N 0(v)) and B, = w(6(v)) — a,. Since S is an
approximately local optimum we claim that for each v

,Bv —ay < %w(é(S))

Otherwise a local move using v would improve S by more than (1 + €/n) factor.
(The formal proof is left as an exercise to the reader).

We have,
W) = 330
- %;V«av +B0) — (Bo — aw))/2
> i;www» - Su(s))
> Sw(E)- }lzv Sa(s)
> %w(E) - %le -w(S).
Therefore w(S)(1 + €/4) > w(E)/2 and the lemma follows. n

Now we argue about the number of iterations of the algorithm.

Lemma 8.3. The modified local search algorithm terminates in O(1n log n) iterations of
the improvement step.

Proof. We observe that w(Sp) = w(6(v*)) > %w(E) (why?). Each local improvement
iteration improves w(6(S)) by a multiplicative factor of (1 + €/n). Therefore if k is
the number of iterations that the algorithm, then (1 + €/n)*w(Sp) < w(5(S) where S
is the final output. However, w(6(S)) < w(E). Hence

(1+€/n)2w(E)/n < w(E)
which implies that k = O(%n log n). [

A tight example for local optimum: Does the local search algorithm do better
than 1/2? Here we show that a local optimum is no better than a 1/2-approximation.
Consider a complete bipartite graph K>, o, with 2n vertices in each part. If L and
R are the parts of a set S where |SNL| = n = |S N R]|is a local optimum with
|6(S)| = |E|/2. The optimum solution for this instance is |E|.

CHAPTER 8. INTRODUCTION TO LOCAL SEARCH 98

Max Directed Cut: A problem related to Max Cut is Max Directep Cur in which
we are given a directed edge-weighted graph G = (V, E) and the goal is to find a set
S C V that maximizes w(6(5)); that is, the weight of the directed edges leaving S.
One can apply a similar local search as the one for Max Cut. However, the following
example shows that the output S can be arbitrarily bad. Let G = (V, E) be a directed
in-star with center v and arcs connecting each of vy,...,v, to v. Then S = {v} is
a local optimum with 6*(S) = 0 while OPT = n. However, a minor tweak to the
algorithm gives a 1/3-approximation! Instead of returning the local optimum S
return the better of S and V' \ S. This step is needed because the directed cuts are
not symmetric.

8.2 Local Search for Submodular Function Maximization

In this section we consider the utility of local search for maximizing non-negative
submodular functions. Let f : 2V — R, be a non-negative submodular set function
on a ground set V. Recall that f is submodular if f(A) + f(B) > f(AUB) + f(ANB)
forall A, B C V. Equivalently f is submodular if f(A +v) — f(A) > f(B +v) — f(B)
forall A c Band v ¢ B. f is monotone if f(A) < f(B) forall A C B. f is symmetric if
f(A) = f(V\A)forall A C V. Submodular functions arise in a number of settings
in combinatorial optimization. Two important examples are the following.

Example 8.1. Coverage in set systems. Let S1,S», ..., S, be subsets of a set U. Let
V ={1,2,...,n} and define f : 2V — R, where f(A) =|Uiea Si|. f is a monotone
submodular function. One can also associate weights to elements of U via a
function w : U — R; the function f defined as f(A) = w(U;eaS;) is also monotone
submodular.

Example 8.2. Cut functions in graphs. Let G = (V, E) be an undirected graph with
non-negative edge weights w : E — R.. The cut function f : 2V — R, defined as
f(S) = Yees(s) wle) is a symmetric submodular function; it is not monotone unless
the graph is trivial. If G is directed and we define f as f(S) = 3. ee5%(5) w(e) then f
is submodular but is not necessarily symmetric.

The following problem generalizes Max Cur and Max Directep Cur that we
have already seen.

Problem 8.2. Max Susmop Func. Given a non-negative submodular set function f on a
ground set V via a value oracle’ find maxscy f(S).

Note that if f is monotone then the problem is trivial since V' is the optimum
solution. Therefore, the problem is interesting (and NP-Hard) only when f is not

1A value oracle for a set function f : 2 — R provides access to the function by giving the value
f(A) when presented with the set A.

CHAPTER 8. INTRODUCTION TO LOCAL SEARCH 99

necessarily monotone. We consider a simple local search algorithm for Max Susmop
Func and show that it gives a 1/3-approximation and a 1/2-approximation when f
is symmetric. This was shown in [58].

Remark 8.4. Given a graph G = (V, E) consider the submodular function f : 2V — R

where f(S) = |6(S)| — B where B is a fixed number. Is there a polynomial time
algorithm to decide whether there is a set S such that f(S) > 0?

LocaLSEarcH FOR Max SuBmobp Func:

S0
repeat
If (v € V' \ S such that f(S +v) > f(S))
Se—S+v
Else If (3v € S such that (S —v) > f(S))
S—S-v
Else

S is a local optimum
return the betterof Sand V' \ S
EndIf
Until (True)

We start the analysis of the algorithm with a basic lemma on submodularity.
Lemma 84. Let f : 2V — R, be a submodular set functionon V. Let A C B C V. Then

e Iff(B) > f(A)then thereisanelementv € B\ A suchthat f(A+v)—f(A) > 0. More
generally thereis an element v € B\ A such that f (A+v)—f(A) > |B%—m(f(B)—f(A)).

e Iff(A) > f(B) then thereis an element v € B\ A such that f(B—v)— f(B) > 0. More
generally there is an element v € B\ A such that f(B—v)—f(B) > ﬁ(f(A)—f(B)).

Exercise 8.1. Prove the preceding lemma.
We obtain the following corollary.

Corollary 8.3. Let S be a local optimum for the local search algorithm and let S* be an
optimum solution. Then f(S) > f(SNS*)and f(S) = f(SUS").

Theorem 8.4. The local search algorithm is a 1/3-approximation and is a 1 /2-approximation
if f is symmetric.

Proof. Let S be the local optimum and S* be a global optimum for the given instance.
From the previous corollary we have that f(S) > f(SN S*) and f(S) > f(SUS").
Note that the algorithm outputs the better of S and V' \ S. By submodularity, we
have,

FVAS)+f(SUS) 2 f(S\S)+ f(V) = f(ST\S)

CHAPTER 8. INTRODUCTION TO LOCAL SEARCH 100

where we used the non-negativity of f in the second inequality. Putting together
the inequalities,

2f($)+ f(V\S) fS)+f(S)+ f(V\S)
f(ENS)+f(ST\S)
f(8)+ £(0)

£(s) = OPT.

vV IV IV

Thus 2f(S) + f(V \ S) = OPT and hence max{f(S), f(V \ S)} = OPT/3.

If f is symmetric we argue as follows. Using Lemma 8.4 we claim that f(S) >
f(S N S*) as before but also that f(S) > f(S U S*) where A is shorthand notation
for the the complement V \ A. Since f is symmetric f(SUS*) = f(V \ (SUS")) =
f(SNS*) = f(S*\ S). Thus,

2f(S) = f(SNS)+f(SUS)
f(SNS)+f(ST\S)
f(8)+ f(0)

£(s") = OPT.

IV IV IV IV

Therefore f(S) > OPT/2. []

The running time of the local search algorithm may not be polynomial but one
can modify the algorithm as we did for Max Cur to obtain a strongly polynomial
time algorithm that gives a (1/3 — o(1))-approximation ((1/2 — o(1) for symmetric).
See [58] for more details. There has been much work on submodular function
maximization including work on variants with additional constraints. Local search
has been a powerful tool for these problems. See [25, 61, 113] for some of the
results on local search based method, and [26] for a survey on submodular function
maximization.

Chapter 9

Clustering and Facility Location

Clustering and Facility Location are two widely studied topics with a vast literature.
Facility location problems have been well-studied in Operations Research and
logistics. Clustering is ubiquitious with many applications in data analysis and
machine learning. We confine attention to a few central problems and provide some
pointers as needed to other topics. These problems have also played an important
role in approximation algorithms and their study has led to a variety of interesting
techniques. Research on these topics is still quite active.

For both classes of problems a key assumption that we will make is that we
are working with points in some underlying metric space. Recall that a space
(V,d)whered : V XV — R, is a metric space if the distance function d satisfies
metric properties: (i) d(u,v) = 0iff u = v (reflexivity) (ii) d(u,v) = d(v, u) for all
u,v €V (symmetry) and (iii) d(u, v) + d(v, w) > d(u, w) for all u, v, w € V (triangle
inequality). We will abuse the notation and use d(A, B) for two sets A,B C V to
denote the quantity minyea, 4ep d(p, q). Similarly d(p, A) forp € Vand A C V will
denote mingea d(p, q).

Center based clustering: In center based clustering we are given n points
P = {p1,p2,...,pn} In a metric space (V,d), and an integer k. The goal is to
cluster/partition P into k clusters Cq, Cy, ..., Cx which are induced by choosing k
centers c1, ¢, ..., ck from V. Each point p; is assigned to its nearest center from
c1,¢2,...,ck and this induces a clustering. The nature of the clustering is controlled
by an objective function that measures the quality of the clusters. Typically we
phrase the problem as choosing c1, ¢, . .., ck to minimize the clustering objective
Y d(pi,{c1, ..., ck})? for some q. The three most well-studied problems are
special cases obtained by choosing an appropriate 4.

* k-Center is the problem when g = co which can be equivalently phrased as
ming, c,,...c,ev max;_, d(pi, {c1,...,cx}). In other words we want to minimize
the maximum distance of the input points to the cluster centers.

101

CHAPTER9. CLUSTERING AND FACILITY LOCATION 102

* k-Median is problem when q = 1. ming, ¢, c,ev 2iq d(pi, {c1, ..., ck}).
* k-Means is the problem when g = 2. ming, ,,.. c,ev 2ieq d(pi, {1, ., ck})?.

We will mainly focus on the discrete versions of the problems where V =
{p1,p2, ..., pn} which means that the centers are to be chosen from the input points
themselves. However, in many data analysis applications the points lie in R? for
some d and the centers can be chosen anywhere in the ambient space. In fact this
makes the problems more difficult in a certain sense since the center locations now
come from an infinite set. One can argue that limiting centers to the input points
does not lose more than a constant factor in the approximation and this may be
reasonable from a first-cut point of view but perhaps not ideal from a practical point
of view. In some settings there may a requirement or advantage in choosing the
cluster centers from the input set.

Facility Location: In facility location we typically have two finite sets ¥ and C
where ¥ represents a set of locations where facilities can be located and D is a set of
client/demand locations. We will assume that V = ¥ & D and that there is a metrid d
over V. There are several variants but one of the simplest one is the UncaracITATED
Faciuity Locarion (UCFL) problem. In UCFL we are given (¥ W D, d) as well
auxiliarly information which specifies the cost f; of opening a facility at location
i € . The goal is to open a subset of facilities in ¥ to minimize the sum of the cost
of the opened facilities and the total distance traveled by the clients to their nearest
open facility. In other words we want to solve ming'cr(Yier fi + Lijep d(j, F'))-
The problem has close connections to k-Median problem. The term “uncapacitated”
refers to the fact that we do not limit the number of clients that can be assigned to
an open facility. In several OR applications that motivate facility location (opening
warehouses or distribution facilities), capacity constraints are likely to be important.
For this reasons there are several capacitated versions.

9.1 k-Center

Recall that in k-Center we are given n points py, ..., p, in a metric space and an
integer k and we need to choose k cluster centers C = {cy, c2, ..., cx} such that we
minimize max; d(p;, C). An alternative view is that we wish to find the smallest
radius R such that there are k balls of radius R that together cover all the input
points. Given a fixed R this can be seen as a SEr Cover problem. In fact there is
an easy reduction from DoMINATING SeT to k-Center establishing the NP-Hardness.
Moreoever, as we saw already in Chapter 1, k-Center has no 2 — e-approximation
unless P = NP via a reduction from DomMiNaTING SET. Here we will see two 2-
approximation algorithms that are quite different and have their own advantages.
The key lemma for their analysis is common and is stated below.

CHAPTER9. CLUSTERING AND FACILITY LOCATION 103

Lemma 9.1. Suppose there are k + 1 points q1,q>, ..., qx+1 € P such that d(q;, q;) > 2R
foralli # j. Then OPT > R.

Proof. Suppose OPT < R. Then there are k centers C = {cy,cy,...,cx} which
induces k clusters Cy, . .., C such that for each cluster C, and each p € Cj, we have
d(p, cn) < R. By the pigeon hole principle some g;, q;, i # j are in the same cluster
Cj, but this implies that d(q;, q;) < d(qi, cn) +d(qj, cn) < 2R which contradicts the
assumption of the lemma.]

Note that the lemma holds even if the centers can be chosen from outside the
given point set P.
9.1.1 Gonzalez’s algorithm and nets in metric spaces

The algorithm starts with an empty set of centers, and in each iteration picks a new
center which is the farthest point from the set of centers chosen so far.

GonzaLez-k-CenTER(P, k)

1.C«0
2. For i=1 to k do
A. Let ¢; = argmaxd(c,C)
ceP

B. C«— CU{ci}.

3. Output C

Note that c; is chosen arbitrarily.

Theorem 9.1. Let R = maxyep d(p, C) where C is the set of centers chosen by Gonzalez's
algorithm. Then R < 2R* where R* is the optimum k-Center radius for P.

Proof. Suppose not. There is a point p € P such that d(p, C) > 2R* which implies
that p ¢ C. Since the algorithm chose the farthest point in each iteration and could
have chosen p in each of the k iteration but did not, we have the property that
d(ci, {c1,...,ci-1}) > 2R* for i = 2 to k. This implies that the distance between
each pair of points in the set {c1, ¢, ..., ck, p} is more than 2R*. By Lemma 9.1, the
optimum radius must be larger than R*, a contradiction. [

Exercise 9.1. Construct an instance to demonstrate that the algorithm’s worst-case
performance is 2.

CHAPTER9. CLUSTERING AND FACILITY LOCATION 104

Remark 9.1. Gonzalez’s algorithm can be extended in a simple way to create a
permutation of the points P; we simply run the algorithm with k = n. It is easy
to see from the proof above that for any k € [n], the prefix of the permutation
consisting of the first k points provides a 2-approximation for that choice of k. Thus,
one can compute the permutation once and reuse it for all k.

9.1.2 Hochbaum-Shmoys bottleneck approach

A second algorithmic approach for k-Center is due to Hochbaum and Shmoys and
has played an influential role in variants of this problem.

For a point v and radius r let B(v, r) = {u | d(u,v) < r} denote the ball of radius
r around v.

HS-k-Center(P, k)

1. Guess R* the optimum radius
2. C«0, S«P
3. While (S #0) do

A. Let ¢ be an arbitrary point in S
B. C— CU{c}
C. S« S\ B(c,2R")

4. Output C

Theorem 9.2. Let C be the output of the HS algorithm for a guess R. Then for all p € P,
d(p, C) < 2R and moreover if R > R* then |C| < k.

Proof. The first property is easy to see since we only remove a point p from S if we
add a center c to C such that p € B(c,2R). Let ¢y, ¢y, ..., cn be the centers chosen
by the algorithm. We observe that d(c;, {c1, ..., ci-1}) > 2R. Thus, if the algorithm
outputs i points then the pairwise distance between any two of them is more than
2R. By Lemma 9.1, if h > k + 1 the optimum radius is > R. Hence, if the guess
R > R* the algorithm outputs at most k centers.]

The guessing of R* can be implemented by binary search in various ways. We
omit these routine details.

Exercise 9.2. Describe an example where the algorithm uses exactly k centers even
with guess R*. Describe an example where the algorithm outputs less than k centers
with a guess of R".

CHAPTER9. CLUSTERING AND FACILITY LOCATION 105

9.1.3 Related Problems and Discussion

The k-Center problem is natural in geometric settings and one can see from the
proof that the 2-approximation for the two algorithms holds even when allowing
for centers to be chosen outside. A surprising result of Feder and Greene [56] shows
that even in two dimensions (the Euclidean plane) one cannot improve the factor of
2 unless P = NP.

The k-Supplier problem is closely related to k-Center and is motivated by facility
location considerations. Here we are given ¥ U O which are in a metric space. We
need to choose k centers C C ¥ to minimize maxyep d(p, C). Note that we don’t
have to cover the facilities. Hochbaum and Shmoys gave a variant of their algorithm
that obtains a 3-approximation for k—Supplier and moreover showed that unless
P = NP one cannot improve 3 [85]. Interestingly in Euclidean spaces 3 is not tight
[128]. Several generalizations of k-Center which constrain the choice of centers have
been considered — see [32] for a general framework that also considers outliers.

One can consider weighted version of k-Center or relabeled as priority version
in subsequent work. We refer to the work of Plesnik [132] and a recent one [17] on
this variant which has found applications in fair clustering.

We finally mention that k-Center clustering has nice connections to the notion
of r-nets in metric spaces. Given a set of points P in a metric space and a radius r,
an r-net is a set of centers C such that (i) for all p € P we have d(p, C) < r (thatis
the points are covered by balls of radius r) and (ii) for any distinct ¢, ¢’ € C we have
B(c,r/2) and B(c’, r/2) are disjoint (packing property or the property that no two
centers are too close). r-nets provide a concise summary of distances in a metric
space at scale r. One can use r-nets to obtain nearest-neighbor data structures and
other applications, especially in low-dimensional settings. We refer the reader to
[78, 79].

LP Relaxation: The two k-Center algorithms we described are combinatorial.
One can also consider an LP relaxation. Since it is a bottleneck problem, writing
an LP relaxation involves issues similar to what we saw with unrelated machine
scheduling. Given a guess R we can write an LP to check whether a radius R is
feasible and then find the smallest R for which it is feasible. The feasibility LP can
be written as follows. Let x; be an indicator for whether we open a center at point p;.

n

in:k

i=1
xi 2 1 VpjeP
pi€B(pj,R)

\%

Xi 0 VpiEP

CHAPTER9. CLUSTERING AND FACILITY LOCATION 106

Exercise 9.3. Prove that if R is feasible for the preceding LP then one can obtain a
solution with k centers with max radius 2R.

Exercise 9.4. Generalize the LP for the k-Supplier problem and prove that one
can obtain a 3-approximation with respect to lower bound provided via the LP
approach.

9.2 Uncapacitated Facility Location

We now discuss UCFL. One can obtain a constant factor for UCFL via several
techniques: LP rounding, primal-dual, local search and greedy. The best known
approximation bound is 1.488 due to Li [117] while it is known that one cannot
obtain a ratio better than 1.463 [72]. We will describe the complicated algorithms and
focus on the high-level approaches that yield some constant factor approximation.

It is common to use i to denote a facility in # and j to denote a demand/client.

9.2.1 LP Rounding

The first constant factor approximation for UCFL was via LP rounding by Aardal,
Shmoys and Tardos using a filtering technique of Lin and Vitter. We start with the
LP relaxation. We use a variable y; for i € ¥ to indicate whether i is opened or not.
We use a variable x; ; to indicate whether j is connected to 7 (or assigned to 7). One
set of constraints are natural here: each client has to be assigned/connected to a
facility. The other constraint requires that j is assigned to i only if i is open.

mianiyi + Z Z d(i, j)xij
icF j€D ieF

Z xij = 1 VjeD

i .

XY

Given a feasible solution x, y to the LP the question is how to round. We note
that the LP relaxation does not “know” whether 4 is a metric or not. In fact when d
is arbitrary (but non-negative) we obtain the non-metric facility location problem
which is as hard as the Ser Cover problem but not much harder — one can obtain
an O(log n)-approximation. However, we can obtain a constant factor when d is a
metric and the rounding will exploit this property.

Given the fractional solution x, y for each j we define a; to be the distance
cost paid for by the LP: therefore a; = 3 ;c# d(i,j)x;j. Note that the LP cost is

i fiyi+ X .

Yi iET,jGD

<
> 0

CHAPTER9. CLUSTERING AND FACILITY LOCATION 107

Lemma 9.2. For each j and each 6 € (0, 1) there is a total facility value of at least (1 — 6) in
B(j, aj/0). Thatis, 2ieB(j,aj/0) Yi 2 1= 0. In particular ¥icp(j 20 Yi 2 1/2.

Proof. This essentially follows from Markov’s inequality or averaging. Note that
aj=3,;d(i,j)x;jand }; x; ; = 1. Suppose 2ieB(j,aj/5) Yi <1—0. Since x;; < y; for
all i, j, we will have a; > 6a; /6 which is impossible. []

We say that two clients j and j” intersect if there is some i € ¥ such that
i € B(j,2aj) N B(j’,2aj). The rounding algorithm is described below.

UCFL-PRIMAL-ROUNDING

1. Solve LP and let (x,y) be a feasible LP solution

N

. For each j compute a; = Zd(i,j)xi,j

i
3. Renumber clients such that a1 < ap <...< aj where h is number of clients
4. For j=1 to h do

A. If j already assigned continue
B. Open cheapest facility i in B(j,2a;) and assign j to i

C. For each remaining client j’ > j that intersects with j, assigne j’ to i

5. Output the list of open facilities and the client assignment

It is not hard to see that every client is assigned to an open facility. The main
issue is to bound the total cost. Let F be the total facility opening cost, and let C be
the total connection cost. We will bound these separately.

Lemma9.3. F <23 fiy;.

Proof. Note that a client j opens a new facility only if it has not been assigned when
it is considered by the algorithm. Let ji, jo, . . ., jk be the clients that open facilities.
Let A; = ¥ N B(j, 2a;) be the set of facilities in the ball of radius 2a; around j.
From the algorithm and the definition of intersection of clients, we see that the sets
Aj, Ajy, ..., Aj, are pairwise disjoint. The algorithm opens the cheapest facility in
Aj, for 1 < { < k. Note that ZiGAM yi > 1/2 by Lemma 9.2. Hence the cost of the
cheapest facility in Aj, is at most 2 3’ ;. A, fiyi (why?). By the disjointness of the sets
Aj, ..., Aj, we see that the total cost of the facilities opened is at most 2 }}; fiy;. ®

Lemma9.4. C <6} a;.

CHAPTER9. CLUSTERING AND FACILITY LOCATION 108

Proof. Consider a client j that opens a facility i in B(j, 2a;). In this case j is assigned to
iand d(i, j) < 2a;. Now consider a client j that does not open a facility. This implies
that there was a client j* < j that opened a facility i and j” and j intersect, and j was
assigned to 1. Whatis d(i’, j)? We claim that d(i’, j) < 6a;. To see this we note that j’
and j intersect because there is some facility i € B(j, 2a;-) N B(j, 2a;). By considering
the path j — i — j’ — i’, via triangle inequality, d(i’, j) < 2a; + 2aj +2aj < 6a;
since aj» < ;. Thus the distance traveled by each client j to its assigned facility is at
most 6a;. The lemma follows.]

The two preceding lemmas give us the following which implies that the algorithm
yields a 6-approximation.

Theorem 9.3. C + F < 6 OPTyp.

It should be clear to the reader that the algorithm and analysis are not optimized
for the approximation ratio. The goal here was to simply outline the basic scheme
that led to the first constnat factor approximation.

9.2.2 Primal-Dual

Jain and Vazirani developed an elegant and influential primal-dual algorithm for
UCFL [92]. It was influential since it allowed new algorithms for k-median and
several generalizations of UCFL in a clean way. Moreover the primal-dual algorithm
is simple and efficient to implement. On the other hand we should mention that one
advantage of having an LP solution is that it gives an explicit lower bound on the
optimum value while a primal-dual method yields a lower bound via a feasible dual
which may not be optimal. We need some background to describe the primal-dual
method in approximation.

Complementary slackness: To understand primal-dual we need some basic
background in complementary slackness. Suppose we have a primal LP (P) of the
form mincx s.t Ax < b, x > 0 which we intentionally wrote in this standard form
as a covering LP. It's dual (D) is a packing LP maxb'y s.t yA® > ¢,y > 0. We will
assume that both primal and dual are feasible and hence the optimum values are
finite, and via strong duality we know that the optimum values are the same.

Definition 9.4. A feasible solution x to (P) and a feasible solution y to (D) satisfy the
primal complementary slackness condition with respect to each other if the following is true:
for each i, x; = 0 or the corresponding dual constraint is tight, that is }; A jy; = ci. They
satisfy the dual complementary slackness condition if the following is true: for each j, y; = 0
or the corresponding primal constraint is tight, that is }}; Aj ix; = b;.

One of the consequences of the duality theory of LP is the following.

CHAPTER9. CLUSTERING AND FACILITY LOCATION 109

Theorem 9.5. Suppose (P) and (D) are a primal and dual pair of LPs that both have finite
optima. A feasible solution x to (P) and a feasible solution y to (D) satisfy the primal-dual
complementary slackness properties with respect to each other if and only if they are both
optimum solutions to the respective LPs.

We illustrate the use of complementary slackness in the context of approximation
via VErTEx Cover. Recall the primal covering LP and we also write the dual.

min E WyXy

veV

Xy +x, = 1 Ve = (u,v) € E
Xy = 0 YoeV
max Z Ye
ecE
Z Ye < Wy YoeV
e€d(v)
Ye = 0, Ve € E

Recall that we described a simple rounding algorithm. Given a feasible primal
solution x. We let S = {v | x, > 1/2} and showed that (i) S is a vertex cover for
the given graph G and (ii) w(S) < 2}, wyXx,. Now suppose we have an optimum
solution x* to the primal rather than an arbitrary feasible solution. We can prove an
interesting and stronger statement via complementary slackness.

Lemma9.5. Let x* be an optimum solution to the primal covering LP. Then S = {v | x}, > 0}
is a feasible vertex cover for G and moreover w(S) < 23 Wy X5,

Proof. It is easy to see that S is a vertex cover via the same argument that we have
seen before. How do we bound the cost now that we may be rounding x;, to 1 even
though x; may be tiny? Let y* be any optimum solution to the dual; one exists
(why?). Via strong duality we have }}, w,x; = >, y;. Via primal-complementary
slackness we have the property that if x;, > 0 then },¢5,) ¥ = wy. Hence

w)= Y we=) > v

v:x5>0 v:x,>0e€b(v)

CHAPTER9. CLUSTERING AND FACILITY LOCATION 110

Interchanging the order of summation we obtain that

w(S) = Z Z yZSZZy;:ZZwUx;

v:x;,>0 e€6(v) e€E v
where we use the fact that an edge e has only two end points in the inequality. =

Primal-dual for approximating Vertex Cover: We will first study a primal-dual
approximation algorithm for the Vertex Cover problem — this algorithm due to Bar-
Yehuda and Even [20] can perhaps be considered the first primal-dual algorithm in
approximation. Primal-dual is a classical method in optimization and is applicable
in both continuous and discrete settings. The basic idea, in the context of LPs (the
method applies more generally), is to obtain a solution x to a primal LP and a
solution y to the dual LP fogether and certify the optimality of each solution via
complementary slackness. It is beyond the scope of this notes to give a proper
treatment. One could argue that understanding the setting of approximation is
easier than in the classical setting where one seeks exact algorithms, since our goals
are more modest.

Typically one starts with one of x, y being feasible and the other infeasible,
and evolve them over time. In discrete optimization, this method is successfully
applied to LPs that are known to be integer polytopes. Examples include shortest
paths, matchings, and others. In approximation the LP relaxations are typically not
integral. In such a setting the goal is to produce a primal and dual pair x, y where x
is an integral feasible solution, and y is fractional feasible solution. The goal is to
approximately bound the value of x via the dual y, and for this purpose we will
enforce only the primal complementary slackness condition for the pair (x, y). To
make the algorithm and analysis manageable, the primal-dual algorithm is typically
done in a simple but clever fashion — there have been several surprisingly strong
and powerful approximation results via this approach.

We illustrate this in the context of VErTeEx CoveRr first. It is useful to interpret the
dual as we did already in the context of the dual-fitting technique for Ser Cover.
We think of the edges e € E as agents that wish to be covered by the vertices in G at
minimum cost. The dual variable y, can be thought of as the amount that edge e
is willing to pay to be covered. The dual packing constraint },cs@,) Ye < Wy says
that for any vertex v, the total payments of all edges incident to v cannot exceed
its weight. This can be understood game theoretically as follows. The set of edges
0(v) can together pay w, and get covered, and hence we cannot charge them more.
The dual objective is to maximize the total payment that can be extracted from the
edges subject to these natural and simple constraints. With this interpretation in
mind we wish to produce a feasible dual (payments) and a corresponding feasible
integral primal (vertex cover). The basic scheme is to start with an infeasible primal
x = 0 and a feasible dual y = 0 and increase y while maintaining feasibility; during

CHAPTER9. CLUSTERING AND FACILITY LOCATION 111

the process we will maintain primal complementary slackness which means that
if a dual constraint for a vertex v becomes tight we set x, = 1. Note that we are
producing an integer primal solution in this process. How should we increase y
values? We will do it in the naive fashion which is to uniformly increase vy, for all e
that are not already part of a tight constraint (and hence not covered yet).

VC-priMAL-DUAL(G = (V,E),w : V — R},)

1.x«<0, y<0 // initialization: primal infeasible, dual feasible
2. U« E // uncovered edges that are active

3. While (U #0) do

A. Increase Yy, uniformly for each e € U until constraint Z Ye = Wy for

ecd(v)
some vertex a
B. Set x, =1 // Maintain primal complementary slackness
C. U« U\d) // Remove all edges covered by a

4. Output integer solution x and dual certificate y

Remark 9.2. Note that when checking whether a vertex v is tight we count the
payments from e € 6(v) even though some of them are no longer active.

Lemma 9.6. At the end of the algorithm x is a feasible vertex cover for G and), wyX, <
20PT.

Proof. By induction on the iterations one can prove that (i) y remains dual feasible
throughout (ii) ab € U at the start of an iteration iff e = ab is not covered yet (iii)
each iteration adds at least one more vertex and hence the algorithm terminates in
< n iterations and outputs a feasible vertex cover. The main issue is the cost of x.

For this we note that the algorithm maintains primal complementary slackness.
Thatis, x, = 0 or if x, = 1 then X,c5() Ye = Wo. Thus, we have

Dwexy= > > ye<2) y. <20PTp.
v

v:xy>0 e€6(v) e

We used the fact that e has at most two end points in the first inequality and the
fact that y is dual feasible in the second inequality. In terms of payment what this
says is that edge uv’s payment of y,, can be used to pay for opening u and v while
the dual pays only once.]

As the reader can see, the algorithm is very simple to implement.

CHAPTER9. CLUSTERING AND FACILITY LOCATION 112

Exercise 9.5. Describe an example to show that the primal-dual algorithm’s worst
case performance is 2. Describe an example to show that the dual value constructed
by the algorithm is =~ OPT/2. Are these two parts the same?

Remark 9.3. The algorithm generalizes to give an f-approximation for Ser Cover
where f is the maximum frequency of any element. There are examples showing
that the performance of this algorithm in the worst-case can indeed be a factor of
f. We saw earlier that the integrality gap of the LP is at most 1 + Ind where d is
the maximum set size. There is no contradiction here since the specific primal-dual
algorithm that we developed need not achieve the tight integrality gap.

Primal-Dual for UCFL: Now we consider a primal-dual algorithm for UCFL.
Recall the primal LP that we discussed previously. Now we describe the dual
LP written below. The dual has two types of variables. For each client j there is
a variable a; corresponding to the primal constraint that each client j needs to
be connected to a facility. For each facility i and client j there is a variable §;
corresponding to the constraint that y; > x; ;.

max Z aj

j€D
Zﬁi,]‘ < fi VieF
i
aj—PBij < dii,j) ief,jeD
a,p =2 0

It is important to interpret the dual variables. There is a similarity to Ser Cover
since Non-Metric Facility Location is a generalization, and the LP formulation does
not distinguish between metric and non-metric facility location — it is only in the
rounding that we can take advantage of metric properties. The variable a; can be
interpreted as the amount of payment client j is willing to make. This comes in
two parts — the payment to travel to a facility which it cannot share with any other
clients, and the payment it is willing to make to open a facility which it can share
with other clients. The variable §; ; corresponds to the amount client j is willing to
pay to facility i to open it. (In Ser Cover there is no need to distinguish between «;
and B; j since there are no distances (or they can be assumed to be 0 or o0).) The
first set of constraints in the dual say that for any facility i, the total payments from
all the clients (3}; Bi,j) cannot exceed cost f;. The second set of constraints specify
that aj — ; j is at most d(i, j). One way to understand this is that if a; < d(i, j) then
client j will not even be able to reach i and hence will not contribute to opening i.
Via this interpretation it is convenient to assume that f; ; = max{0, a; — d(i, j)}.

CHAPTER9. CLUSTERING AND FACILITY LOCATION 113

The primal-dual algorithm for UCFL will have a growth stage that is similar
to what we saw for Vertex Cover. We increase a; for each “uncovered” client j
uniformly. A facility i will receive payment f; ; = max{0, a; — d(i, j)} from j. To
maintain dual feasibility, as soon as the constraint for facility i becomes tight we
open facility i (in the primal we set y; = 1); note that any client j such that ; ; > 0
cannot increase its a; any further and hence will stop growing since it is connected
to an open facility. This process is very similar to that in Ser Cover. The main
issue is that we will get a weak approximation (a factor of | |) since a client can
contribute payments to a large number of facilities. Note that the process so far
has not taken advantage of the fact that we have a metric facility location problem.
Therefore, in the second phase we will close some facilities which means that a
client may need to get connected to a facility that it did not contribute to — however
we will use the metric property to show that a client does not need to travel too far
to reach a facility that remains open.

With the above discussion in place, we describe the two phase primal-dual
algorithm below. The algorithm also creates a bipartite graph G with vertex set
¥ U D and initially it has no edges.

CHAPTER9. CLUSTERING AND FACILITY LOCATION 114

JV-PrRiMAL-DUAL((F U D, d), fi,i € F)

1. «j=0 for all j€ D, B;;« 0 for all i,j // initialize dual values to 0
2. A—=D // active clients that are unconnected
3. 0«0 // temporarily opened facilities
4. While (A #0) do // Growth phase

A. Increase «a; uniformly for each j € A while maintaining the invariant
max{0, a;j —d(i,j)} = Bi; until one of following conditions hold: (i)
aj =d(i,j) for some j€A and i € O or (ii) Zﬁijzfi for some i € F\O
j
B. If (i) happens then add edge (i,j) to G and and A «— A —{j} /1 jis
connected to already open facility i € O

C. Else If (ii) happens then

1. O < 0u{i} // temporarily open i that became tight

2. for each j € D such that B;; >0 add edge (i,j)to G // note: clients not in
A may also get edges to i

3. A= A\{j: B, j) >0} // make active clients connected to i inactive

5. Create graph H with vertex set O and edge set Q where (i,i’) € Q iff there
exists client j such that B(i,j) >0 and B(i’,j) >0

6. O’ is any maximal independent set in H
7. Close facilities in O\ O’ /1 Pruming phase

8. Assign each client j to nearest facility in O’

Example: The example in Fig 9.2.2 illustrates the need for the pruning phase.
There are 2n clients and n facilities and the opening costs of the facilities are n + 2
except for the first one which has an opening cost of n + 1. The first group of clients
shown at the top of the figure have a connection cost of 1 to each facility. The second
group of clients have the following property: d(is,j;) = 1 and d(i¢, j;) = 3 when
¢ # j. The rest of the distances are induced by these. One can verify that in the
growth phase all the facilities will be opened. However the total dual value after
the growth phase is 51 — 1 while the total cost of the opened facilitie is ®(n?) and
hence pruning is necessary to obtain a good approximation.

We will do a high-level analysis of the algorithm skipping a few fine details. A

CHAPTER9. CLUSTERING AND FACILITY LOCATION 115

Figure 9.1: Example to illustrate the need for the pruning phase.

formal treatment with full details can be found in [155].

The algorithm maintains the property that «; and §; ; variables are dual feasible.
Consider the graph G created by the algorithm. We call an edge (i, j) € G a witness
edge for j when j is removed from A (it happens exactly once for each j). We call
an edge (i, j) € G special if (i, j) > 0 which means that j paid to temporarily open
i. We remark that a client j may have a special edge to i even though (i, j) is not
its witness edge — this can happen if i is temporarily opened after j was already
removed from A (due to other clients contributing to opening i later). One can
associate a notion of time with the progression of the algorithm since dual variables
are monotonically increased. This can be used to order events.

A basic property maintained by the algorithm is the following.

Claim 9.2.1. If (i, j) is an edge in G then aj — f; ; = d(i, j) and hence aj > d(i, j).

Proof. The algorithm adds an edge (i, j) only if (i, j) is a witness edge for j or if
B(i,j) > 0 (in which case (i, j) is special). The algorithm maintain the invariant
Bi,j = max{0, a; —d(i, j)} and hence if §; ; > 0 the claim is clear. If §; ; = 0 then (i,)
is a witness edge for j and case (i) happens when j is removed from A and in this
case aj = d(i, j). [

Analysis: We upper bound the cost of opening the facilities in O” and the connec-
tion cost of the clients.
We leave the proof of the following lemma as an exercise.

Lemma 9.7. For each facility i € O we have },; i is special Bi,j = fi-

CHAPTER9. CLUSTERING AND FACILITY LOCATION 116

Since a client j can pay for multiple facilities which we cannot afford, the pruning
phase removes facilities such that no client j is connected two facilities in O’ with
special edges (otherwise those two facilities will have an edge in H). We say that a
client j is directly connected to a facility i € O’ if (i, j) is a special edge. We call all
such clients directly connected clients and the rest of the clients are called indirectly
connected. We let D7 = U;co-Z; be the set of all directly connected clients and let
D, be the set of all indirectly connected clients.

For i € O’ let Z; be the directly connected clients. By the pruning rule we have
the property that a client j is directly connected to at most one facility in O’. We
show that each facility in O’ can be paid for by its directly connected clients.

Lemma 9.8. Foreachi € O/, ZjeZi Bij = fi.

Proof. From Lemma 9.7 and the fact that if i € O’ then every client j with special
edge (i, j) must be directly connected to i.]

From Claim 9.2.1 we see that if j is directly connected to i then a; — 8, ; = d(i,),
and hence j can pay its connection cost to i and its contribution to opening i. What
about indirectly connected clients? The next lemma bounds their connection cost.

Lemma 9.9. Suppose j € Do, that is, it is an indirectly connected client. Let i be its closest
facility in O’ then d(i, j) < 3a;.

Proof. Let (i, j) be the witness edge for j. Note that i € O. Since j is an indirectly
connected client there is no facility i’ € O’ such that (i’, j) is a special edge. Since
i ¢ O’ it must be because i was closed in the pruning phase and hence there must
be a facility i’ € O’ such that (7, i’) is an edge in H (otherwise O’ would not be a
maximal independent set). Therefore there is some client j* # j such that (i’, j*) and
(i,j") are both special edges. We claim that a; > aj. Assuming this claim we see
via triangle inequality and Claim 9.2.1 that,

d(i',j) < d(i, j) +d(i,) +d({’, ') < aj + 20 < 3a;.

Since i’ € O’ the nearest client to j is within distance < 3a;.

We now prove the claim that a; > aj/. Let t = a; be the time when j connects to
facility i as its witness. Consider two cases. In the first case d(i, j’) < t which means
that j” had already reached i at or before ¢; in this case aj < t since i was open at
t. In the second case d(i, j') > t; this means that j’ reached i strictly after ¢. Since
i was already open at t, j” would not pay to open i which implies that (7, j*) = 0
but then (i, j*) would not be a special edge and hence this case cannot arise. This
finishes the proof of the claim. [

With the preceding two lemmas in place we can bound the total cost of opening
facilities in O” and connecting clients to them. We will provide a refined statement
that turns out to be useful in some applications.

CHAPTER9. CLUSTERING AND FACILITY LOCATION 117

Theorem 9.6.

A0,)+3) <3 aj<30PTyp.

j€D ie0’ j€D
In particular the algorithm yields a 3-approximation.

Proof. Consider directly connected clients ;. We have Dy = W;c0'Z; where Z; are
directly connected to i. Via Lemma 9.8 and Claim 9.2.1

DITEEEDIPI

j€D1 ieO’ jEZi
= > > @G,) +Biy)
i€0’ jeZ;
= > |fi+ D da,j)
jeo’ JE€Z;
> > fi+ Y dO,)).
jeo’ j€D,

For indirectly connected clients, via Lemma 9.9, we have 3 3} jem, A = > jeDs do’,j).

Thus
32(1]‘ = 3Z(Xj+3zaj

j€D j€Dr j€D2
> 3Zﬁ+3 Z A0’ j) + Z (0, f)
ieO’ j€Dy j€Ds
> 3% fi+ » dO,)).
€0’ j€D

The algorithm is easy and efficient to implement. One of the main advantages of
the stronger property that we saw in the theorem is that it leads to a nice algorithm
for the k-median problem; we refer the reader to Chapter 25 in [155] for a detailed
description. In addition the flexibility of the primal-dual algorithm has led to
algorithms for several other variants; see [21] for one such example.

9.2.3 Local Search

Local search has been shown to be a very effective heuristic algorithm for facility
location and clustering probelms and there is extensive literature on this topic.
The first paper that proved constant factor approximation bounds for UCFL is by

CHAPTER9. CLUSTERING AND FACILITY LOCATION 118

Korupolu, Plaxtion and Rajaraman [109] and it provided a useful template for many
future papers. We refer the reader to Chapter 9 in [158] for local search analysis for
UCFL.

9.3 k-Median

k-Median has been extensively studied in approximation algorithms due to its
simplicity and connection to UCFL. The first constant factor approximation was
obtained in [36] via LP rounding. We will consider a slight generalization of
k-Median where the medians are to be selected from the facility set 7. We describe
the LP which is closely related to that for UCFL which we have already seen. The
variables are the same: y; indicates whether a center is opened at location i € ¥ and
x;,; indicates whether client j is connected to facility i. The objective and constraints
change since the problem requires one to open at most k facilities but there is no
cost to opening them.

min Z Z d(i, j)xij

j€ED ieF
Z xij = 1 Vie D
i
Xi,j < Yy iE?,jED
Zyi < k
i
x,y =2 0

Rounding of the LP for k-Median is not as simple as it is for UCFL. This is mainly
because one needs a global argument. To understanding this consider the following
example. Suppose we have k + 1 points where the distance between each pair is 1
(uniform metric space). Then the optimum integer solution has cost 1 since we can
place k medians at k points and the remaining point has to travel a distance of 1.
Now consider a fractional solution where y; = (1 —1/(k + 1)) for each point. The
cost of this fractional solution is also 1, however, each client now pays a fractional
cost of 1/(k + 1). Any rounding algorithm will make at least one of the clients pay a
cost of 1 which is much larger than its fractional cost; thus the analysis cannot be
based on preserving the cost of each client within a constant factor of its fractional
cost.

There are several LP rounding algorithms known. An advantage of LP based
approach is that it leads to a constant factor approximation for the MaTroip MEDIAN
problem which is a nice and powerful generalization of the k-Median problem; here

CHAPTER9. CLUSTERING AND FACILITY LOCATION 119

there is a matroid defined over the facilities and the constraint is that the set of
facilities chosen must be independent in the given matroid. One can write a natural
LP relaxation for this problem and prove that the LP has a constant integrality gap
by appealing to matroid intersection! It showcases the power of classical result in
combinatorial optimization. We refer the reader to [110, 150].

9.3.1 Local Search

Local search for center based clustering problems is perhaps one of the most natural
heuristics. In particular we will consider the p-swap heuristic. Given the current
set of k centers S, the p-swap heuristic will consider swapping out up to p centers
from S with p new centers. It is easy to see that this local search algorithm can be
implemented in n°%) time for each iteration. When p = 1 we simply refer to the
algorithm as (basic) local search. We will ignore the convergence time. As we saw
for Max Cur, one can use standard tricks to make the algorithm run in polynomial
time with a loss of a (1 + o(1))-factor in the approximation bound guaranteed by the
worst-case local optimum. Thus the main focus will be on the quality of the local
optimum. The following is a very nice result.

Theorem 9.7 (Arya et al. [11]). For any fixed p > 1 the p-swap local search heuristic has
a tight worst-case approximation ratio of (3 + 2/p) for k-Median. In particular the basic
local search algorithm yields a 5-approximation.

Here we give a proof/analysis of the preceding theorem for p = 1, following the
simplified analysis presented in [75]. See also [158] and the notes from CMU. Given
any set of centers S we define cost(S) = ; jeD d(j, S) to be the sum of the distances
of the clients to the centers. Let S be a local optimum and let S* be some fixed
optimum solution to the given k-Median instance. To compare cost(S) with cost(S*)
the key idea is to set up a clever set of potential swaps between the centers in S and
centers in S*. That is, we consider a swap pair (r, f) wherer € Sand f € S*. Since S
is a local optimum it must be the case that cost(S — r + f) < cost(S). The analysis
upper bounds the potential increase in the cost in some interesting fashion and
sums up the resulting series of inequalities. This may seem magical, and indeed it
is not obvious why the analysis proceeds in this fashion. The short answer is that
the analysis ideas required a series of developments with the somewhat easier case
of UCFL coming first.

We set up some notation. Let ¢ : © — S be the mapping of clients to facilities
in S based on nearest distance. Similarly let ¢* : — S* the mapping to facilities in
the optimum solution S*. Thus j connects to facility ¢(j) in the local optimum and to
¢*(j) in the optimum solution. We also let N (i) denote the set of all clients assigned
to a facility i € S and let N*(i) denote the set of all clients assigned to a facility i € S*.

CHAPTER9. CLUSTERING AND FACILITY LOCATION 120

Let Aj = d(j,S) and O; = d(j, S*) be the cost paid by j in local optimum and optimal
solutions respectively. To reinforce the notation we express cost(S) as follows.

cost(S) = ZAj = Z Z d(j, i).

jeD i€S jeN(i)
Similarly
cost(S*) = Z O = Z Z da(j,).
jeD i€S* jeN"(i)

Setting up the swap pairs: We create a set of pairs # as follows. We will assume
without loss of generality that |S| = |S*| = k. For technical convenience we also
assume S N S§* = ; we can always create dummy centers that are co-located to make
this assumption. Consider the mapping p : S* — S where each i € S* is mapped to
its closest center in S; hence p(i) for i € S* is the closest center in S to it. Let Ry be
the set of centers in S that have exactly one center in S* mapped to them. Let R be
the set of centers in S with no centers of S* mapped to them. This means that for
eachi € S\ (Ro U Ry) there are two or more centers mapped to them. Let S] C S* be
the centers mapped to R1. See Figure 9.2. By a simple averaging argument we have
the following claim.

Claim 9.3.1. 2|R¢| > |S™\ S]|.

We create a set of pairs P as follows. There will be exactly k pairs. For each
f* € S} we add the pair (r, f*) where p(f) = r. For each f* € §*\ §] we add a
pair (r, f*) where r is any arbitrary center from Ry — however we make sure that a
center r € Ry is in at most two pairs in #; this is possible because of Claim 9.3.1.
The pairs satisfy the following property.

Claim 9.3.2. If (r, f*) € P then for any facility f* # f*, p(f*) # r.

The intuition for the pairs is as follows. If p(f*) = {r} then we are essentially
forced to consider the pair (r, f*) since r could be the only center near f* with all
other centers from S very far away. When considering the swap (r, f*) we can move
the clients connecting to r to f*. On the other hand if |p™(r)| > 1 then r is close to
several centers in S* and may be serving many clients. Thus we do not consider
such an r in the swap pairs.

The main technical claim about the swap pairs is the following.

Lemma 9.10. Let (r, f*) be a pair in P. Then

0 <cost(S+ f* —r) —cost(S) < Z (Oj-Aj) + Z 20;.
JEN*(f*) JEN(r)

CHAPTER9. CLUSTERING AND FACILITY LOCATION 121

¢* <

—>D
* 0 [,

Figure 9.2: Mapping between S* and S with each f* € 5" mapped to its closest center
in S.

We defer the proof of the lemma for now and use it to show that cost(S) <
5cost(S*). We sum over all pairs (7, f*) € £ and note that each f* € S occurs in
exactly one pair and each r € S occurs in at most two pairs. Note that O; — A; can
be a negative number while O; is non-negative number.

0 < Z Z (Oj - Aj) + Z 20;
(r,f)eP \jeN*(f*) JEN(r)
< Z Z (Oj—Aj)+ZZ Z 20;
fr€S* jeN*(f*) r€S jeN(r)

IA

cost(S*) — cost(S) + 4cost(S”).
This implies the desired inequality.

Proof of Lemma 9.10. Since S is a local optimum swapping r with f* cannot improve
the cost and hence we obtain cost(S + f* — 1) — cost(S) > 0. We focus on the more
interesting inequality. To bound the increase in cost by removing r and adding f* to
S, we consider a specific assignment of the clients. Any client j € N*(f*) is assigned

CHAPTER9. CLUSTERING AND FACILITY LOCATION 122

Y
¥ < < <
U/50 U/:)D
Jg— >N p——>0N
- 3%
N D n DAN-
g:* D 0 A &X D ((z,\D A
X « ¢
an 7‘0 Q {/ /0
\ 4 +4 3} '1/ G
/\l* D // ﬂ Y S !
% \\/ N I///
o Yo .

Figure 9.3: Two cases in proof of Lemma 9.10. Consider the swap pair (7, f*) In the
figure on the left the client j € N*(f) is assigned to f*. In the figure on the right the
client j € N(r) \ N*(f”) is is assigned to " = p(f~).

to f* (even if it is suboptimal to do so). See Figure 9.3. For such a client j the change
in cost is O; — Aj. Now consider any client j € N(r) \ N*(f"); since r is no longer
available we need to assign it to another facility. Which one? Let ¢*(j) = f* be the
facility that j is assigned to in the optimum solution. Note that f*# . We assign j
to 7’ = p(f*); from Claim 9.3.2, p(f*) # r and hence ' € S — r + f*. See Figure 9.3.
The change in the cost for such a client j is d(j, r’) — d(j, r). We bound it as follows

aij,r"y—d(j,r) d(j,f*) + d(f*, r’)—d(j,r) (via triangle inequality)
d(j,f*) + d(f*, r)—d(j,r) (since r’is closest to f* in S)
a(j, f) +d(j, f ") (via triangle inequality)

20;.

INIANIA

Every other client is assigned to its existing center in S. Thus the total increase
in the cost is obtained as

D Oj-Ap+ D 20,2 Y (0j-Ap+ Y] 20

JEN*(f*) JEN(M\N*(f) JEN*(f*) JEN(r)

CHAPTER9. CLUSTERING AND FACILITY LOCATION 123

See [11] for a description of the tight example. The example in the conference
version of the paper is buggy.

9.4 k-Means

The k-Means problem is very popular in practice for a variety of reasons. In
terms of center-based clustering the goal is to choose k centers C = {c1,c2, ..., ¢k}
to minimize Zp d(p, C)%. In the discrete setting one can obtain constant factor
approximation algorithms via several techniques that follow the approach of k-
Median. We note that the squared distance does not satisfy triangle inequality,
however, it satisfies a relaxed triangle inequality and this is sufficient to generalize
certain LP rounding and local search techniques.

In practice the continuous version is popular for clustering applications. The
input points P are in the Euclidean space R where d is typically large. Let X be the
set of input points where each x € X is now a d-dimensional vector. The centers are
now allowed to be in ambient space. This is called the Euclidean k-Means. Here the
squared distance actually helps in a certain sense. For instance if k = 1 then we can
see that the optimum center is simply obtained by ﬁ 2.xex X — in other words we
take the “average”. One can see this by considering the problem of finding the center
as an optimization problem: min, ps > ex|lx — yll3 = min e Yex (Xi — yi)? Tt
can be seen that we can optimize in each dimension separately and that the optimum
in dimension i, can be seen to be y = %xi. Surprisingly, hardness results for
Euclidean k-Means were only established in the last decade. NP-hardness even
when d = 2 is established in [119], and APX-hardness for high dimensions was
shown in [14].

9.5 Lloyd’s algorithm, D2-sampling and k-Means ++

Llyod’s algorithm is a very well-known and widely used heuristic for the Euclidean
k-Means problem. It can viewed as a local search algorithm with an alternating
optimization flavor. The algorithm starts with a set of centers ¢y, c2, . . ., cx which are
typically chosen randomly in some fashion. The centers define clusters Cy, Cy, ..., C
based on assigning each point to its nearest center. That is C; is the set of all points
in X that are closest to ¢; (ties broken in some fashion). Once we have the clusters,
via the observation above, one can find the best center for that cluster by taking
the mean of the points in the cluster. That is, for each C; we find a new center
¢ = ﬁ 2yec; X (if C; is empty we simply set ¢/ = ¢;). Thus we have a new set
of centers and we repeat the process until convergence or some time limit. It is
clear that the cost can only improve by recomputing the centers since we know the
optimum center for k = 1 is obtained by using the average of the points.

CHAPTER9. CLUSTERING AND FACILITY LOCATION 124

Lroyps-k-MEeans(X, k)

1. Seeding: Pick k centers cy,c2,...,Ck
2. repeat

A. Find clusters C1,Cp,...,Ck where C; ={x € X | c; is closest center to x}

B. cost = Zk: Z d(x,c;)?.

i=1 xeC;

1
C. Fori=1to k do ¢; = — X
1 |Ci|;‘

3. Until cost improvement is too small

4. Output clusters Cq1,Cop,...,Ck

There are two issues with the algorithm. The first issue is that the algorithm
can, in the worst-case, run for an exponential number of iterations. This issue is
common for many local search algorithms and as we discussed, it can be overcome
by stopping when cost improvement is too small in a relative sense. The second
issue is the more significant one. The algorithm can get stuck in a local optimum
which can be arbitrarily bad when compared to the optimum solution. See figure
below for a simple example.

Figure 9.4: Example demonstrating that a local optimum for Lloyd’s algorithm can
be arbitrarily bad compared to the optimum clustering. The green clusters are the
optimum ones and the red ones are the local optimum.

D2-sampling and k-Means ++: To overcome the bad local optima it is common
to run the algorithm with random starting centers. Arthur and Vassilvitskii [154]

CHAPTER9. CLUSTERING AND FACILITY LOCATION 125

suggested a specific random sampling scheme to initialize the centers that is closely
related to independent work in [131]. This is called D? sampling.

D?-saMpLING-k-MEANS ++ (X, k)

1. S ={c1} where ¢ is chosen uniformly from X
2. for i=2 to k do

A. Choose ¢; randomly where P[c; = x] ~ d(x,S)?
B. S« SU{c;}

3. Output S

k-Means ++ is Lloyd’s algorithm intialized with k centers obtained from D?
sampling.

Theorem 9.8 ([154]). Let S be the output of Lloyd’s algorithm initialized with D? sampling.
Then E[cost(S)] < 8(Ink + 2) OPT. Moreover there are examples showing that it is no
better than 2 In k competitive.

The analysis establishes that the seeding already creates a good approximation,
so in a sense the local search is only refining the initial approximation. [4, 6] show
that if one uses O(k) centers, initialized according to D? sampling, then the local
optimum will yield a constant factor approximation with constant probability; note
that this is a bicriteria approximation where the number of centers is a constant
factor more than k and the cost is being compared with respect to the optimum
cost with k centers. The authors also show that there is a subset of k centers from
the output of the algorithm that yields a constant factor approximation. One can
then run a discrete optimization algorithm using the centers. Another interesting
result based on D2-sampling ideas yields a PTAS but the running time is of the form

O(n 4200/ €)) [93]. See [16] for a scalable version of k-Means ++.

9.6 Bibliographic Notes

Chapter 10

Introduction to Network Design

(Parts of this chapter are based on previous scribed lecture notes by Nitish Korula
and Sungjin Im.)

Network Design is a broad topic that deals with finding a subgraph H of a
given graph G = (V, E) of minimum cost while satisfying certain requirements.
G represents an existing network or a constraint over where one can build. The
subgraph H is what we want to select/build. Many natural problems can be viewed
this way. For instance the minimum spanning tree (MST) can be viewed as follows:
given an undirected graph G = (V, E) with edge costs c : E — Ry, find the cheapest
connected spanning (spanning means that all vertices are included) subgraph of G.
The fact that a minimal solution is a tree is clear, but the point is that the motivation
does not explicitly mention the requirement that the output be a tree.

Connectivity problems are a large part of network design. As we already saw
MST is the most basic one and can be solved in polynomial time. The STeINER
TreE problem is a generalization where we are given a subset S of terminals in
an edge-weighted graph G = (V, E) and the goal is to find a cheapest connected
subgraph that contains all terminals. This is NP-Hard. Traveling Salesman Problem
(TSP) and its variants can also be viewed as network design problems. Network
design is heavily motivated by real-world problems in telecommunication networks
and those problems combine aspects of connectivity and routing and in this context
there are several problems related to buy-at-bulk network design, fixed-charge flow
problems etc.

Graph theory plays an important role in most network algorithmic questions.
The complexity and nature of the problems vary substantially based on whether the
graph is undirected or directed. To illustrate this consider the DIRECTED STEINER TREE
problem. Here G = (V, E) is a directed graph with non-negative edge/arc weights,
and we are given a root and a set of terminals S C V. The goal is to find a cheapest
subgraph H of G such that r has a path to each terminal t € S. Note that when

126

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 127

S =V the problem is the minimum-cost arborescence problem and is solvable in
polynomial-time. One can see that DIRecTED STEINER TREE is a generalization of the
(undirected) STeINER TREE problem. While STeiNer TREE problem admits a constant
factor approximation, it is easy to show that DiRecTED STEINER TREE is at least as hard
as Ser Cover. This immediately implies that it is hard to approximate to within
an Q(log |S|) factor. In fact, substantial technical work has shown that it is in fact
harder than Ser Cover [77], while we only have a quasi-polynomial time algorithm
that gives a poly-logarithmic approximation [35]. In even slightly more general
settings, the directed graph problems get much harder when compared to their
undirected graph counterparts. This phenomena is generally true in many graph
related problems and hence the literature mostly focuses on undirected graphs. We
refer the reader to some surveys on network design [73, 108, 130].

This chapter will focus on two basic problems which are extensively studied and
describe some simple approximation algorithms for them. Pointers are provided
for sophisticated results including some very recent ones.

10.1 The Steiner Tree Problem

In the SteiNer TREE problem, the input is a graph G(V, E), together with a set
of terminals S C V, and a cost c(e) for each edge ¢ € E. The goal is to find a
minimum-cost tree that connects all terminals, where the cost of a subgraph is the
sum of the costs of its edges.

The SteiNer TReE problem is NP-Hard, and also APX-Hard [23]. The latter means
that there is a constant 0 > 1 such that it is NP-Hard to approximate the solution to
within a ratio of less than §; it is currently known that it is hard to approximate the
SteINER TREE problem to within a ratio of 95/94 [43].1

Remark 10.1. If |S| = 2 (that is, there are only 2 terminals), an optimal Steiner Tree
is simply a shortest path between these 2 terminals. If S = V (that is, all vertices
are terminals), an optimal solution is simply a minimum spanning tree of the input
graph. In both these cases, the problem can be solved exactly in polynomial time.

Remark 10.2. There is ckpoly(n)—time algorithm where k is the number of terminals.
Can you figure it out?

Definition 10.1. Given a connected graph G(V, E) with edge costs, the metric completion
of G is a complete graph H(V, E”) such that for each u,v € V, the cost of edge uv in H is the
cost of the shortest path in G from u tov. The graph H with edge costs is a metric on V, because
the edge costs satisfy the triangle inequality: Yu,v,w, cost(uv) < cost(uw)+cost(wo).

WVariants of the STeiNEr TREE problem, named after Jakob Steiner, have been studied by Fermat,
Weber, and others for centuries. The front cover of the course textbook contains a reproduction of a
letter from Gauss to Schumacher on a Steiner tree question.

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 128

4 3

Figure 10.1: On the left, a graph. On the right, its metric completion, with new
edges and modified edge costs in red.

Observation 10.2. To solve the STEINER TREE problem on a graph G, it suffices to solve it
on the metric completion of G.

We now look at two approximation algorithms for the SteiNer TREE problem.

10.1.1 The MST Algorithm

The following algorithm, with an approximation ratio of (2 —2/|S|) is due to [151]:

SteNnerMST(G(V,E),S C V):

Let H(V, E’) < metric completion of G.
Let T « MST of H[S].

Output T.

(Here, we use the notation H[S] to denote the subgraph of H induced by the set of
terminals S.)

P YAV

Graph G Metric Completion H Output Tree T

Figure 10.2: Illustrating the MST Heuristic for STEINER TREE

The following lemma is central to the analysis of the algorithm StemnerMST.

Lemma 10.1. For any instance I of STEINER TReE, let H denote the metric completion of the
graph, and S the set of terminals. There exists a spanning tree in H[S] (the graph induced
by terminals) of cost at most 2(1 — I%I) OPT, where OPT is the cost of an optimal solution to
instance 1.

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 129

Before we prove the lemma, we note that if there exists some spanning tree
in H[S] of cost at most 2(1 — Ié_l) OPT, the minimum spanning tree has at most
this cost. Therefore, Lemma 10.1 implies that the algorithm StemNnerMST is a
2(1- |‘};—l)-approximatiom for the StemNer TREE problem.

Proof. Proof of Lemma 10.1 Let T* denote an optimal solution in H to the given
instance, with cost c(T*). Double all the edges of T to obtain an Eulerian graph,
and fix an Eulerian Tour W of this graph. See Fig 10.3. Now, shortcut edges of W to
obtain a tour W’ of the vertices in T* in which each vertex is visited exactly once.
Again, shortcut edges of W’ to eliminate all non-terminals; this gives a walk W”

that visits each terminal exactly once.
3
7\@
7
6 5
0

/@

Optimal Tree T* Eulerian Walk W

./\‘

/O O
—QO+—(O
Blue edges show shortcut tour W’ Red edges show shortcut walk W” on terminals

Figure 10.3: Doubling edges of T* and shortcutting gives a low-cost spanning tree
on terminals.

It is easy to see that c(W”) < c¢(W’) < ¢(W) = 2¢(T*), where the inequalities
follow from the fact that by shortcutting, we can only decrease the length of the
walk. (Recall that we are working in the metric completion H.) Now, delete the
heaviest edge of W” to obtain a path through all the terminals in S, of cost at
most (1 — |é—|)C(W”). This path is a spanning tree of the terminals, and contains
only terminals; therefore, there exists a spanning tree in H[S] of cost at most
2(1 - |,};—l)c(T*). n

A tight example: The following example (Fig. 4 below) shows that this analysis is
tight; there are instances of STeINER TREE where the STEINERMST algorithm finds a
tree of cost 2(1 —) OPT. Here, each pair of terminals is connected by an edge of
cost 2, and each terminal is connected to the central non-terminal by an edge of cost

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 130

1. The optimal tree is a star containing the central non-terminal, with edges to all
the terminals; it has cost |S|. However, the only trees in H[S] are formed by taking
|S| — 1 edges of cost 2; they have cost 2(|S| — 1).

Graph G; not all edges shown H[S]; not all edges shown. An MST of H[S].
Figure 10.4: A tight example for the STEINERMST algorithm

10.1.2 The Greedy/Online Algorithm

We now describe another simple algorithm for the SteiNer TReE problem, due to
[90].

GreepYSTEINER(G(V ,E), S C V):
Let {s1, 52, ...5|5|} be an arbitrary ordering of the terminals.
LetT « {s1}
For (i from 2 to |S]):
Let P; be the shortest path in G from s; to T.
Add P;to T.

GREEDYSTEINER is a [log, |S|]-approximation algorithm; here, we prove a slightly
weaker result.

Theorem 10.3. The algorithm GREEDYSTEINER has an approximation ratio of 2H,g| ~
2In|S|, where H; = Z}:l 1/j denotes the i'th harmonic number.

Note that this is an online algorithm; terminals are considered in an arbitrary
order, and when a terminal is considered, it is immediately connected to the existing
tree. Thus, even if the algorithm could not see the entire input at once, but instead
terminals were revealed one at a time and the algorithm had to produce a Steiner
tree at each stage, the algorithm GREEDYSTEINER outputs a tree of cost no more than
O(log|S|) times the cost of the optimal tree.

To prove Theorem 10.3, we introduce some notation. Let c(i) denote the cost
of the path P; used in the ith iteration to connect the terminal s; to the already

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 131

existing tree. Clearly, the total cost of the tree is Zli' c(i). Now, let {iy, i3, ...1i|5} be
a permutation of {1,2,...|S[} such that c(i1) > c(i2) > ... > c(i|5)). (That is, relabel
the terminals in decreasing order of the cost paid to connect them to the tree that
exists when they are considered by the algorithm.)

Claim 10.1.1. For all j, the cost c(i;) is at most 2OPT/j, where OPT is the cost of an
optimal solution to the given instance.

Proof. Suppose by way of contradiction this were not true; since s;; is the terminal
with jth highest cost of connection, there must be j terminals that each pay more
than 20PT/;j to connect to the tree that exists when they are considered. Let
S" ={si,, Sy, - .- sz-],} denote this set of terminals.

We argue that no two terminals in S’ U {s1} are within distance 2 OPT/; of each
other. If some pair x, y were within this distance, one of these terminals (say i) must
be considered later by the algorithm than the other. But then the cost of connecting
y to the already existing tree (which includes x) must be at most 2 OPT/j, and we
have a contradiction.

Therefore, the minimum distance between any two terminals in S” U {s;} must
be greater than 2 OPT/j. Since there must be j edges in any MST of these terminals,
an MST must have cost greater than 2 OPT. But the MST of a subset of terminals
cannot have cost more than 2 OPT, exactly as argued in the proof of Lemma 10.1.
Therefore, we obtain a contradiction. []

Given this claim, it is easy to prove Theorem 10.3.

S| |S] S| S|

20PT 1
ci)= Y c(ij)< Y === =20PT » = =2Hs - OPT.
; ; = JZ; J

Question 10.2. Give an example of a graph and an ordering of terminals such that
the output of the Greedy algorithm is Q(log |S|) OPT.

Remark 10.3. We emphasize again that the analysis above holds for every ordering of
the terminals. A natural variant might be to adaptively order the terminals so that
in each iteration i , the algorithm picks the terminal s; to be the one closest to the
already existing tree T built in the first i iterations. Do you see that this is equivalent
to using the MST Heuristic with Prim’s algorithm for MST? This illustrates the need
to be careful in the design and analysis of heuristics.

10.1.3 LP Relaxation

A natural LP relaxation for the Steiner Tree problem is the following. For each edge
e € E we have an indicator variable x, to decide if we choose to include ¢ in our
solution. The chosen edges should ensure that no two terminals are separated. We

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 132

write this via a constraint },,c54) Xe > 1 for any set A C V such that A contains a
terminal and V \ A contains a terminal.

min c. X,
e€E
Z xe > 1 ANS#0,(V-A)NS#0
e€d(A)
xe = 0

Note that the preceding LP has an exponential number of constraints. However,
there is a polynomial-time separation oracle. Given x it is feasible for the LP iff the
s-t cut value is at least 1 between any two terminals s,t € S with edge capacities
given by x. How good is this LP relaxation? We will see later that there is a
2(1 —1/|S|)-approximation via this LP. Interestingly the LP has an integrality gap
of 2(1 —1/|S|) even if S = V in which case we want to solve the MST problem!
Despite the weakness of this cut based LP for these simple cases, we will see later
that it generalizes nicely for higher connectivity problems and one can derive a
2-approximation even for those much more difficult problems.

10.1.4 Other Results on Steiner Trees

The 2-approximation algorithm using the MST Heuristic is not the best approxima-
tion algorithm for the SteINEr TREE problem currently known. Some other results
on this problem are listed below.

1. The first algorithm to obtain a ratio of better than 2 was due to due to Alexander
Zelikovsky [163]; the approximation ratio of this algorithm was 11/6 ~ 1.83.
This was improved to 1 + 1“73 ~ 1.55 [136] and is based on a local search
based improvement starting with the MST heuristic, and follows the original

approach of Zelikovsky.

2. Byrka et al gave an algorithm with an approximation ratio of 1.39 = In4 + € [27]
which is currently the best known for this problem. This was originally based
on a combination of techniques and subsequently there is an LP based proof
[66] that achieves the same approximation for the so-called Hypergraphic LP
relaxation.

3. The bidirected cut LP relaxation for the STEINER TREE was proposed by [53]; it
has an integrality gap of at most 2(1 — |;—|), but it is conjectured that the gap is
smaller. No algorithm is currently known that exploits this LP relaxation to
obtain an approximation ratio better than that of the STEerMST algorithm.
Though the true integrality gap is not known, there are examples that show it
is atleast 6/5 = 1.2 [156].

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 133

4. For many applications, the vertices can be modeled as points on the plane,
where the distance between them is simply the Euclidean distance. The MST-
based algorithm performs fairly well on such instances; it has an approximation
ratio of 2/V3 ~ 1.15[52]. An example which achieves this bound is three points
at the corners of an equilateral triangle, say of side-length 1; the MST heuristic
outputs a tree of cost 2 (two sides of the triangle) while the optimum solution is
to connect the three points to a Steiner vertex which is the circumcenter of the
triangle. One can do better still for instances in the plane (or in any Euclidean
space of small-dimensions); for any € > 0, there is a 1 + e-approximation
algorithm that runs in polynomial time [10]. Such an approximation scheme is
also known for planar graphs [24] and more generally bounded-genus graphs.

10.2 The Traveling Salesperson Problem (TSP)

10.2.1 TSP in Undirected Graphs

In the Traveling Salesperson Problem (TSP), we are given an undirected graph
G = (V,E) and cost c(e) > 0 for each edge ¢ € E. Our goal is to find a Hamiltonian
cycle with minimum cost. A cycle is said to be Hamiltonian if it visits every vertex
in V exactly once.

TSP is known to be NP-Hard. Moreover, we cannot hope to find a good
approximation algorithm for it unless P = NP. This is because if one can give a
good approximation solution to TSP in polynomial time, then we can exactly solve
the NP-Complete Hamiltonian cycle problem (HAM) in polynomial time, which is
not possible unless P = NP. Recall that HAM is a decision problem: given a graph
G = (V,E), does G have a Hamiltonian cycle?

Theorem 10.4 ([137]). Let a : N — N be a polynomial-time computable function. Unless
P = NP there is no polynomial-time algorithm that on every instance I of TSP outputs a
solution of cost at most a(|I]) - OPT(I).

Proof. For the sake of contradiction, suppose we have an approximation algorithm
A for TSP with an approximation ratio «(|I]). We show a contradiction by showing
that using A, we can exactly solve HAM in polynomial time. Let G = (V,E) be
the given instance of HAM. We create a new graph H = (V, E’) with cost c(e) for
each e € E’ such that c(e) = 1 if e € E, otherwise c(e) = B, where B = na(n) + 2 and
n = |V|. Note that this is a polynomial-time reduction since « is a polynomial-time
computable function.

We observe that if G has a Hamiltonian cycle, OPT = n, otherwise OPT >
n—1+B > na(n)+1. (Here, OPT denotes the cost of an optimal TSP solution in H.)
Note that there is a “gap” between when G has a Hamiltonian cycle and when it
does not. Thus, if A has an approximation ratio of a(rn), we can tell whether G has

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 134

a Hamiltonian cycle or not: Simply run A on the graph H; if A returns a TSP tour
in H of cost at most a(n)n output that G has a Hamilton cycle, otherwise output
that G has no Hamilton cycle. We leave it as an exercise to formally verify that this
would solve HAM in polynomial time. [

Since we cannot even approximate the general TSP problem, we consider more
tractable variants.

* Metric-TSP: In Metric-TSP, the instance is a complete graph G = (V, E) with cost
c(e)one € E, where c satisfies the triangle inequality, i.e. c(uw) < c(uv)+c(vw)
forany u,v,w € V.

* TSP-R: TSP with repetitions of vertices allowed. The input is a graph
G = (V, E) with non-negative edge costs as in TSP. Now we seek a minimum-
cost walk that visits each vertex at least once and returns to the starting
vertex.

Exercise 10.1. Show thatan a@-approximation for Metric-TSP implies an a-approximation
for TSP-R and vice-versa.

We focus on Metric-TSP for the rest of this section. We first consider a natural
greedy approach, the Nearest Neighbor Heuristic (NNH).

NEearest Neigasor Heuristic(G(V, E), ¢ : E — R™):
Start at an arbitrary vertex s,
While (there are unvisited vertices)
From the current vertex u, go to the nearest unvisited vertex v.
Return to s.

Exercise 10.2. 1. Prove thatNNHis an O(log n)-approximation algorithm. (Hint:
Think back to the proof of the 2H|s-approximation for the Greedy Steiner
Tree Algorithm.)

2. NNHisnotan O(1)-approximation algorithm; can you find an example to show
this? In fact one can show a lower bound of Q(log 71) on the approximation-
ratio achieved by NNH.

There are constant-factor approximation algorithms for TSP; we now consider
an MST-based algorithm. See Fig 10.5.

TSP-MST(G(V,E),c : E = R*):

Compute an MST T of G.

Obtain an Eulerian graph H = 2T by doubling edges of T
An Eulerian tour of 2T gives a tour in G.

Obtain a Hamiltonian cycle by shortcutting the tour.

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 135

T 2T

g 12 Euler tour

Figure 10.5: MST Based Heuristic

Theorem 10.5. MST heuristic(TSP-MST) is a 2-approximation algorithm.

Proof. We have c(T) = },cg(r)c(e) < OPT, since we can get a spanning tree in G
by removing any edge from the optimal Hamiltonian cycle, and T is a MST. Thus
c(H) =2¢(T) < 20PT. Also shortcutting only decreases the cost. [

We observe that the loss of a factor 2 in the approximation ratio is due to doubling
edges; we did this in order to obtain an Eulerian tour. But any graph in which all
vertices have even degree is Eulerian, so one can still get an Eulerian tour by adding
edges only between odd degree vertices in T. Christofides Heuristic [44] exploits
this and improves the approximation ratio from 2 to 3/2. See Fig 10.6 for a snapshot.

Curistoripes Heuristic(G(V, E), ¢ : E — R™):

Compute an MST T of G.

Let S be the vertices of odd degree in T. (Note: |S| is even)
Find a minimum cost matching M on S in G

Add M to T to obtain an Eulerian graph H.

Compute an Eulerian tour of H.

Obtain a Hamilton cycle by shortcutting the tour.

Theorem 10.6. Christofides Heuristic is a 1.5-approximation algorithm.

Proof. The main part of the proof is to show that c(M) < .50PT. Suppose that
c(M) < .50PT. Then, since the solution of Christofides Heuristic is obtained by
shortcutting the Eulerian tour on H, its cost is no more than ¢(H) = ¢(T) + c¢(M) <

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 136

10 Euler Tour Shortcut

Figure 10.6: Christofides Heuristic

1.50PT. (Refer to the proof of Lemma 10.5 for the fact ¢(T) < OPT.) Therefore we
focus on proving that c(M) < .50PT.

Let F* be an optimal tour in G of cost OPT; since we have a metric-instance
we can assume without loss of generality that F* is a Hamiltonian cycle. We
obtain a Hamiltonian cycle F§ in the graph G[S] by short-cutting the portions of
F* that touch the vertices V' \ S. By the metric-condition, ¢(Fg) < ¢(F*) = OPT.
Let S = {v1,02,...,05)}. Without loss of generality F; visits the vertices of S in
the order vy, vz, ...,7|s). Recall that |S] is even. Let My = {0102, 0304, ...0|5|-17|s}
and M = {0203, 0405, ...0|5jv1}. Note that both M; and M, are matchings, and
c(M1) + ¢(Mz) = c(F;) < OPT. We can assume without loss of generality that
c¢(M1) < ¢(M3). Then we have ¢(M;) < .50PT. Also we know that ¢(M) < ¢(M,),
since M is a minimum cost matching on S in G[S]. Hence we have ¢(M) < c(M;) <
.50PT, which completes the proof. []

10.2.2 LP Relaxation

We describe a well-known LP relaxation for TSP called the Subtour-Elimination LP
and sometimes also called the Held-Karp LP relaxation although the formulation
was first given by Dantzig, Fulkerson and Johnson [48]. The LP relaxation has a
variable x, for each edge e € E. Note that the TSP solution is a Hamilton Cycle of
least cost. A Hamilton cycle can be viewed as a connected subgraph of G with degree
2 at each vertex. Thus we write the degree constraints and also the cut constraints.

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 137

[
&
Il
N
Q
m
<

er > 2 pCSCV

x. € [0,1] e€E

The relaxation is not useful for a general graph since we saw that TSP is not
approximable. To obtain a relaxation for Metric-TSP we apply the above to the
metric completion of the graph G.

Another alternative is to consider the following LP which view the problem
as finding a connected Eulerian multi-graph of the underlying graph G. In other
words we are allowed to take an integer number of copies of each edge with the
constraint that the degree of each vertex is even and the graph is connected. It is
not easy to write the even degree condition since we do not have an apriori bound.
Instead one can write the following simpler LP, and interestingly one can show that
its optimum value is the same as that of the preceding relaxation (when applied to
the metric completion).

x, € 0 e€E

Wolsey showed that the 3/2-approximation of Christofides can be analyzed
with respect to the LP above. Hence the integrality gap of the LP is at most 3/2
for Metric-TSP. Is it better? There is a well-known example which shows that the
gap is at least 4/3. The 4/3 conjecture states that the worst-case integrality gap is at
most 4/3. This has been an unsolved problem for many decades and it is very very
recently that the 3/2 barrier was broken.

Remarks:
1. In practice, local search heuristics are widely used and they perform extremely

well. A popular heuristic 2-Opt is to swap pairs from xy,zw to xz, yw or
xw, yz, if it improves the tour.

2. It was a major open problem to improve the approximation ratio of % for
Metric-TSP; it is conjectured that the Held-Karp LP relaxation [82] gives a

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 138

ratio of %. In a breakthrough Oveis-Gharan, Saberi and Singh [65] obtained a
3/2 — 6 approximation for some small but fixed 6 > 0 for the important special
case where c(e) = 1 for each edge e (called GraprHIC-TSP). Very recently the
3/2 ratio was finally broken for the general case [100].

10.2.3 TSP in Directed Graphs

In this subsection, we consider TSP in directed graphs. As in undirected TSP, we
need to relax the problem conditions to get any positive result. Again, allowing each
vertex to be visited multiple times is equivalent to imposing the asymmetric triangle
inequality c(u, w) < c(u,v) + c(v, w) for all u, v, w. This is called the asymmetric
TSP (ATSP) problem. We are given a directed graph G = (V, A) with cost c(a) > 0
for each arc a € A and our goal is to find a closed walk visiting all vertices. Note
that we are allowed to visit each vertex multiple times, as we are looking for a walk,
not a cycle. For an example of a valid Hamiltonian walk, see Fig 10.7.

\! N\

Figure 10.7: A directed graph and a valid Hamiltonian walk

The MST-based heuristic for the undirected case has no meaningful generalization
to the directed setting This is because costs on edges are not symmetric. Hence, we
need another approach. The Cycle Shrinking Algorithm repeatedly finds a min-cost
cycle cover and shrinks cycles, combining the cycle covers found. Recall that a cycle
cover is a collection of disjoint cycles covering all vertices. It is known that finding a
minimum-cost cycle cover can be done in polynomial time (see Homework 0). The
Cycle Shrinking Algorithm achieves a log, 7 approximation ratio.

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 139

CycLE SHRINKING ALGORITHM(G(V, A), ¢ : A — R™):

Transform G s.t. G is complete and satisfies c(u,v) + c(v, w) = c(u, w) for Vu,v, w
If |[V| = 1 output the trivial cycle consisting of the single node

Find a minimum cost cycle cover with cycles Cy, ..., Ci

From each C; pick an arbitrary proxy node v;

Recursively solve problem on G[{v1, ..., vx}] to obtain a solution C
C"'=CUC1UCy...Cyis aEulerian graph.

Shortcut C’ to obtain a cycle on V and output C’.

For a snapshot of the Cycle Shrinking Algorithm, see Fig 10.8.

4 T8 G

Figure 10.8: A snapshot of Cycle Shrinking Algorithm. To the left, a cycle cover C;.
In the center, blue vertices indicate proxy nodes, and a cycle cover C, is found on
the proxy nodes. To the right, pink vertices are new proxy nodes, and a cycle cover
Cz is found on the new proxy nodes.

Lemma 10.3. Let the cost of edges in G satisfy the asymmetric triangle inequality. Then
forany S C 'V, the cost of an optimal TSP tour in G[S] is at most the cost of an optimal
TSP tour in G.

Proof. Since G satisfies the triangle inequality there is an optimal tour TSP tour in
G that is a Hamiltonian cycle C. Given any S C V the cycle C can be short-cut to
produce another cycle C’ that visits only S and whose cost is at most the cost of
C. [

Lemma 10.4. The cost of a min-cost cycle-cover is at most the cost of an optimal TSP tour.
Proof. An optimal TSP tour is a cycle cover.]
Theorem 10.7. The Cycle Shrinking Algorithm is a log, n-approximation for ATSP.

Proof. We prove the above by induction on n the number of nodes in G. It is easy
to see that the algorithm finds an optimal solution if n < 2. The main observation
is that the number of cycles in the cycle-cover is at most | 7/2]; this follows from
the fact that each cycle in the cover has to have at least 2 nodes and they are

CHAPTER 10. INTRODUCTION TO NETWORK DESIGN 140

disjoint. Thus k < [n/2]. Let OPT(S) denote the cost of an optimal solution in
G[S]. From Lemma 10.3 we have that OPT(S) < OPT(V) = OPT for all S C V.
The algorithm recurses on the proxy nodes S = {vy,...,vr}. Note that |S| < n,
and by induction, the cost of the cycle C output by the recursive call is at most
(log, |S|) OPT(S) < (log, |S|) OPT.

The algorithm outputs C” whose cost is at most the cost of C plus the cost of the
cycle-cover computed in G. The cost of the cycle cover is at most OPT (Lemma 10.4).
Hence the cost of C’ is at most (log, |S|) OPT + OPT < (log, n/2) OPT +OPT <
(log, n) OPT; this finishes the inductive proof. [

10.2.4 LP Relaxation

The LP relaxation for ATSP is given below. For each arc e € E we have a variable x,.
We view the problem as finding a connected Eulerian multi-graph in the support
of G. That is, we can choose each edge ¢ an integer number of times. We impose
Eulerian constraint at each vertex by requiring the in-degree to be equal to the
out-degree. We impose connectivity constraint by ensuring that at least one arc
leaves each set of vertices S which is not V or 0.

min c, X,
e€E
er—er = 0 veV
e€d*(v) e€d~(v)
Z xe > 1 0CSgV
e€d*(S)
Xxe =2 0 e€E

Remarks:

1. It has remained an open problem for more than 25 years whether there exists
a constant factor approximation for ATSP. Asadpour et al [12] have obtained
an O(logn/loglog n)-approximation for ATSP using some very novel ideas
and a well-known LP relaxation.

2. There is now an O(1)-approximation for ATSP with initial breakthrough
work by Svensson for a special case [147] and then followed up by Svensson,
Tarnawski and Vegh [149] . The current best constant is 22 + € due to [153].
The algorithm is highly non-trivial and is based on the LP relaxation.

Chapter 11

Steiner Forest Problem

We discuss a primal-dual based 2-approximation for the SteiNer Forest problem?!.
In the StemNer Forest problem there is a graph G = (V, E) where each edge e € E
has a cost c, € R. We are given k pairs of vertices (s1, 1), (52, t2), ... (sk, tx) € V X V.
The goal is to find the minimum cost set of edges F such that in the graph (V, F) the
vertices s; and ¢; are in the same connected component for 1 < i < k. We refer to
the set {s1,..., sk, t1,..., tx} as terminals. Notice that the graph (V, F) can contain
multiple connected components.

One can see that STEINER FOrEsT generalizes the STEINER TREE problem. It is,
however, much less easy to obtain a constant factor approximation for STEINER FOREST.
A natural greedy heuristic, similar to that for the online Steiner Tree problem is the
following. We order the the pairs in some arbitrary fashion, say as 1 to k without
loss of generality. We maintain a forest F of edges that we have already bought.
When considering pair i we find a shortest path P from s; to ¢; in the graph in which
we reduce the cost of each edge in F to 0 (since we already paid for them). We add
the new edges in P to F. Although simple to describe, the algorithm is not straight
forward to analyze. In fact the best bound we have on the performance of this
algorithm is O(log? k) (note that the corresponding bound for SteiNer TREE tree is
O(log k)) while the lower bound on its peformance is only)(log k). The analysis of
the upper bound requires appealing to certain extremal results [15] and closing the
gap between the upper and lower bound on the analysis of this simplest of greedy
algorithms is a very interesting open problem.

The first constant factor approximation for Steiner Foresr is due to the influential
work of Agarwal, Klein and Ravi [5] who gave a primal-dual 2-approximation which
is still the best known. Their primal-dual algorithm has since been generalized for a
wide variety of network design problems via the work of Goemans and Williamson
(see their survey [67]) and several others. STeINER Forest has the advantage that one

Parts of this chapter are based on past scribed lecture notes by Ben Moseley from 2009.

141

CHAPTER 11. STEINER FOREST PROBLEM 142

can visualize the algorithm and analysis more easily when compared to the more
abstract settings that we will see shortly.

We now describe an integer programming formulation for the problem. In the
IP we will have a variable x, for each edge e € E such that x, is 1 if and only if e
is part of the solution. Let the set S be the collection of all sets S C V' such that
SN {si ti}| =1forsomel <i < k. ForasetS C V let 6(S) denote the set of edges
crossing the cut (S, V' \ S). The IP can be written as the following.

min Z CeXe

ecE

such that Z x,.>21 VSeS
e€d(S)
x. €{0,1} VeeE

We can obtain an LP-relaxation by changing the constraint that x, € {0,1} to
xe > 0. The dual of the LP-relaxation can be written as the following.

max Z Ys

SeS

such that Z ys <c. Ve €E
S:e€6(S)
ys >0 VSeS

Before we continue, some definitions will be stated which will help to define
our algorithm for the problem.

Definition 11.1. Given a set of edges X C E, a set S € S is violated with respect to X if
0(S)N X = 0. In other words S is violated even with edge set X included.

Definition 11.2. Given a set of edges X C E, aset S € S is minimally violated with
respect to X if S is violated with respect to X and there is no S’ C S that is also violated
with respect to X.

Next we show that any two minimally violated sets are disjoint.

Claim 11.0.1. VX C E if S and S" are minimally violated sets then SNS" =0, i.e. S and
S’ are disjoint.

In fact we will prove the following claim which implies the preceding one.

Claim 11.0.2. Let X C E. The minimially violated sets with respect to X are the connected
components of the graph (V, X) that are violated with respect to X.

CHAPTER 11. STEINER FOREST PROBLEM 143

Proof. Consider a minimal violated set S. We may assume the set S contains s; but
not t; for some i. If S is not a connected component of (V, X) then there must be
some connected component S’ of G[S] that contains s;. But 0x(S’) = 0, and hence
S’ is violated; this contradicts the fact that S is minimal. Therefore, if a set S is a
minimal violated set then it must be connected in the graph (V, X).

Now suppose that S is a connected component of (V, X); it is easy to see that no
proper subset of S can be violated since some edge will cross any such set. Thus, if
S is a violated set then it is minimal violated set.

Thus, the minimal violated sets with respect to X are the conected components
of the graph (V, X) that are themselves violated sets. It follows that any two distinct
minimal violated sets are disjoint. []

The primal-dual algorithm for Steiner Forest is described below.

STEINERFOREST:

Fe20

while F is not feasible
Let Cq1,Co, ..., Cj be minimally violated sets with respect to F
Raise yc, for 1 < i < h uniformly until some edge e becomes tight
F—F+e
X, =1

Output F’ = {e € F| F —e isnot feasible}

The first thing to notice about the algorithm above is that it is closely related to
our solution to the Vertex Cover problem, however, there are two main differences.
In the VerTEX CovER we raised the dual variables for all uncovered edges uniformly,
however, in this algorithm we were more careful on which dual variables are
raised. In this algorithm, we chose to only raise the variables which correspond
to the minimally violated sets. Unlike the case of STEINER TREE, in STEINER FOREST,
there can be non-trivial connected components that are not violated and hence
become inactive. A temporarily inactive component may become part of an active
component later if an active component merges with it. The other main difference
is that when we finally output the solution, we prune F to get F’. This is done for
technical reasons, but the intuition is that we should include no edge in the solution
which is not needed to obtain a feasible solution. To understand this algorithm,
there is a non-trivial example in the textbook [155] that demonstrates the algorithm'’s
finer points.

Lemma 11.1. At the end of the algorithm, F’ and y are primal and dual feasible solutions,
respectively.

Proof. In each iteration of the while loop, only the dual variables corresponding to
connected components were raised. Therefore, no edge that is contained within the

CHAPTER 11. STEINER FOREST PROBLEM 144

same component can become tight, and, therefore, F is acyclic. To see that none of
the dual constraints are violated, observe that when a constraint becomes tight (that
is, it holds with equality), the corresponding edge ¢ is added to F. Subsequently,
since e is contained in some connected component of F, no set S with e € 6(S) ever
has ys raised. Therefore, the constraint for e cannot be violated, and so y is dual
feasible.

As long as F is not feasible, the while loop will not terminate, and there are some
minimal violated sets that can have their dual variables raised. Therefore, at the
end of the algorithm F is feasible. Moreover, since F is acyclic (it is a forest), there is
a unique s;-t; path in F for each 1 < i < k. Thus, each edge on a s;-t; path is not
redundant and is not deleted when pruning F to get F’. []

Theorem 11.3. The primal-dual algorithm for STEINER FOREST gives a 2-approximation.

Proof. Let F’ be the output from our algorithm. To prove this theorem, we want
to show that ¢(F’) < 2},cs ys where ys is the feasible dual constructed by the
algorithm. It follows from this that the algorithm is in fact a 2-approximation. First,
we know that ¢(F’) = Y,ep Ce = Yecpr 2iseswees(s) Ys because every edge picked is
tight. Let deg,(S) denote the number of edges of F’ that cross the cut (S, V' \ S). It
can be seen that ../ ZSES:eeé(S) Ys = Xses Ys degp (S).

Let A; contain the minimally violated sets in iteration i and let A; denote
the amount of dual growth in the ith iteration. Say that our algorithm runs
for « iterations. We can then rewrite } . ys deg.(S) as the double summation
Yic1 Lsea; Ai degp,(S). In the next lemma it will be shown for any iteration i that
Ysea; degp(S) < 2|A;|. Knowing this we can prove the theorem:

D ysdegp(S)=) > Aidegp(S) = Z D" Asdegy(8) < iAi 214l <2 ys.
i=1

SeS SeS i:SEA; i=1 S€A; SeS
|

Now we show the lemma used in the previous theorem. It is in this lemma that
we use the fact that we prune F to get F’.
We need a simple claim.

Lemma 11.2. Let T = (V, E) be a tree/forest and let Z C V be a subset of the nodes such
that every leaf of T is in Z. Then ., deg (v) < 2|Z| — 2 where deg(v) is the degree of
vinT.

Proof. We will prove it for a tree. We have }’ ., deg, (V) = 2|V| — 2 since a tree has
|V| -1 edges. Every node u € V — Z has degree at least 2 since it is not a leaf. Thus
Yuev—z degr(u) > 2|V — Z|. Thus,

> degr(v) <2[V[-2-2|V - Z| <2|Z| - 2.

veZ

CHAPTER 11. STEINER FOREST PROBLEM 145

Lemma 11.3. For any iteration i of our algorithm, ¥ sc 4. degp(S) < 2|A;| - 2.

Proof. Consider the graph (V, F’), and fix an iteration i. In this graph, contract each
set S active in iteration i to a single node (call such a node an active node), and each
inactive set to a single node. Let the resulting graph be denoted by H. We know that
F is a forest and we have contracted connected subsets of vertices in F; as F’ C F, we
conclude that H is also a forest.

Claim 11.0.3. Every leaf of H is an active node.

Proof. If not, consider leaf node v of H which is an inactive node and let e € F’ be
the edge incident to it. We claim that F’ — e is feasible which would contradict the
minimality of F’. To see this, if x, y are two nodes in H where v # x,v # y then x
and y are connected also in H — e since v is a leaf. Thus the utility of ¢ is to connect
v to other nodes in H but if this is the case v would be an active node at the start of
the iteration which is not the case. [

The degree in H of an active node corresponding to violated set S is degp,(S).
Now we apply Lemma 11.2.]

Chapter 12

Primal Dual for Constrained Forest
Problems

We previously saw a primal-dual based 2-approximation for the STEINER FOREST
problem. The algorithm can be generalized to a much wider class of problems that
involve finding a min-cost forest in an undirected edge-weighted graph that needs
to satisfy some constraint. The resulting machinery is a more abstract and requires
more advanced tools. We start with some problems all of which are NP-Hard.

Point to point connection problem: Given edge-weighted graph G = (V,E) and
two disjoint sets X = {s1,...,sx}and Y = {t1, ..., tx} of terminals find the min-cost
forest in G such that each connected component contains same number of terminals
from X and Y.

Lower Capacitated Tree Problem: Given G = (V,E),c:E > R"andak € Z*
find a set E’ C E of minimum cost such that every connected component in (V, E’)
has at least k edges.

Connectivity Augmentation: Given an undirected k-edge connected graph G =
(V,E) and a set of edges E**8 C V XV —E, find a set E’ C E”*8 of minimum cost
such that G = (V, E U E’) is (k + 1)-edge connected.

Steiner Connectivity Augmentation: Let G = (V, E) be an edge-weighted graphs
and let (s1,t1), ..., (sn, tn) be k pairs such that each pair is k-edge-connected in G.
Given a set of edges E**8 C V x V —E, find a set E’ C E?*& of minimum cost such
thatin G’ = (V, E U E’) each pair (s;, t;) is (k + 1)-edge connected.

Each of the preceding problems can be cast as a special case of the following
abstract problem. Given an edge-weighted graph G = (V,E) and a function
f:2Y — {0,1}, find a min-cost subset of edges E’ such that |5¢/(S)| > f(S) for each
S € V. We use the notation 0r(S) to denote the edges from an edge set F that cross

146

CHAPTER 12. PRIMAL DUAL FOR CONSTRAINED FOREST PROBLEMS 147

the set/cut S. Alternatively we want a min-cost subset of edges E’ such that each
set S € S is crossed by an edge of E’ where S = {S | f(S) = 1}. It is easy to observe
that a minimal solution to this abstract problem is a forest since any cut needs to be
covered at most once. This formulation is too general since f may be completely
arbitrary. The goal is to find a sufficiently general class that captures interesting
problems while still being tractable. The advantage of {0, 1} functions is precisely
because the minimal solutions are forests. We will later consider integer valued
functions.

Definition 12.1. Given a graph G = (V, E) and an integer valued function f : 2V — Z
we say that a susbet of edges F is feasible for f or covers f iff |6r(S)| = f(S) forall S C V.

Remark 12.1. Even though it may seem natural to restrict attention to requirement
functions that only have non-negative entries, we will see later that the flexibility of
negative requirements is useful.

Given a network design problem ITin an undirected graph G = (V, E) and an
integer valued function f : 2" — Z, we say that the requirement function of ITis f if
covering f is equivalent to satisfing the constraints of I1.

12.1 Classes of Functions and Setup

Here we consider classes of requirement functions f : 2 — Z and their relationship.
Even though we define more generally, for this chapter the focus will be on {0, 1}
functions.

Definition 12.2. f is maximal if for all disjoint A and B we have f(A U B) <
max{f(A), f(B)}.

Exercise 12.1. Prove that the requirement function of STEINER FOREsT is maximal.
Definition 12.3. f is proper if it is symmetric, maximal and f(V) = 0.
Exercise 12.2. Prove that the requirement function of STEINER FORest is proper.

Exercise 12.3. Prove that the requirement function Steiner Connectivity Augmenta-
tion is proper.

Definition 12.4. f is downward monotone if f(A) < f(B) forall ® # B C A.

Exercise 12.4. Prove that the requirement function of the Lower Capacitated Tree
problem as downward monotone.

A very general class is the one given below.

CHAPTER 12. PRIMAL DUAL FOR CONSTRAINED FOREST PROBLEMS 148

Definition 12.5. f is skew-supermodular (also called weakly-supermodular) if for all
A and B one of the following conditions hold,

1. f(A)+ f(B) < f(AUB) + f(ANB)
2. f(A)+ f(B) < f(A~B)+ f(B - A)

A specialization of skew-supermodular for {0, 1} functions will be the focus of
this chapter.

Definition 12.6. A {0, 1} valued f is uncrossable if for all A and B such that f(A) and
f(B) =1, one of the following conditions hold,

1. f(AUB)=1and f(ANB)=1
2. f(A-B)=1and f(B—A)=1.
Claim 12.1.1. If f is downward monotone then it is skew-supermodular.

Proof. Since f is downward monotone, A — B C Aand B — A C B we get:

f(A) < f(A-B)
f(B) < f(B~A)

and hence the second condition of skew-supermodularity always holds. []
Lemma 12.1. If f is proper then it is skew-supermodular.

Proof. Consider two sets A, B. By considering A as disjoint union of A — B and
AN B wehave (i) f(A) < max{f(A - B), f(AN B)}. Similarly (ii) f(B) < max{f(B -
A), f(ANB)}.

Now we apply symmetry of f and note that f(A) = f(V — A). Write V — A
as disjoint union of B — A and V — (A U B). Hence (iii)) f(A) = f(V - A) <
max{f(B—A), f(V-(AUB)} = max{f(B—-A), f(AU B)} where we used symmetry
of f in the second equality. Similary, (iv) f(B) < max{f(A - B), f(A U B}.

Summing up the four inequalities and replacing max{x, y} by (x + y)/2 we
obtain

2(f(A) + f(B) < f(A=B)+ f(B—=A)+ f(ANB) + f(AUB)

which implies that f(A) + f(B) < f(A-B)+ f(B—A)or f(A)+ f(B) < f(ANB) +
f(AUB). [

Definition 12.7. Let G = (V,E) and f : 2V — Z. For each X C E, the residual
requirement function fx : 2V — Z is defined as:

fx(A) = f(A) = |6x(A)].

CHAPTER 12. PRIMAL DUAL FOR CONSTRAINED FOREST PROBLEMS 149

Exercise 12.5. Let ¢ : 2 — R be a symmetric submodular function. Prove that g
satisfies posi-modularity:
g(A)+g(B) > g(A-B)+g(B-A) VA,BCV.

Lemma 12.2. If f is skew-supermodular then fx is also skew-supermodular for any X C E.
Proof. The function [0x(.)| is submodular. Hence

[0x(A)| + [0x(B)| = |0x(ANB)| +[6x(BUA)| VA, BCV.
The function is also symmetric and hence also satisfies posi-modularity. Therefore,

|0x(A)| +[6x(B)| = [0x(A — B)| + [6x(B—A)| VA,BCV.

Now consider the function fx and let A, B be any two subsets of V. Suppose
f(A)+ f(B) > f(AUB) + f(AN B). Then

fx(A) + fx(A) f(A) = 16x(A)| + f(B) - |6x(B)|

f(AUB)+ f(ANB) = (|6x(A) +|6x(B)|
f(AUB) + f(ANB) = (|6x(AN B)| + [6x(BU A)|
fx(AUB)+ fx(ANB).

vV v

Similarly, if f(A) + f(B) > f(A — B) + f(B — A) we can use posi-modularity of
|6x(-)| to argue that fx(A) + fx(B) > fx(A — B) + fx(B — A). We note that |6x| is
both submodular and posi-modular which allows us to use the right inequality. =

Remark 12.2. Allowing allow negative requirements in the definitoin of skew-
supermodularity allows a clean proof when subtracting [0x(-)|.

In the case of {0, 1} functions we make the following claim and leave the proof
as an exercise which is similar to the the one above.

Lemma 12.3. Let f : 2V — {0,1} be an uncrossable function and let X C E. Let
h: 2V — {0,1} be the residular function where h(S) = 1 iff |6x(S)| = 0. Then h is
uncrossable.

Definition 12.8. Let f be a {0, 1} requirement function over V and let X C E. A set S is
violated with respect to X if fx(S) = 1 (in other words S is not yet covered by the edge set
X). A set S is a minimal violated set if there is no S’ € S such that S’ is violated.

Lemma 12.4. Let f be an uncrossable function and X C E, then the minimial violated sets
of f with respect to X are disjoint. That is, if A, B are minimal violated sets then A = B or
ANB=0.

CHAPTER 12. PRIMAL DUAL FOR CONSTRAINED FOREST PROBLEMS 150

Proof. Since fx is also uncrossable it sufficies to consider minimal violated sets A, B
with respect to f (hence the empty set of edges). Suppose the property does not
hold. Then we can assume that A, B propertly cross, thatis, A—-B,ANB,B-A
are all non-empty. We have f(A) = f(B) = 1 since both are violated. Since f is
uncrossable, we have f(A—-B) = f(B—A)=1or f(ANB) = f(AUB) = 1. In both
cases we see that we violate minimality of A, B. []

12.2 A Primal-Dual Algorithm for Covering Uncrossable
Functions

In this section we consider the following problem. Given a graph G = (V, E) with
non-negative edge weights ¢ : E — R, and a uncrossable function f : 2V — {0, 1}
find a min-cost set of edges F C E such that [0r(S)| > f(S) for all S. An important
computational issue is how f is specified. A natural model is to consider the value
oracle one where we have access to f(S) via an oracle. Given S C V, the oracle
returns f(S). However this is not sufficient in the general context of uncrossable
functions as we see from the following example. Fix some set A. Define the function
fa where fa(S) = 1iff S = A. It is easy to see that there is a feasible solution iff
0r(A) # 0. How do we even verify that there is a feasible solution via a value oracle?
In general it may take an exponential number of queries to find A. Hence we need
more. We will assume that there is an oracle that given G and X C E outputs the set
of all minimal violated sets of fx. This will typically be easy to ensure for specific
functions of interest. We note that for some special class of functions such as proper
functions, a value oracle suffices to find the minimal violated sets.

We write the primal and dual LPs for covering f via edges of a given graph
G = (V,E).

min E CeXe

eeE

such that Z xe > f(S) VSCV
e€d(S)
X, >0 Ve€eE

max Zf(S)ys

SeS

such that Z ys <c. Ve€E
S:e€d(S)
ys =20 VSCV

CHAPTER 12. PRIMAL DUAL FOR CONSTRAINED FOREST PROBLEMS 151

The primal-dual algorithm is similar to the one for SteiNer Forest with a growth
phase and reverse-delete phase.

CoverUNcrossaBLeFunc(G = (V, E), f):
Fe0
while F is not feasible
Let Cq, Cy, ..., C; be minimally violated sets of f with respect to F
Raise yc, for 1 < i < { uniformly until some edge e becomes tight

F—F+e

x, =1
Let F = {e1,e,..., e} where ¢; is edge added to F in iteration i
F'=F

fori =t downto1do
if (F’ —¢;) is feasible then F’ = F’ —¢;
Output F’

Analysis: We can prove the following by induction on the iterations and omit the
routine details.

Lemma 12.5. The output of the algorithm, F’, is a feasible solution that covers f. Assuming
oracle access to finding the minimal violated sets in each iteration, the algorithm can be
implemented in polynomial time.

The preceding lemma shows that the algorithm correctly outputs a feasible
solution. The main part is to analyze the cost of the solution.

Theorem 12.9. Let F’ be the output of the algorithm. Then c(F’) < 2 Y5 f(S)ys and hence
c(F’) <20PT.

The cost analysis is based on the following key structural lemma.

Lemma 12.6. Let G = (V,E) be a graph and let f : 2V — {0,1} be an uncrossable
function and let C be the set of minimal violated sets of f with respect with respect to (. Let
F C E be any minimal feasible solution that covers f. Then Y. degy(C) < 2|C| where
deg.(C) = |6(C) N F| is the number of edges of F crossing C.

We defer the proof of the preceding lemma to the following subsection and
finish the analysis of the 2-approximation. This is similar to the one for STEINER
Forest. Let t be the number of iterations of the algorithm. Let C; be the minimal
violated sets in iteration i of the algorithm and let A; be the amount by which
the duals grow in iteration i. We call any C € C; active in iteration i. We have
2iecF Ce = Deepr 2isees(s) Ys since we add edges to F only when the dual constraint
is tight and F’ C F. We also observe that the duals are grown only for sets S C V
where f(S) = 1 and hence } 5 f(S)ys = X5 ys for the dual solution created by the
algorithm.

CHAPTER 12. PRIMAL DUAL FOR CONSTRAINED FOREST PROBLEMS 152

t
cF)=>" > ys=) f(S)ysdegp(S) = > degp(8) Y. Ai= > A;) degp(S).
S S

e€F’ S:eed(S) SeC; i=1 SeC

To complete the analysis we need the following lemma which can be seen as a
corollary of Lemma 12.6.

Lemma 12.7. Consider any iteration i of the algorithm. Then },ccc, degp,(C) < 2|Cjl.

Proof. Consider iteration i. Let X = {e1,ez,...,e;-1} which are the set of edges
added by algorithm in the growth phase prior to iteration i. Thus C; is the minimal
violated sets with respect to X. Consider the graph G’ = (V, E \ X) and the function
fx. We observe that F” = F’ \ X is a minimal feasible solution to covering fx
in G’ — this is because of the reverse delete process. Moreover we claim that
deg.,(C) = deg.,(C) for any C € C; (why?). We can now apply Lemma 12.6 to the
function fx (which is uncrossable) and G’ and F” so obtain:

Z deg,.(C) = Z deg;.(C) < 2|Ci.

CeC; CeC;

With the preceding lemma in place we have,

t t
e(F)= Y A) degn(S) <) Ai-21Cil =2) F(S)ys.
i=1 S

i=1 SeCi

12.2.1 Proof of Lemma 12.6

Since F is a minimal feasible solution to cover f, for every e € F there must be a set
Se such that f(S,) =1 and 6r(S.) = {e}; this is the reason we cannot remove e from
F and maintain feasibility. We call such a set S, a witness set for e. Clearly a witness
set S, is a violated set.

Claim 12.2.1. Let S, be a witness set for e € F. Then for any minimal violated set C we
have C C S, orC NS, =0.

Proof. 1f C crosses S, then either C — S, or C N S, would also be violated (since f is
uncrossable) contradicting minimality of C. []

Note that there can be many witness sets for the same edge, however, the same
set cannot be a witness set for two different edges.

CHAPTER 12. PRIMAL DUAL FOR CONSTRAINED FOREST PROBLEMS 153

Definition 12.10. Given a minimal feasible solution F we call a family of sets S a witness
family for F if there is a bijection h : F — S such that h(e) is a witness set for e.

Given F we can construct a witness family by considering each edge e € F and
picking an arbitrary witness set for e and additing it to the collection.

Definition 12.11. A family S of finite sets is laminar if no two sets A, B € S cross.

We have seen that there is a witness family for F since it is minimal. We can
obtain a special witness family starting with an arbitrary witness family.

Lemma 12.8. There is a witness family for F which is laminar.

Proof. The process is based on uncrossing. Suppose we start with an arbitrary
witness family S and it is not laminar. Let S,,, S,, be the witness sets for e1,e; € F
such that S,,, S,, cross.

Claim 12.2.2. One of the following holds: (i) (S \ {Se,, Se,}) U {Se; = Seys Sey — Sey } isa
witness family for F (ii) (8 \ {Se;, Se, }) U {Se; N Sey, Se, U Se, } is a witness family for F.

The new sets don't cross each other but what about other sets in the family? One
can argue that the number of crossing can only decrease. More formally, suppose
we have three sets A, B, D and say D crosses p sets from A, B (p is one of {0, 1, 2}). If
we uncross A, B (thatis replace A, Bby A—B, B—A or ANB, AU B) then the number
of sets that D crosses after uncrossing cannot increase. We leave this claim as an
exercise. This means that repeated uncrossing of two crossing sets will eventually
lead to a laminar family.

Now we prove the claim. S,. Se and S, are violated sets which means
that f(Se;) = 1 and f(Se,) = 1. Since f is uncrossable, say f(Se, — S¢,) = 1 and
f(Sey, = Se;) = 1. The only edges from F that can cross S,, — S¢, and S,, — S, are eq
and e, — if there is another edge e that crosses one of them then it would also cross
one of S,,; and S, and hence they would not be witness sets. Since F’ is a feasible
solution, S,, — S,, and S,, — S, are both crossed by some edge from Y = {ey, e2}.
We claim that each of them is crossed by exactly one of them. If this is the case then
they are valid witness sets for the two edges e1, e;. To see why exaclty one of them
crosses each set we use submodularity /posi-modularity:

22 [6y(Se; = Sex)l + [0¥(Se, = Ser)| < 10v(Sey)| +10v(Se,)| = 2.

The first inequality is since each is covered and the second inequality is because of
posi-modularity of [0y (-)|.

The other case when f(S.,, N S;,) =1 and f(S,, US,,) = 1 can also be handled
with a similar argument. [

CHAPTER 12. PRIMAL DUAL FOR CONSTRAINED FOREST PROBLEMS 154

Let S be a laminar witness family for F. We create a rooted tree P from S as
follows. To do this we first add V' to the family. For each set S € S we add a vertex
vs. Forany S, T such that T is the smallest set in S containing S we add the edge
(vs, vr) which makes vt the parent of vs. Since we added V to the family we obtain
a tree since every maximal set in the original family becomes a child of vy. Note that
P has |F| edges and |F| + 1 nodes and each ¢ € F corresponds to the edge (vs,, vr)
of P where vr is the parent of vs, in P. We keep this bijection between F and edges
of P in mind for later.

See figure.

)

Figure 12.1: Laminar witness family for a minimal solution F shown as red edges.
Sets in green are the minimal violated sets and the sets in black are the witness sets.
The root set V' is not drawn.

Consider any minimal violated set C € C. We observe that C cannot cross any
set in S since it is a witness family. For each C we associate the minimal set S € S
such that C € S. We call vg an active node of T if there is a C € S associated with it.
Note that (i) not all nodes of P may be active (ii) every C is associated with exactly
one active node of P (iii) multiple sets from C can be associated with the same active
node of P.

CHAPTER 12. PRIMAL DUAL FOR CONSTRAINED FOREST PROBLEMS 155

Lemma 12.9. Let P, be the active nodes of P. Then |P,| < |C| and every leaf of P other
than potentially the root is an active node.

Proof. Since each C is associated with an active node we obtain |P,| < |C|. A leaf of
P corresponds to a minimal set from S or the root. If S, is a minimal set from S
then S, is a violated set and hence must contain a minimal violated set C. But then
Se is active because of C. Consider vy. If it is a leaf then it has only one child which
is the unique maximal witness set S. The root can be inactive since the function f is
not necessarily symmetric. (However, if f is symmetric then V — S would also be a
violated set and hence contain a minimal violated set from C.) [|

Lemma 12.10. Let vt be an active node in P. Let C" C C be set of all minimal violated sets
associated with vr. Then Y. degp(C) < degp(vr).

Proof. LetY = Ucecr0r(C) be the set of edges incident to the sets in C’. Consider
any C € C’. C ¢ T and C is also disjoint from the children of T. Consider an edge
e € 6p(C). If e crosses T then T is the witness set for e (since only one edge from F
can cross T for which it is the witness) and we charge e to the parent edge of T. If e
does not cross T then the witness set S, must be a child of T. Since only one edge can
cross each child of T we can charge e to one child of T. Note that no edge ¢ € Y can
be incident to two set C1, C, € C’ since both one end point of e must be contained
in a child of T (assuming e does not cross T) and both C1, C; are contained in T and
disjoint from the children of T. See figure. Therefore, we can charge Y degy.(C)
to the number of children of T plus the parent edge of T, which is deg,(vT). |

Now we are ready to finish the proof. From Lemma 12.10 and the fact that each
C € C is associated to some active node, we have

Z deg.(C) < Z deg,(v).

CeC veP,

Tobound }’,cp, degp(v) we had observed that in the tree P every leaf except perhaps
the root node is an active node. Suppose root is an active node or it is not a leaf.
Then from Lemma 11.2, 3 .p deg,(v) < 2|P,;| — 2. Suppose root is a leaf and
inactive. Again from Lemma 11.2 where we consider Z = P, U {vy}, we have
Soep, degp(v) + 1 < 2|P; + 1| = 2 = 2|P,|. Hence 3,,cp, degp(v) < 2|P,| — 1. Thus,
in both cases we see that }’,.p degp(v) < 2|P,|. Finally we note that |P,| < |C| and
hence putting together we have

D" degy(C) <2|P,| <2[C]
CeC

as desired.

CHAPTER 12. PRIMAL DUAL FOR CONSTRAINED FOREST PROBLEMS 156

Bibliographic Notes: The primal-dual algorithm for uncrossable function is from
the paper of Williamson, Goemans, Mihail and Vazirani [160]. The proof in the
paper assumes that h is symmetric without explicitly stating it; for symmetric
functions one obtains a slight advantage over 2. See Williamson's thesis [159] where
he gives the proof for both symmetric and general uncrossable functions. The
survey by Goemans and Williamson [68] describes the many applications of the
primal-dual method in network design.

Chapter 13

Survivable Network Design
Problem

In this chapter we consider the SurvivaBLE NETWORK DEsiGN ProBLEM problem.
The input is an undirected graph G = (V, E) with edge-weights ¢ : E — R, and
integer requirements r(uv) for each pair of vertices uv. We wrote uv instead of
(1,v) to indicate that the requirement function is for unordered pairs (alternatively,
r(u,v) = r(v,u) for all u,v). The goal is to find a min-cost subgraph H = (V, F)
of G such that each the connectivity betweeen 1 and v in H is at least r(uv). We
obtain two versions of the problem: EC-SNDP if the connectivity requirement is
edge-connectivity and VC-SNDP for vertex connectivity. It turns out that EC-SNDP
is much more tractable than VC-SNDP and we will focus on EC-SNDP.
1(s,t) = 2 r(s;t;) = 2

1(s,t,) = 2 1(Syty) = 2
r(s;t;) = 1 1(sst3) = 1

Figure 13.1: Example of EC-SNDP. Requirement only for three pairs. A feasible
solution shown in the second figure as red edges. In this example the paths for
each pair are also vertex disjoint even though the requirement is only for edge-
disjointness.

For EC-SNDP there is a seminal work of Jain based on iterated rounding
that yields a 2-approximation as a special case of a more general problem. Prior

157

CHAPTER 13. SURVIVABLE NETWORK DESIGN PROBLEM 158

to his work there was an augmentation based approach that yields 2k and 2Hj
approximations where k = maxy, r(#v) is the maximum connectivity requirement.
Despite being superceded by Jain’s result in terms of the ratio, the augmentation
approach is important for various reasons and we will discuss both.

We first consider the LP relaxation for the EC-SNDP. We do this by setting up
the requirement function f : 2V — Z where we let f(S) = maxyes,pev-s r(uv). The
goal is to find a min-cost subgraph H of G such that 65(S) = f(S).

Claim 13.0.1. The requirement function f that captures EC-SNDP is proper and hence
skew-supermodular.

Proof. It is easy to see f is symmetric. Consider disjoint sets A, B. Suppose
f(A U B) = k which means that there is somes € AUBand t € V — (A U B) such
that r(st) = k. If s € A then f(A) > k and if s € B then f(B) > k. Therefore
max{f(A), f(B)} > k= f(AUB)sinces € Aors € B. [

13.1 Augmentation approach

The augmentation approach for EC-SNDP is based on iteratively increasing the
connectivity of pairs from 1 to k where k = max,, r(1v). In fact this works for any
proper function f : 2V — Z and we will work in this generality rather than focus
only on EC-SNDP.

Claim 13.1.1. Let f be a proper function and let p be an integer. Then the truncated
function g, : 2V — Z defined as g,(S) = min{p, f,(S)} is proper.

Proof. Exercise. u

Lemma 13.1. Let G = (V, E) be graph and let f : 2V — Z be a proper function and let
p = 0 be a non-negative integer. Let X C E be a set of edges such that [0x(S)| > g,(S)
Consider the function hyw1 : 2V — {0, 1} where hy1(S) = 1 iff f(S) > p + 1 and
[0x(S)| = p. Then hy,1 is uncrossable and symmetric.

Proof. Consider the function g,+1 whichis proper and hence also skew-supermodular.
For notational convenience we use h for hy.1. Suppose h(A) = h(B) = 1. This
implies gy4+1(A) > p +1and gp+1(B) > p + 1 and [6x(A)| = 6x(B) = p. gp+1 is skew-
supermodular. First case is when g11(A) + gp+1(B) < gp+1(A U B) + gp+1(A N B).
This implies that g,+1(A U B) = gy+1(B) = p + 1. By submodularity of |6x| we have
[0x(A)| +16x(B)| = [0x(A N B)| + |[0x(A U B)| and by feasibility of X for g, we have
|6x(A N B)| =|6x(ANB)| =p. This implies that /(AN B) = h(AUB) = 1.
Similarly, if gp+1(A) + gp+1(B) < gp+1(A — B) + gp+1(B — A) we can argue that
h(A — B) = h(B — A) = 1 via posi-modularity of |0x]|. [

CHAPTER 13. SURVIVABLE NETWORK DESIGN PROBLEM 159

Exercise 13.1. Let G = (V,E) be a graph and let f : 2" — Z be a proper function.
Suppose F be a feasible cover for g,. Let /1,41 be the residulal uncrossable function
that arises from g, as in the preceding lemma. Let F’ C E \ F be a feasible cover for
hp41in the graph G” = (V, E \ F). Then F U F’ is a feasible cover for g,.1.

Lemma 13.2. Let f be the requirement function of an instance of EC-SNDP in G = (V, E)
and let p be an integer and let X C E be a set of edges. There is a polynomial time algorithm
to find the minimal violated sets of g, with respect to X.

Proof. For each pair or nodes (s, t) find a source-minimal s-t mincut S in the graph
H = (V,X) and a sink-minimal mincut T via maxflow!. Let S be the cut. If
|6x(S)| < p then p is a violated set. We compute all such minimal cuts over all pairs
of vertices and take the minimal sets in this collection. We leave it as an exercise to
check that the minimal violated sets of g, are the minimal sets in this collection and
will be disjoint. [

Corollary 13.1. Let f be the requirement function of an instance of EC-SNDP in G = (V, E)
and let p be an integer. Let X be set of edges such that X is feasible to cover . In the graph
G' = (V,E\ X) and for any F C (E \ X) the minimal violated sets of h,1 with respect to
F can computed in polynomial time.

Proof. The minimial violated sets of 11,.1 with respect to F are the same as the
minimal violated sets of g,+1 with respect to X U F. []

The source minimal s-t mincut in a directed /undirected graph is unique via submodularity and
can be found by computing s-t maxflow and finding the reachable set from s in the residual graph.
Similarly sink minimal set.

CHAPTER 13. SURVIVABLE NETWORK DESIGN PROBLEM 160

Augmentation-Algorithm(G = (V,E), f)

1. If E does not cover f output “infeasible”

2. k= msaxf(S) is the maximum requirement

3. A<= 10
4. for (p=1 to k) do
A. G'=(V,E\A)
B. Let g, be the function defined as g,(S) = min{f(S),p}
C. Let hy be the uncrossable function where hy,(S) =1 iff g,(S) > [04(S)|

D. Find A" CE\ A that covers h, in G’
E. A—AUA’

5. Output A

(sit) =2 S1
r(Sztz) =2
T(S3t3) =1

4

S1

t, @ ° t3

Figure 13.2: Example to illustrate the augmentation approach. Top picture shows a
set of edges that connect all pairs with connectivity requirement at least 1. Second
picture shows the residual graph in which one needs to solve the augmentation
problem. Note that s, and ¢, are isolated vertices in the residual graph, however, the
cuts induced by them are already satisfied by the edges chosen in the first iteration.

Theorem 13.2. The augmentation algorithm yields a 2k-approximation for EC-SNDP
where k is the maximum connectivity requirement.

CHAPTER 13. SURVIVABLE NETWORK DESIGN PROBLEM 161

Proof. We sketch the proof. The algorithm has k iterations and in each iteration it
uses a black box algorithm to cover an uncrossable function. We saw a primal-dual
2-approximation for this problem. We observe that if F* is an optimum solution to
the given instance then in each iteration F* \ A is a feasible solution to the covering
problem in that iteration. Thus the cost paid by the algorithm in each iteration
can be bound by 2¢(F*) and hence the total cost is at most 2k OPT. The preceding
lemmas argue that the primal-dual algorithm can be implemented in polynomial
time. u

Remark 13.1. A different algorithm that is based on augmentation in reverse yields a
2H approximation where H is the k’th harmonic number. We refer the reader to
[67].

13.2 Iterated rounding based 2-approximation

In the section we describe the seminal result of Jain [91] who obtained a 2-
approximation for EC-SNDP via iterated rounding. He proved a more general
polyhedral result. Consider the problem of covering a skew-supermodular function
f :2¥ — Z by the edges of a graph G = (V,E). The natural cut covering LP
relaxation for the problem is given below.

min Z c(e)x,
ecE
Z x. = f(S) ScvV
e€d(S)

x. € [0,1] e€E
Note that upper bound constraints x, < 1 are necessary in the general setting
when f is integer valued since we can only take one copy of an edge. The key

structural theorem of Jain is the following.

Theorem 13.3. Let x be a basic feasible solution to the LP relaxation. Then there is some
edge e € E such that x, = 0 or x, > 1/2.

With the above in place, and the observation that the residual function of a
skew-supermodular function is again a skew-supermodular function, one obtains
an interative rounding algorithm.

CHAPTER 13. SURVIVABLE NETWORK DESIGN PROBLEM 162

Cover-Skew-Supermodular(G, f)

1. If E does not cover f output “infeasible”
2. A—0, g=f
3. While A is not a feasible solution do

A. Find an optimum basic feasible solution x to cover g in G’ = (V,E\A).
B. If there is some e such that x, =0 then E « E — {e}
C. Else If there is some e such that x, > 1/2 then

1. A= AU {e}

2. g =fa (recall fa(S)= f(S)—104(S)D

4. Output A

Corollary 13.4. The integrality gap of the cut LP is at most 2 for any skew-supermodular
function f.

Proof. We consider the iterative rounding algorithm and prove the result via
induction on m the number of edges in G. The base case of m = 0 is trivial since the
function has to be 0.

Let x* be an optimum basic feasible solution to the LP relaxation. We have
2oeck CeXp < OPT. We can assume without loss of generality that f is not trivial in
the sense that f(S) > 1 for at least some set S, otherwise x = 0 is optimal and there
is nothing to prove. By Theorem 13.3, there is an edge ¢ € E such that x; = 0 or
x;>1/2. LetE’ =E\ &and G' = (V, E’). In the former case we can discard & and
the current LP solution restricted to E’ is a feasible fractional solution and we obtain
the desired result via induction since we have one less edge.

The more interesting case is when x; > 1/2. The algorithm includes ¢ and
recurses on G’ and the residual function ¢ : 2V — Z where ¢(S) = f(S) — |6:(S)|.
Note that g is skew-supermodular. We observe that A” C E’ is a feasible solution
to cover g in G’ iff A’ U {é} is a feasible solution to cover f in G. Furthermore,
we also observe that the fractional solution x” obtained by restricting x to E’ is a
feasible fractional solution to the LP relaxation to cover ¢ in G’. Thus, by induction,
there is a solution A’ C E” such that ¢(A”) <2} ,cg c(e)x;. The algorithm outputs
A = A’ U {é} which is feasible to cover f in G. We have

c(A)=c(A") +c() < c(A") +2c(@)x; <2 Z c(e)x; +2c(8)x; =2 Z c(e)x;.

ecE’ eeE

We used the fact that x} > 1/2 to upper bound c(€) by 2¢(&)x;. [

CHAPTER 13. SURVIVABLE NETWORK DESIGN PROBLEM 163

2-approximation for EC-SNDP : We had already seen that the requirement
function for EC-SNDP is skew-supermodular. To applyTheorem 13.3 and obtain
a 2-approximation for EC-SNDP we need to argue that the LP relaxation can be
solved efficiently. We observe that the LP relaxation at the top level can be solved
efficiently via maxflow. We need to check that in the graph G with edge capacities
given by the fractional solution x the min-cut between every pair of vertices (s, t)
is at least 7(s, t). Note that the algorithm is iterative. As we proceed the function
g = fa where f is the original requirement function and the A is the set of edges
already chosen.

Exercise 13.2. Prove that there is an efficient separation oracle for each step of
the iterative rounding algorithm when f is the requirement function for a given
EC-SNDP instance.

We now prove Theorem 13.3. The proof consists of two steps. The first step is a
characterization of basic feasible solutions via laminar tight sets. The second step is
a counting argument.

13.2.1 Basic feasible solutions and laminar family of tight sets

Let x be a basic feasible solution to the LP relaxation. We are done if there is any
edge e such that x, = 0 or x, = 1. Hence the interesting case is when x is fully
fractional, that is, x, € (0, 1) for every e € E.

Definition 13.5. A set S C V is tight with respect to x if x(6(S)) = f(S).

The LP relaxation is of the form Ax > b, x € [0,1]". We number the edges as
e1, e, ..., ey arbitarily. Note that each row of A corresponds to a set S and the
non-zero entries in the row corresponding to S are precisely for edges in 6(S). For
notational convenience we use xs to denote the m-dimensional row vector where
Xxs(i) =0if e; ¢ 6(S) and xs(i) = 1if e € 6(S). By the rank lemma, if x is a basic
feasible solution that is fully fractional, then there are m tight sets 51, S,...,Su
such that the vectors xs,, xs,, ..., Xs,, are linearly independent in R™. In other
words x is the unique solution to the system)(gix = f(Si),1 < i < m. Note that for a
given basic feasible solution x there can be many such bases. A key technical lemma
is that one choose a nice one.

Lemma 13.3. Let x be a basic feasible solution to the cut covering LP relaxation of a
skew-supermodular function f where x, € (0,1) for all e. Then there is a laminar family L
of tight sets S1,Sa, ..., Sy such that x is the unique solution to the system)(g_x = f(Si).

We need an auxiliary uncrossing lemma.

Lemma 13.4. Suppose A and B are two tight sets with respect to x such that A, B cross.
Then one of the following holds:

CHAPTER 13. SURVIVABLE NETWORK DESIGN PROBLEM 164

Figure 13.3: Laminar family of tight sets.

* ANB,AUBaretightand xa + XB = XAuB + XAnB-
e A—B,B—-Aaretightand xa + XB = XA-B + XB-A.

Proof. Since f is skew-supermodular f(A) + f(B) < f(ANB)+ f(AUB) or f(A) +
f(B) < f(A—=B)+ f(B—A). We will consider the first case.

A, B are tight, hence x(6(A)) = f(A) and x(6(B)) = f(B). Moreover the function
h(S) = x(6(S)) is submodular (recall that the cut capacity function in an undirected
graph is symmetric submodular). Thus x(6(A))+x(6(B)) = x(6(AUB))+x(6(ANB)).
We also have by feasibility of x that x(6(AUB)) > f(AUB)nad x(6(ANB)) > f(ANB).
Putting together we have

x(0(A))+x(6(B)) = f(A)+f(B) < f(ANB)+f(AUB) < x(6(AUB))+x(0(ANB)) < x(6(A))+x(5(B)).

This implies that x(6(A U B)) = f(A U B) and x(6(A N B)) = f(A N B). Thus
both A N B and A U B are tight. Moreover we observe that x(6(A)) + x(6(B)) =
x(6(A U B)) + x(6(A N B)) + 2x(E(A — B,B — A)) where E(A — B,B — A) is the
set of edges between A — B and B — A. From the above tightness we see that
x(0(A)) +x(6(B)) = x(6(AU B)) + x(6(A N B)), and since x is fully fractional it means
that E(A — B, B — A) = (. This implies that x4 + x8 = xaus + xans (Why?).

The second case is similar where we use posimodularity of the cut function. =

Proof of Lemma 13.3. One natural way to proceed is as follows. We start with tight
sets S = {S1,52,...,Sm} such that x is characterized as the unique solution of
the equations implied by these sets. If the family {Si,S»,..., S} is laminar we
are done. Otherwise we pick some two crossing sets, say S1, So without loss of
generality and uncross them using Lemma ??. We get a new family S’ with m tight
sets and the number of crossings in the new family goes down by at least one (as we
saw in Lemma ?? previously). Suppose we replace S1, S> by S1 N Sz, S1 U Sy. The

CHAPTER 13. SURVIVABLE NETWORK DESIGN PROBLEM 165

technical issue is to argue linear independence of the vectors in the new family. This
is where we need the property xs, + xs, = Xs,ns, + Xs,us,. Although natural, the
linear algebraic argument turns out to be a bit tedious.

Instead we use a slick argument. Let £ be a maxmial laminar family of x-tight
sets such that the vectors xs, S € L are linearly independent. If £ = m then we
are done because we have m linearly independent vectors that together span R™.
Suppose | L| < m. Then there must be a tight set S such that xs is not spanned by
the vectors in £. Choose a tight set S that is not spanned and crosses the fewest
number of sets from L. Since L is maximal, there must be some set T € £ such that
S, T cross (otherwise we can add S to £). Here we use Lemma 13.4 and consider
two cases. Suppose SNT,S UT are tight. Note that SNT,S UT cross fewer sets in
L than S does. By the choice of S, it must be the case that both SNT and SUT are
spanned by L. However, we have xs + x7 = xsnr + Xsur which implies that xs is
also spanned, a contradiction. The proof for the other case when S —T and T - S
are tight is similar. Thus we have £ = m and this is the desired family.]

13.2.2 Counting argument

The second key ingredient in the proof is a counting argument that exploits Lemma
13.3. An easier counting argument shows that there is an edge with x, > 1/3 in any
basic feasible solution. The tight bound of 1/2 is more delicate and Jain’s original
proof is perhaps a bit hard to understand (see [155]). The argument has been
subsequently refined and a “fractional token” based analysis [127] was developed
and this is the proof in [158]. The token based analysis is flexible and powerful
in iterated rounding based algorithms. In an attempt to make the proof even
more transparent, the author of this notes developed yet another proof in [42]. We
describe that proof below.

The proof is via contradiction where we assume that 0 < x, < % foreache € E.
We call the two nodes incident to an edge as the endpoints of the edges. We say that
an endpoint u belongs to a set S € L if u is the minimal set from £ that contains u.

We consider the simplest setting where L is a collection of disjoint sets, in
other words, all sets are maximal. In this case the counting argument is easy. Let
m = |E| = |£L]. Foreach S € £, f(S) = 1 and x(6(S)) = f(S). If we assume that
Xe < % for each e, we have |0(S)| > 3 which implies that each S contains at least
3 distinct endpoints. Thus, the m disjoint sets require a total of 3m endpoints.
However the total number of endpoints is at most 2m since there are m edges,
leading to a contradiction.

Now we consider a second setting where the forest associated with £ has k
leaves and & internal nodes but each internal node has at least two children. In this
case, following Jain, we can easily prove a weaker statement that x, > 1/3 for some

edge e. If not, then each leaf set S must have four edges leaving it and hence the

CHAPTER 13. SURVIVABLE NETWORK DESIGN PROBLEM 166

Figure 13.4: Easy case of counting argument.

total number of endpoints must be at least 4k. However, if each internal node has
at least two children, we have h < k and since h + k = m we have k > m /2. This
implies that there must be at least 4k > 2m endpoints since the leaf sets are disjoint.
But m edges can have at most 2m endpoints. Our assumption on each internal node
having at least two children is obviously a restriction. So far we have not used the
fact that the vectors xs, S € L are linearly independent. We can handle the general
case to prove x, > 1/3 by using the following lemma.

Lemma 13.5. Suppose C is a unique child of S. Then there must be at least two endpoints
in S that belong to S.

Proof. If there is no endpoint that belongs to S then 6(S) = 6(C) but then xs and
Xc are linearly dependent. Suppose there is exactly one endpoint that belongs
to S and let it be the endpoint of edge e. But then x(56(S)) = x(6(C)) + x, or
x(6(S)) = x(6(C)) — x,. Both cases are not possible because x(6(S)) = f(S) and
x(6(C)) = f(C) where f(S) and f(C) are positive integers while x, € (0,1). Thus
there are at least two end points that belong to S. [

Using the preceding lemma we prove that x, > 1/3 for some edge e. Let
k be the number of leaves in £ and & be the number of internal nodes with at
least two children and let ¢ be the number of internal nodes with exactly one
child. We again have i < k and we also have k + h + { = m. Each leaf has at
least four endpoints. Each internal node with exactly one child has at least two
end points which means the total number of endpoints is at least 4k + 2¢. But
4k + 20 =2k + 2k + 20 > 2k + 2h + 2{ > 2m and there are only 2m endpoints for m
edges. In other words, we can ignore the internal nodes with exactly one child since
there are two endpoints in such a node/set and we can effectively charge one edge
to such a node.

We now come to the more delicate argument to prove the tight bound that x, > 3
for some edge e. We describe invariant that effectively reduces the argument to the

CHAPTER 13. SURVIVABLE NETWORK DESIGN PROBLEM 167

case where we can assume that L is a collection of leaves. This is encapsulated in
the lemma below which requires some notation. Let a(S) be the number of sets of
L contained in S including S itself. Let f(S) be the number of edges whose both
endpoints lie inside S. Recall that f(S) is the requirement of S.

Lemma 13.6. Forall S € L, f(S) > a(S) — B(S).

Assuming that the lemma is true we can do an easy counting argument.
Let R1, Ry, ..., Ry be the maximal sets in £ (the roots of the forest). Note that
Z?:l a(R;) = | L] = m. Applying the claim to each R; and summing up,

Note that Z?zl f(R;) is the total requirement of the maximal sets. And m —
Zf’zl B(R;) is the total number of edges that cross the sets Ry, ..., Rj. Let E” be the set
of edges crossing these maximal sets. Now we are back to the setting with h disjoint
sets and E’ edges with 2?21 f(R;) > |E’|. This easily leads to a contradiction as
before if we assume that x, < % forall e € E’. Formally, each set R; requires > 2f(R;)
edges crossing it from E’ and therefore R; contains at least 2f(R;) + 1 endpoints of
edges from E’. Since Ry, ..., Ry are disjoint the total number of endpoints is at least
23 f(Ri) + h which is strictly more than 2|E’|.

Proof of Lemma 13.6. Thus, it remains to prove the claim which we do by inductively
starting at the leaves of the forest for L.

Case 1: S is a leaf node. We have f(S) > 1 while a(S) = 1 and (S) = 0 which
verifies the claim.

Case 2: S is an internal nodes with k children Cy, Cy, ..., Ck. See Fig 13.5 for the
different types of edges that are relevant. E. is the set of edges with end points in
two different children of S. E.,, be the set of edges that cross exactly one child but do
not cross S. E,, be the set of edges that cross S but do not cross any of the children.
E., is the set of edges that cross both a child and S. This notation is borrowed from
[158].

Let y(S) be the number of edges whose both endpoints belong to S but not to
any child of S. Note that y(S) = |Ecc| + |Ecpl.

CHAPTER 13. SURVIVABLE NETWORK DESIGN PROBLEM 168

Figure 13.5: S is an internal node with several children. Different types of edges
that play a role. p refers to parent set S, c refer to a child set and o refers to outside.

Then,
k
pIS) = y(5)+) B(C)
121)
> y(S)+ Z a(Ci) - Zf(Ci) (13.1)
i=1 i=1

k
y(S)+a(s) 1= f(Cy)
i=1

(13.1) follows by applying the inductive hypothesis to each child. From the preceding
inequality, to prove that 5(S) > a(S) — f(S) (the claim for S), it suffices to show the
following inequality.

k
y(S) = D FCH-f(S)+1. (13.2)
i=1

The right hand side of the above inequality can be written as:

Zk:f(Ci)—f(S)H = Z 2%, + Z Xe — Z Xe + 1. (13.3)
i=1

e€E . e€Ecp €€k,

CHAPTER 13. SURVIVABLE NETWORK DESIGN PROBLEM 169

We consider two subcases.

Case 2.1: (S) = 0. This implies that E.. and E, are empty. Since x(56(5)) is linearly
independent from x(6(C1)), ..., x(6(Ck)), we must have that E,, is not empty and
hence)’ e€Ey, Xe > 0. Therefore, in this case,

Zk:f(ci)—f(s)+1= Zer+ Z Xe — Z Xe+1=-— Z x.+1<1.
i

e€E . e€Eqp e€Ey, e€Ep,

Since the left hand side is an integer, it follows that Zle f(Ci)=f(S)+1<0=p(5).
Case 2.2: (S) > 1. Recall that y(S) = |Ecc| + |Ecpl.

Zk:f(ci)—f(s)+1= sze+ Z X — Z X +1< ZZxE+ Z xe+1
i1

e€E.. e€Ecy e€Ey, e€E. e€Ey

By our assumption that x, < % for each e, we have 3, g 2x. < |Ecc|if |[Ecc| > 0, and
similarly ZeeEw Xe < |Ecpl/2if |Ecp| > 0. Since y(S) = |Ecc| + |Ecp| = 1 we conclude

that
Z 2x, + Z xe < Y(S).

e€E . e€Eqy

Putting together we have

k
DFCH-fO+1< D 2+ Y xe+1<p(S)+1<y(5)
i=1

e€E., e€Ecp
as desired. []

Tightness of the analysis: The LP relaxation has an integrality gap of 2 even for
the MST problem. Let G be the cycle on n vertices with all edge costs equal to 1.
Then setting x, = 1/2 on each edge is feasible and the cost is 11/2 while the MST cost
is n — 1. Note that the optimum fractional solution here is 1/2-integral. However,
there are more involved examples (see Jain’s paper or [155]) based on the Petersen
graph where the optimum basic feasible solution is not half-integral while there
are one or more edges with fractional value at least 1/2. Jain’s iterated rounding
algorithm is an unusual algorithm in that the output of the algorithm may not have
any discernible structure until it is completely done.

CHAPTER 13. SURVIVABLE NETWORK DESIGN PROBLEM 170

Running time: The strength of the iterated rounding approach is the remarkable
approximation guarantees it delivers for various problems. The weakness is the high
running time which is due to two reasons. First, one needs a basic feasible solution
for the LP — this is typically much more expensive than finding an approximately
good feasible solution. Second, the algorithm requires computing an LP solution
many times. Finding faster algorithms with comparable approximation guarantees
is an open research area.

Chapter 14

Introduction to Cut and
Partitioning Problems

Graph cut and partitoning problems such as the well-known s-f minimum cut
problem play a fundamental role in combinatorial optimization. Many natural
cut problems that go beyond the s-t cut problem are NP-Hard and there has been
extensive work on approximation algorithms and heuristics since they arise in
many applications. In addition to algorithms, the structural results that capture
approximate relationships between flows and cuts (called flow-cut gaps), and the
connections to the theory of metric embeddings as well as graph theory have led to
many beautiful and important results.

14.1 s-t mincut via LP Rounding and Maxflow-Mincut

Let G = (V,E) be a directed graph with edge costs ¢ : E — R,. Lets,t € V be
distinct vertices. The s-t mincut problem is to find the cheapest set of edges E’ C E
such that there is no s-t pathin G — E’. An s-t cut is often also defined as 6*(S) for
some S C V wheres € S,t € V —S. Suppose E’ is an s-t cut. Let S be the set of
nodes reachable from s in G — E’, then 6(S) C E’ and moreover 6(S) is an s-f cut.
Thus, it suffices to focus on such limited type of cuts, however in some more general
settings it is useful to keep these notions separate.

It is well-known that s-t mincut can be computed efficiently via s-t maximumflow
which also establishes the maxflow-mincut theorem. This is a fundamental theorem
in combinatorial optimization with many direct and indirect applications.

Theorem 14.1. Let G = (V, E) be a directed graph with rational edge capacities c : E — Q4
and let s, t € V be distinct vertices. Then the s-t maximum flow value in G is equal to the
s-t minimum cut value and both can be computed in strongly polynomial time. Further, if c

171

CHAPTER 14. INTRODUCTION TO CUT AND PARTITIONING PROBLEMS 172

is integer valued then there exists an integer-valued maximum flow.

The proof of the preceding theorem is typically established via the augmenting
path algorithm for computing a maximum flow. Here we take a different approach
to finding an s-t cut via an LP relaxation whose dual can be seen as the the maxflow
LP.

Suppose we want to find an s-t mincut. We can write it as an integer program
as follows. For each edge ¢ € E we have a boolean variable x, € {0,1} to indicate
whether we cut e. The constraint is that for any path P € P ; (here P ; is the set of
all s-t paths) we must choose at least on edge from P. This leads to the following IP.

min Z c(e)x,

ecE

dYx =1 Pepy,

eeP

x. € {0,1} e€cL.

The LP relaxation is obtained by changing x, € {0,1} to x, > 0 since we can
omit the constraints x, < 1. We note that the LP has an exponential number of
constraints, however, we have an efficient separation oracle since it corresponds to
computing the shortest s-f path. The LP can be viewed as assigning lengths to the
edges such that the shortest path between s and ¢ according to the lengths is at least
1. This is a fractional relaxation of the cut.

Rounding the LP: We will prove that the LP relaxation can be rounded without
any loss! The rounding algorithm is described below.

Theta-Rounding(G, s, t)

1. Solve LP to obtain fractional solution y

2. For each v € V let dy(s,v) be the shortest path distance from s to v
according to edge lengths y,.

3. Pick O uniformly at random from (0,1)

4. Ooutput E" = 6"(B(s, 0)) where B(s,0) = {v | d,(s,v) < 0} is the ball of radius
0 around s

It is easy to see that the algorithm outputs a valid s-t since d,(s,t) > 1 by
feasibility of the LP solution y and hence t ¢ B(s, 0) for any 6 < 1.

Lemma 14.1. Let e = (u,v) be an edge. Ple is cut by algorithm] < y(u, v).

CHAPTER 14. INTRODUCTION TO CUT AND PARTITIONING PROBLEMS 173

Proof. An edge e = (u,v) is cut iff d,(s,u) < 0 < d,(s,v). Hence the edge is not
cutif dy(s,v) < dy(s,u). If dy(s,v) > d,(s, u) we have d,(s,v) — dy(s, u) < y(u,v).
Since 0 is chosen uniformly at random from (0, 1) the probabilty that O lies in the
interval [dy(s,u), dy(s,v)] is at most y(u, v). [

Corollary 14.2. The expected cost of the cut output by the algorithm is at most }, c(e)ye..

The preceding corollary shows that there is an integral cut whose cost is at most
that of the LP relaxation which implies that the LP relaxation yields an optimum
solution. The algorithm can be easily derandomized by trying “all possible value
of 0”. What does this mean? Once we have y we compute the shortest path
distances from s to each vertex v. We can think of these distances as producing a line
embedding where we place s at 0 and each vertex v at dy(s, v). The only interesting
choices for 0 are given by the n values of d,(s, v) and one can try each of them and
the corresponding cut and find the cheapest one. It is guaranteed to be at most
e c(e)ye-

What is the dual LP? We write it down below and you can verify that it is the
path version of the maxflow!

max zp
PEPS,t

Z zp < cle) e€E
P:eeP
ZP Z O P E Pslt.

Thus, we have seen a proof of the maxflow-mincut theorem via LP rounding of
a relaxation for the s-t cut problem.

A compact LP via distance variables: The path based LP relaxation for the s-t
mincut problem is natural and easy to formulate. We can also express shortest path
constraints via distance variables. We first write a bigger LP than necessary via
variables d(u, v) for all ordered pairs of vertices (hence there are n? variables). We
need triangle inequality constraints to enforce that d(u, v) values respect shortest
path distances.

min c(u,v)d(u,v)
(u,v)eE
du,v)+dw,w)—d(u,w)

d(s,t)
d(u,v)

0 u,v,weV
1
0 (u,v)eVxV

vV IV IV

CHAPTER 14. INTRODUCTION TO CUT AND PARTITIONING PROBLEMS 174

Although the preceding LP is wasteful in some ways it is quite generic and
can be used for many cut problems where we are interested in distances between
multiple pairs of vertices.

Now we consider a more compact LP formulation. We have two types of
variables, x(u, v) for each edge (1, v) € E and d, variables for each v € V to indicate
distances from s.

min c(u,v)x(u,v)

(u,v)eE
dy < d,+x(u,v) (u,v)€E
d > 1
dyp > 0 veV
x(u,v) =2 0 (u,v)eE

Exercise 14.1. Write the dual of the above LP and see it as the standard edge-based
flow formulation for s-t maximum flow.

14.2 A Catalog of Cut and Partitioning Problems

Here we list a few prominent problems.

Multiway Cut: Input is an undirected graph G = (V, E) and edge weights w :
E — R, and a set of k terminals {s1,s2,...,5¢} € V. The goal is to remove a
minimum weight subset of edges such that there is no path from s; to s; for any
i # j. This problem is NP-Hard even for k = 3. Node-weighted Multiway Cut is
the generalization to the setting when G has node-weights instead of edge-weights.
Directed Multiway Cut is the version where G is a directed graph and the goal is to
remove a minimum weight set of edges so that there is no s;-s; path for any i # j.
Note that the directed version generalizes the node-weighted undirected problem
as well.

k-Cut: In k-Cut the input is a graph G and integer k. The goal is to remove a
minimum weight set of edges such that the resulting graph has at least k non-trivial
components. The problem is NP-Hard when k is part of the input but admits a
polynomial time algorithm for any fixed k. A common generalization of k-Cut
and Multiway Cut is the so-called Steiner k-Cut: here the input is a graph G, a
set of terminals S C V and an integer k where k < |S|. The goal is to remove a
minimum-weight subset of edges such that there are at least k components that
each contain a terminal.

CHAPTER 14. INTRODUCTION TO CUT AND PARTITIONING PROBLEMS 175

Multicut: The input is an edge-weighted graph G = (V, E) and k source-sink pairs
(s1,t1),(s2,t2), ..., (sk, tx) and the goal is to remove a minimum-weight set of edges
so that there is no path from s; to t; for all i € [k]. Note that Multiway Cut is a
special case. Multicut also naturally generalizes to the node-weighted setting and
to directed graphs.

Sparsest Cut: We discuss the more general version first called the Non-uniform
Sparsest Cut. The input is an edge-capacitated graph G = (V,E) and k source-
sink pairs (s1,t1),...,(sk, tx) and associated non-negative scalar demand values
D1, D, ..., Dg. The goal is to find a minimum-weight subset of edges E’ C E such

gg,)) is minimized where c(E’) is the total capacity of edges in E’ and D(E’)
is the total demand of pairs separated by removing E’. In undirected graphs one

can see that this ratio is also minimized by a connected component and hence one
LOB). 1n the Uniform Sparsest Cut

the ratio

can alternatively phrase the problem as mingcy

D(6(5))"
problem we associate D(u,v) = 1 for every pair of vertices and hence one wants to
find ming¢y % This is closely related (to within a factor of 2) to the problem

of finding the expansion of a graph where the objective is mingey |s|<|v|/2 c(]séls))

Other closely related variants are to find the conductance and sparsest cut for product
multicommodity flow instances where the demands are induced by vertex weights
(that is, D(u,v) = m(u)m(v) where : V. — mathbbR,).

Sparsest Cut can be generalized to node-weighted settings and to directed
graphs. In directed graphs there is a substantial difference when considering the
non-uniform versus the uniform settings because the latter can be thought of a
symmetric version. We will not detail the issues here.

Minimum Bisection and Balanced Partitioning: The input is an undirected edge-
weighted graph G. In Minimum Bisection the goal is to partition V into V1, V> where
LIV]/2] < V], V2] < [|V]/2] so as to minimize the weight of the edges crossing
the partition. In Balanced Partition the sizes of the two parts can be approximately
equal — there is a balance parameter a € (0,1/2]) and the goal is to partition V
into V1, V, such that a|V| < [V4], |[V2| < (1 = @)|V|. These problems are partially
motivated by parallel and distributed computation where a graph representing
some computation is recursively decomposed into several pieces while minimizing
the communication required between the pieces (captured by the edge weights). In
this context partitioning into k given pieces to minimize the number of edges while
each piece has size roughly |V|/k is also considered as Balanced k-Partition.

Hypergraphs and Submodular functions: One can generalize several edge-
weighted problems to node-weighted problems in a natural fashion but in some
cases it is useful to consider other ways to model. In this context hypergraphs come
in handy and have their own intrinsic appeal. Recall that a hypergraph H = (V, E)
consists of a vertex set V and a set of hyperedges E where each e € E is a subset

CHAPTER 14. INTRODUCTION TO CUT AND PARTITIONING PROBLEMS 176

of vertices; thus e C V. The rank of a hypergraph is the maximum cardinality
of a hyperedge, typically denote by r. Graphs are rank 2 hypergraphs. One can
typically reduce a hypergraph cut problem to a node-weighted cut problem and
vice-versa with some distinctions based on the specific problem at hand. Finally
some of the problems can be naturally lifted to the setting where we consider an
abstract submodular set function defined over the vertex set V; that is we are given
f : 2V — R, rather than a graph or a hypergraph and the goal is to partition V

where the cost of the partition is now measured with respect to f.

Chapter 15

Multiway Cut

Murriway Cut problem is the following!. Given a graph G = (V, E) with edge
weights w : E — R, and k terminal vertices {s1, s2, ..., sx}, remove a minimum
weight set of edges such that there is no s;-s; path left for any i # j. We phrase it
in this long-winded way since the definition then naturally generalizes to other
settings. In the case of undirected graphs it is also useful to view the problem as a
partition problem. Consider a feasible solution to the given instance; it consists of
a set of edges whose removal leaves at least k components and no two terminals
are in the same connected component. One can verify that in a minimal solution,
if the original graph is connected, then we can assume that there will be exactly k
components with each terminal contained in a separate one. Thus, an alternative
view is to find a partition of V into k sets Vi, V5, ..., Vi such thats; € Vifor1 <i <k
and the goal is to minimize }}; w(6(V;))/2 where the factor of 2 is because any edge
crossing the partition is counted exactly twice in) ; w(6(V;))/2. When k = 2 we can
solve the problem in polynomial time since it is the same problem as finding an
§1-s2 minimum cut in G. The problem is known to be NP-Hard and APX-Hard even
when k = 3 [47]. In this chapter we first consider a simple combinatorial heuristic
that yields a 2(1 — 1/k)-approximation, followed by a distance based LP relaxation
that also yields a 2(1 — 1/k)-approximation with a matching integrality gap. We then
describe a geometric relaxation that yields the current best approximation ratio of
1.2965 [141] (the best known lower bound on the integrality gap for this relaxation
is 1.20016 [22]). We will also discuss node-weighted and directed versions in the
last section.

UIn the literature the problem is also referred to as the Multiterminal Cut problem.

177

CHAPTER 15. MULTIWAY CUT 178

15.1 Isolating Cut Heuristic

Let S = {s1,52,...,sk} be the given set of terminals. A feasible solution to a given
instance of MuLtiway Curt separates each terminal s; from the terminals S —{s;}. One
can find the cheapest cut separating s; from S — {s;} via a minimum-cut computation
(we shrink S — {s;} to a single vertex t and compute an s-t minimum cut). Taking
the union of such cuts for each i € [k] clearly yields a feasible solution. It turns that
this simple heuristic is not too bad.

IsolatingCut(G = (V,E),S = {s1,...,5k})

1. for each i € [k] do
A. Let E; be a minimum weight cut separating s; from S —{s;} in G
2. Without loss of generality w(E71) < w(Ez) < ... < w(Eg) (otherwise reindex)

3. Ouput U::llEi

We leave the following as an easy exercise.
Lemma 15.1. The algorithm outputs a feasible solution.

Theorem 15.1. The Isolating Cut heuristic yields a 2(1—1/k)-approximation for MuLTIWAY
Cur.

Proof. Recall the partition view of the Murtiway Cut problem. Let E* be an optimum
and minimal solution and let V1, V2, . .., Vi be the components of G — E* such that
s; € Vifori € [k]. Each edge e € E” crosses the partition and since it has exactly two
end points, we see that Zf-‘zl w(6(V;)) = 2w(E*).

We claim that for each i € [k] w(E;) < w(6(V;)). This follows from the fact that
0(V;) is a cut that separates s; from S — {s;}. Therefore Zle w(E;) < Zle w(o(Vy)) =
2w(E*). Since w(Ex) > w(E;) for all i € [k], ¥ w(E;) < (1 -1/k) 25, w(E:), and
hence we have Y"1 w(E;) < 2(1 - 1/k)w(E*) = 2(1 - 1/k) OPT. m

Exercise 15.1. The analysis of the algorithm is tight. Find an example to demonstrate
this.

15.2 Distance based LP Relaxation

We describe an LP relaxation based on distance/length variables that generalizes
the relaxation for s-t cut that we saw previously. For each edge e there is a length

CHAPTER 15. MULTIWAY CUT 179

variable x, indicating whether ¢ is cut or not. We require that the length of any path
p connecting s; and s;, i # j, should be at least 1.

min > CeXe
ecE
s.t.
2xe=>1 p € Ps s i]
eep
xXe >0 e€E

The preceding LP can be solved in polynomial time via the Ellipsoid method
since the separation oracle is the shortest path problem. Alternatively, one can write
a compact LP. We focus on rounding the LP and establishing its integrality gap.

Ballcut(G = (V,E), SCV)

1. Solve distance based LP relaxation to obtain solution x
2. Let d, be the metric induced on V by edge lengths x
3. Pick O uniformaly at random from (0,1/2)

4. Output Ui-‘zlé(Bd(si,G)) where B(s;, 0) is the ball of radius 6 around s;

Lemma 15.2. The algorithm outputs a feasible solution.

Proof. Consider a terminal s;. B4(s;, 0) does not contain any other terminal s, j # i
since 0 < 1/2and d(s;, s;) > 1. Thus removing the edges 6(B(s;, 0)) disconnects s;
from every other terminal. Since this holds for each s; taking the union of the edges
U;0(By(si, 0)) disconnects each terminal from all other terminals. [

Consdier the open balls of radius 1/2 around the terminals, that is, B4(s;, 1/2)
for i € [k]. We observe that they are disjoint for if v € B(s;, 1/2) N B(s;, 1/2) with
i # j then d(s;, sj) < 1 which would violate the LP constraint. Thus the algorithm is
essentially running an s-t cut type algorithm in the disjoint balls but since we only
have half the radius we lose a factor of 2. In fact, as we will see in a remark later,
the analysis holds even if each s; chose its own 0; independently — the correlated
choice is not exploited here — but a correlated choice is quite useful when consider
other cut problems including DirecTeD Murtiway Cur later in the chapter.

Lemma 15.3. Let e = (u,v). P[e is cut] < 2x,.

Proof. There are several cases to consider but the main one is the one where both
u,v € By(si,1/2] for some s;. Suppose this is the case. Then only s; can cut the
edge (u,v). It is easy to see that P[e is cut] = 2|d(s;, u) — d(s;, v)| since we pick 6

CHAPTER 15. MULTIWAY CUT 180

uniformly at random from (0, 1/2). But |d(s;, u)—d(s;, v)| < x. by triangle inequality
and hence we obtain the desired claim.

Now we consider the case when u € B(s;,1/2) and v € B(sj, 1/2) where i # j.
Let @ = 1/2 —d(s;,u) and let = 1/2 — d(sj, v). We observe that a + < x, for
otherwise d(s;, u) + x, + d(sj, v) < 1. We see that e is cut iff 0 lies in the interval
[d(si, u),1/2) or it lies in the interval [d(s}, v),1/2). Thus e is cut with probability
2max(a, B) < 2(a + B) < 2x,.

There are two other cases. One is when both u, v are outside every half-ball. In
this case the edge e is not cut. The other is when u € B(s;, 1/2) for some i and v is
not inside any ball. The analysis here is similar to the second case and we leave it as
an exercise. [|

Thus the expected cost of the cut is at most 2 }’, c,x, < 20OPTrp < 20PT. One
can improve and obtain a 2(1 — 1/k)-approximation by saving on one terminal as
we did in the preceding section.

Exercise 15.2. Modify the algorithm to obtain a 2(1 — 1/k)-approximation with
respect to the LP relaxation.

Exercise 15.3. Consider a variant of the algorithm where each s; picks an independent
0; € (0,1/2); we output the cut U;0(B4(s;i, 0;)). Prove that this also yields a 2-
approximation (can be improved to 2(1 — 1/k)-approximation).

Integrality gap: The analysis is tight as shown by the following integrality gap
example. Consider a star with center r and k leaves s1, sy, ..., s, which are the
terminals. All edges have cost 1. Then it is easy to see that a feasible integral solution
consists of removing k — 1 edges from the star. Hence OPT = k — 1. On the other
hand, setting x, = 1/2 for each edge is a feasible fractional solution of cost k/2.
Hence the integrality gap is 2(1 — 1/k).

15.3 A Partitioning View and Geometric Relaxation

Section to be filled in later. For now see notes form 2018 https://courses.engr.
illinois.edu/cs583/sp2018/Notes/multiwaycut-ckr.pdf.

154 Node-weighted and Directed Multiway Cut

Section to be filled in later. For now see paper which has very short and elementary
proofs of 2-approximations for both problems which are tight. http://chekuri.cs.
illinois.edu/papers/dir-multiway-cut-soda.pdf.

https://courses.engr.illinois.edu/cs583/sp2018/Notes/multiwaycut-ckr.pdf
https://courses.engr.illinois.edu/cs583/sp2018/Notes/multiwaycut-ckr.pdf
http://chekuri.cs.illinois.edu/papers/dir-multiway-cut-soda.pdf
http://chekuri.cs.illinois.edu/papers/dir-multiway-cut-soda.pdf

Chapter 16

Multicut

In the Mutricur problem, we are given a graph G = (V,E), a capacity function
that assigns a capacity c, to each edge e, and a set of pairs (s1, t1), ..., (Sk, tx). The
Mutricut problem asks for a minimum capacity set of edges F C E such that
removing the edges in F disconnects s; and ¢;, for all i. Note that the Murticur
problem generalizes the Murtiway Cut problem that we saw previously. We describe
an O(log k) approximation algorithm for MutticurT.

We start by describing an LP formulation for the problem. For each edge ¢, we
have a variable d.. We interpret each variable d, as a distance label for the edge. Let
P, 1. denote the set of all paths between s; and t;. We have the following LP for the
problem:

min > Ced,

e€E
s.t.
Sde21 pePys,1<i<k
eep
d. >0 e€kE

The LP assigns distance labels to edges so that, on each path p between s; and ¢;,
the distance labels of the edges on p sum up to at least one. Note that, even though
the LP can have exponentially many constraints, we can solve the LP in polynomial
time using the ellipsoid method and the following separation oracle. Given distance
labels d,, we set the length of each edge to d. and, for each pair (s;, t;), we compute
the length of the shortest path between s; and t; and check whether it is at least
one. If the shortest path between s; and ¢; has length smaller than one, we have a
violated constraint. Conversely, if all shortest paths have length at least one, the
distance labels define a feasible solution.

We also consider the dual of the previous LP. For each path p between any pair
(si, t;) we have a dual variable f,. We interpret each variable f, as the amount of

181

CHAPTER 16. MULTICUT 182

flow between s; and t; that is routed along the path p. We have the following dual
LP:

k

max), X fp
i=1 pe?’si,ti
s.t.
2 fp<ce e € E(G)
p:e€p

fp >0 pePsn Ui UPs oty

The dual is an LP formulation for the Maximum Throughput Multicommodity
Flow problem. In the Maximum Throughput Multicommodity Flow problem, we
have k different commodities. For each i, we want to route commodity i from the
source s; to the destination f;. Each commodity must satisfy flow conservation
at each vertex other than its source and its destination. Additionally, the total
flow routed on each edge must not exceed the capacity of the edge. The goal is to
maximize the sum of the commodities routed.

The dual LP tries to assign an amount of flow f, to each path p so that the
total flow on each edge is at most the capacity of the edge (the flow conservation
constraints are automatically satisfied). Note that the endpoints of the path p
determine which kind of commodity is routed along the path.

Exercise 16.1. Write the Murricut LP and its dual in a compact form with polyno-
mially many constraints.

16.1 Upper Bound on the Integrality Gap

In this section, we will show that the integrality gap of the LP is O(log k) using a
randomized rounding algorithm due to Calinescu, Karloff, and Rabani [28]. The
first algorithm that achieved an O(log k)-approximation for Mutricur is due to Garg,
Vazirani, and Yannakakis [64] (see [155] and [158]), and it is based on the region
growing technique introduced by Leighton and Rao [114]. The reason that we
choose to present the randomized rounding algorithm is due to its future application
for metric embeddings.

Let B;(v, r) denote the ball of radius r centered at the vertex v in the metric
induced by the distance labels d..

CHAPTER 16. MULTICUT 183

CKR-RandomPartition:
Solve the LP to get the distance labels d,
Pick 0 uniformly at random from [0, 1/2)
Pick a random permutation o on {1,2, ..., k}
fori=1tok

V(i) = Ba(ss(), O)\ U Vo
<t

k
Output | 6(V3)
i=1

Lemma 16.1. CKR-RandomPartition correctly outputs a feasible multicut for the given
instance.

Proof. Let F be the set of edges output by the algorithm. Suppose F is not a feasible
multicut. Then there exists a pair of vertices (s;, t;) such that there is a path between
s; and t; in G — F. Therefore there exists a j such that V; contains s; and ¢;. Since
V; € Ba(sj, 0), both s; and t; are contained in the ball of radius 6 centered at s;.
Consequently, the distance between s; and s; is at most 0 and the distance between
sj and t; is at most 0. By the triangle inequality, the distance between s; and ¢; is at
most 260. Since 6 is smaller than 1/2, it follows that the distance between s; and ¢; is
smaller than one. This contradicts the fact that the distance labels d, are a feasible
solution for the LP. Therefore F is a multicut, as desired. []

Lemma 16.2. The probability that an edge e is cut is at most 2Hy.d., where Hy, is the k-th
harmonic number and d. is the distance label of the edge e.

Proof. Fix an edge e = (u,v). Let:
L; = min{d(s;, u),d(si, v)}
R; = max{d(s;,u),d(s;,v)}

We may assume without loss of generality that L; < L, < ... < Ly (be reindexing
the pairs as needed). See Fig 16.1.

Let A; be the event that the edge e is cut first by s;. More precisely, A; is the event
that |[V; N {u,v}| =1 and |V; N {u,v}| = 0 for all j such that o(j) < o(i). Note that
|Vin{u,v}| =1 simply says that s; cuts the edge e. If s; is the first to cut the edge e,
for all j that come before i in the permutation, neither u nor v can be in V; (if only
one of u and v is in V}, s; cuts the edge ¢; if both u and v are in V}, s; cannot cut the
edge e).

Note that the event that the edge e is cut is the union of the disjoint events Ay, ..., A.
Therefore we have:

Ple is cut] = Z P[A;].

CHAPTER 16. MULTICUT 184

81 | |
L, R
) | |
: L; R;
5; i i
; Ly Ry
Sk | |

Figure 16.1: For a fixed edge e = (1, v) we renumber the pairs such that L; < L, <
.. < Lg.

Let us fix r € [0,1/2) and consider P[A; | 6 = r]. Note that s; cuts the edge e only if
one of u, v is inside the ball of radius r centered at s; and the other is outside the
ball. Differently said, s; cuts the edge only if r € [L;, R;):

P[A;|0=r]=0 ifr¢[L;,R))

r iy
ppo b
81 | | 51 | |
L, R, L, R
) —) —
f Li Ry : Li | Ry
Si I I si I I

Now suppose that r € [L;, R;). Let us fix j < i and suppose j comes before 7 in
the permutation (that is, o(j) < o(i)). Recall that, since j < i, wehave L; < L; < r.
Therefore at least one of u, v is inside the ball of radius r centered at s;. Consequently,
s; cannot be the first to cut the edge e. Therefore s; is the first to cut the edge e only
if 0(i) < o(j) for all j < i. See Fig 16.2. Since ¢ is a random permutation, i appears
before j for all j < i with probability 1/i. Therefore we have:

1
i

P[A;|6=r]<~ ifre[L;,R))

Since 6 was selected uniformly at random from the interval [0, 1/2), and indepen-
dently from o, we have:

CHAPTER 16. MULTICUT 185

A\

Figure 16.2: If o(j) < o(i), s; cannot be the first to cut the edge ¢ = (1, v). On the
left s; also cuts the edge. On the right s; captures both end points and therefore s;
cannot cut it.

1 2
P[A;] < = P[0 € [L;,R})] = - (R; — L)
By the triangle inequality, R; < L; + d.. Therefore:

P[A;] l

Consequently,

Ple is cut] = Z P[A;] < 2Hid,.

Corollary 16.1. The integrality gap of the Murticut LP is O(log k).

Proof. Let F be the set of edges outputted by the Randomized Rounding algorithm.
For each edge e, let x, be an indicator random variable equal to 1 if and only if the
edge e isin F. As we have already seen,

E xe = P[x. = 1] < 2Hd,
Let ¢(F) be a random variable equal to the total capacity of the edges in F. We have:

Ec(F) = EZ CeXe = Z ce Pxe] < 2Hi Z cede = 2Hy OPTyp
e e e

Consequently, there exists a set of edges F such that the total capacity of the edges
in F is at most 2H; OPTp. Therefore OPT < 2H; OPTyp, as desired. []

Corollary 16.2. The algorithm achieves an O(log k)-approximation (in expectation) for
the Murticur problem.

CHAPTER 16. MULTICUT 186

Proof. As we have already seen,

Ec(F) < 2Hyx OPTrp

where F is the set of edges output by the algorithm and c(F) is the total capacity of
the edges in F. Since OPT;p < OPT,

Ec(F) < 2H; OPT = O(log k)OPT
]

Remark 16.1. The expected cost analysis can be used to obtain an algorithm, via
repetition, a randomized algorithm that ouputs an O(log k)-approximation with
high probability. The algorithm can also be derandomized but it is not straight for-
ward. As we remarked there is an alternative deterministic O(log k)-approximation
algorithm via region growing.

Flow-Cut Gap: Recall that when k = 1 we have the well-known maxflow-mincut
theorem. The integrality gap of the standard LP for MulitCut is the same as the
relative gap between flow and cut when k is arbitrary. The upper bound on the
integrality gap gives an upper bound on the gap.

Corollary 16.3. We have:

< in |C| < O(logk
Jmax 1f1 < min [C]< Olog) max 171
where | f| represents the value of the multicommodity flow f, and |C| represents the capacity
of the multicut C.

Proof. Let OPTrp denote the total capacity of an optimal (fractional) solution for
the Mutricut LP. Let OPTy,,; denote the flow value of an optimal solution for the
dual LP. Since OPTyp is a lower bound on the capacity of the minimum (integral)
multicut, we have:

max |f| =OPTgq = OPTip < min |[C|
m.c. flow f multicut C
As we have already seen, we have:

min |C| < 2Hy OPTyp = 2Hy OPTy,,; = 2Hk (mf?x / |f|)
m.c. flow

multicut C .C

CHAPTER 16. MULTICUT 187

16.2 Lower Bound on the Integrality Gap

In this section, we will show that the integrality gap of the LP is Q(log k). That is,
we will give a Mutticur instance for which the LP gap is Q)(log k). Let’s start by
looking at expander graphs and their properties.

16.2.1 Expander Graphs

Definition 16.4. A graph G = (V, E) is an a-edge-expander if, for any subset S of at most
|V'|/2 vertices, the number of edges crossing the cut (S, V\S) is at least «|S|.

Note that the complete graph K, is a (|V'|/2)-edge-expander. However, the more
interesting expander graphs are also sparse. Cycles and grids are examples of
graphs that are very poor expanders.

Figure 16.3: The top half of the cycle has |V'|/2 vertices and only two edges crossing

the cut. The left half of the grid has roughly |V |/2 vertices and only +/|V| edges
crossing the cut.

Definition 16.5. A graph G is d-regular if every vertex in G has degree d.

Note that 2-regular graphs consist of a collection of edge disjoint cycles and therefore
they have poor expansion. However, for any d > 3, there exist d-regular graphs that
are very good expanders.

Theorem 16.6. For every d > 3 there exists an infinite family of d-reqular 1-edge-expanders.
We will only need the following special case of the previous theorem.

Theorem 16.7. There exists a universal constant a > 0 and an integer ng such that, for all
even integers n > no, there exists an n-vertex, 3-reqular a-edge-expander.

CHAPTER 16. MULTICUT 188

Proof Idea. The easiest way to prove this theorem is using the probabilistic method.
The proof itself is beyond the scope of this lecture!. The proof idea is the following.

Let’s fix an even integer n. We will generate a 3-regular random graph G by
selecting three random perfect matchings on the vertex set {1, 2, ..., n} (recall that a
perfect matching is a set of edges such that every vertex is incident to exactly one of
these edges). We select a random perfect matching as follows. We maintain a list of
vertices that have not been matched so far. While there is at least one vertex that is
not matched, we select a pair of distinct vertices u, v uniformly at random from all
possible pairs of unmatched vertices. We add the edge (, v) to our matching and
we remove u and v from the list. We repeat this process three times (independently)
to get three random matchings. The graph G will consist of the edges in these
three matchings. Note that G is actually a 3-regular multigraph since it might have
parallel edges (if the same edge is in at least two of the matchings). There are two
properties of interest: (1) G is a simple graph and (2) G is an a-edge-expander
for some constant @ > 0. If we can show that G has both properties with positive
probability, it follows that there exists a 3-regular a-edge-expander (if no graph is a
3-regular a-edge-expander, the probability that our graph G has both properties is
equal to 0).

It is not very hard to show that the probability that G does not have property (1)
is small. To show that the probability that G does not have property (2) is small,
for each set S with at most 11/2 vertices, we estimate the expected number of edges
that cross the cut (S, V\S) (e.g., we can easily show that |6(S)| > |S|/2). Using tail
inequalities (e.g., Chernoff bounds), we can show that the probability that |6(S)|
differs significantly from its expectation is extremely small (i.e., small enough so
that the sum — taken over all sets S — of these probabilities is also small) and we can
use the union bound to get the desired result. []

Note that explicit constructions of d-regular expanders are also known. Margulis
[120] gave an infinite family of 8-regular expanders. There are many explicit
construction by now and it is a very important topic of study — we refer the reader
to the survey on expanders by Hoory, Linial and Wigderson [87]. The vertex set of a
graph G, in Margulis’ construction is Z, X Z,, where Z, is the set of all integers
mod n. The neighbors of a vertex (x,y) in G, are (x + y,v), (x =y, y), (x,y + x),
(x,y—x),(x+y+1Ly),(x-y+1,y), (x,y+x+1),and (x,y — x + 1) (all operations
are mod). Another example is the following infinite family of 3-regular expanders.
For each prime p, we have a 3-regular graph G,. The vertex set of G, is Z,. The
neighbors of a vertex x in G, are x + 1, x — 1, and x~! (as before, all operations are
mod p; x~!is the inverse of x mod p, and we define the inverse of 0 to be 0)2.

1A more accurate statement is that the calculations are a bit involved and not terribly interesting
for us.
2Note that, unlike Margulis’ construction, this construction is not very explicit since we don’t know

CHAPTER 16. MULTICUT 189

We conclude this section with the following observations (they will be very
useful in showing the Q(k) lower bound on the integrality gap of the LP).

Claim 16.2.1. Let G be an n-vertex d-regular a-edge-expander, for some constants d > 3
and a > 0. Then the diameter of G is ©(log n).

Proof. For any two vertices u and v, let dist(u, v) denote the length of a shortest
path between u and v (the length of a path is the number of edges on the path).
Let’s fix a vertex s. Let L; be the set of all vertices v such that dist(s, v) is at most i.
Now let’s show that (1 + a/d)|L;—1| < |Li| < d|L;—1|. Clearly, |L1| = d (since s has
degree d). Therefore we may assume that i > 1. Every vertex in L; is in L;_1 or it
has a neighbor in L;_;. Therefore it suffices to bound |L;\L;_1].

Note that any vertex in L;_; has at least one neighbor in L;_;. Therefore the
vertices in L;_1 have at most (d — 1)|L;—1| neighbors outside of L;_;. Consequently,
ILi| < d|Li-1].

Now one of L;_1, V\Li_1 has at most |V|/2 vertices. Let’s assume without loss
of generality that L;_; has at most |V |/2 vertices (the other case is symmetric). Let
A = L;_j and let B be the set of all vertices in V'\ L;_; that have a neighborin L;_; (note
that [L;| = |A| + |B]). Let F be the set of all edges that cross the cut (L;—1, V\L;-1).
Now let’s look at the bipartite graph H = (A, B, F). Since G is an a-edge-expander,
we have |F| > a|A|. Moreover, |F| = },cp du(v), where dy(v) is the degree of v in
H. Since dy(v) is at most d, we have a|A| < |F| < d|B|. Therefore we have:

Li=|Al+[B] = (1 +a/d)A] = (1 +a/d)|Li]

It follows by induction that d(1 + a/d)""! < |L;| < d'. Therefore dist(s,v) is
O(logn) for all v and there exists a vertex v such that dist(s, v) is ()(log n). Since
this is true for any s, it follows that the diameter of G is @(logn).]

Claim 16.2.2. Let G be an n-vertex 3-regqular a-edge-expander and let B(v, i) be the set of
all vertices u such that there is a path between u and v with at most i edges. For any vertex

v, |B(v,logy n/2)| < /n.

Proof. Note that B(v,log, n/2) is the set of all vertices w such that dist(v, w) is
at most log, /2. As we have seen in the proof of the previous claim, we have
|B(v,logy 1/2)| < 31°83/2 = /., n

16.2.2 The Multicut Instance

Let ng, @ be as in Theorem 7. Let n > ng and let G be an n-vertex 3-regular

a-edge-expander. For each edge e in G, we set the capacity ¢, to 1. Now let

how to generate large primes deterministically.

CHAPTER 16. MULTICUT 190
X ={(u,v)|u ¢ B(v,logyn/2)}. The pairs in X will be the pairs (s;, ;) that we want
to disconnect. Let (G, X) be the resulting MutticuT instance.

Claim 16.2.3. There exists a feasible fractional solution for (G, X) of capacity O(n/logn).

Proof. Letd, = 2/log, n, for all e. Note that, since G is 3-regular, G has 3n/2 edges.
Therefore the total capacity of the fractional solution is

3n 2 3n
Zdﬁ T2 ~1
- 2 logzn logsn

Therefore we only need to show that the solution is feasible. Let (11, v) be a pair in X.
Let’s consider a path p between u and v. Since u is not in B(v, log, 1/2), the path p
has more than log, n/2 edges (recall that B(v, i) is the set of all vertices u such that
there is a path between u and v with at most i edges). Consequently,

log. n
>80 2y
2 log, n

eep

Claim 16.2.4. Any integral solution for (G, X) has capacity Q(n).

Proof. Let F be an integral solution for (G, X). Let Vi, ..., V), be the connected
components of G — F. Fix an i and let v be an arbitrary vertex in the connected
component V;. Note that, for any u in V;, there is a path between v and u with at most
log, n/2 edges (if not, (1, v) is a pair in X which contradicts the fact that removing the
edges in F disconnects every pair in X). Therefore V; is contained in B(v, log, 1/2).
It follows from Claim 16.2.2 that |V;| < y/n. Since G is an a-edge-expander and
|Vil < |V1/2, we have [6(V;)| = a|V;|, for all i. Consequently,

h h
1 o an
|F| = izlw(vm >) vil==
1=

i=1
Therefore F has total capacity ()(n) (recall that every edge has unit capacity). =
Theorem 16.8. The integrality gap of the Murticur LP is ((log k).

Proof. Note that k = | X| = O(n?). It follows from claims 10 and 11 that the LP has
integrality gap Q(logn) = Q(log k), as desired. [

CHAPTER 16. MULTICUT 191

Bibliographic Notes

Multicut is closely related to the Sparsest Cut problem. Initial algorithm for Multicut
were based on algorithms for Sparsest Cut. Garg, Vazirani and Yannakakis [64] then
used Leighton and Rao’s region growing argument (as well as their integrality gap
example on expanders for the uniform sparsest cut problem) [114] to obtain a tight
O(log k) bound on the integrality gap for Multicut. The randomized proof that we
described is from the work of Calinescu, Karloff and Rabani [28] on the 0-extension
problem; their algorithm and analysis eventually led to an optimal bound for
approximating an arbitrary metric via random trees [55]. For planar graphs (and
more generally any proper minor closed family of graphs) the integrality gap is
O(1), as shown by Klein, Plotkin and Rao [105] — the constant depends on the
family. There have been several subsequent refinements of the precise dependence
of the constant in the integrality gap — see [1]. The O(log k) bound extends to
node-weighted case and the O(1) approximation for planar graphs also extends
to the node-weighted case. Multicut is APX-Hard even on trees and in general
graphs. Assuming UGC, the problem is known to be hard to approximate to a
super-constant factor [37]. For some special case of Multicut based on the structure
of the demand graph one can obtain improved approximation ratios [40].

The directed graph version of Multicut turns out be much more difficult.
The flow-cut gap is known to be Q(n'/7) and the problem is also known to be
hard to approximate to almost polynomial factors; these negative results are due to
Chuzhoy and Khanna [46]. The best known approximation ratio is min{k, O(n'1/23}
[3]. Very recently Kawarabayashi and Sidiropoulos obtained a poly-logarithmic
approximation for Directed Multicut if G is a planar directed graph [102]. There is a
notion of symmetric demands in directed graphs and for that version of Multicut
one can get a poly-logarithmic flow-cut gap and approximation; see [38, 106]. This
is closely connected to the Feedback Arc Set problem in directed graphs [54, 139].

Chapter 17

Sparsest Cut

Sparsest Cur is a fundamental problem in graph algorithms with many applications
and connections. There are several variants that are considered in the literature and
they are closely related but it is useful to have proper terminology and understand
the similarities and differences.

Non-Unirorm Sparsest Cut: We consider the general one first. The input is a
graph G = (V, E) with non-negative edge capacities c : E — R, and a set of pairs
(s1,t1), ..., (sk, tr) along with non-negative demand values D1, D>, ..., Dy. When
considering undirected graphs the demand pairs are unordered — by this we
mean that we do not distinguish (s, f1) from (t1,s1). One can also think of the
demand values as “weights” but the demand terminology makes more sense when
considering the dual flow problem. Given a set/cut S C V the sparsity of the cut S is
c(6(8
(Zi:sn{(s:tii):l Dy)
denominator is the total demand of the pairs separated by S. The goal is to find the
cut S with minimum sparsity. In other words we are trying to find the best “bang
per buck” cut: how much capacity do we need to remove per amount of demand
separated? It is sometime convenient to consider G as the supply graph and the
demands as forming a demand graph H = (V, F) where F represents the pairs and
we associate D : F — R, to represent the demand value (alternatively we can also
consider multigraphs). With this representation of the demand pairs, the sparsity

of cut S is simply 5((%‘;((55)))) note that 0¢(S) represents the supply edges crossing S

and 6y(S) represents the demand edges crossing the cut S.

defined as the ratio The numerator is the capacity of the cut and the

Remark 17.1. One can define a cut as removing a set of edges. This may lead to more
than two components. In the case of sparsest cut in undirected graphs it suffices to
restrict attention to cuts of the form 6(S) for some S C V. It is a useful exercise to
see why there is always a sparsest cut of that form for any given instance. This is not
necessarily true for directed graphs or even in undirected graphs with node-weights

192

CHAPTER 17. SPARSEST CUT 193

or in hypergraphs.

UnirorM SparsesT Cut: Very often when people say Sparsest Cut they mean the

uniform version. This is the version in which D(u, v) = 1 for each unordered pair of

Sl
graph H is a complete graph with unit demand values on each edge. A slightly
generalization of UN1ForM Sparsest Cur is obtained by considering demands induced
by weights on vertices (the dual flow instances are called PrRobcutr MuLTiIcOMMODITY
Frow instances). There is a weight function 77 : V' — R on the vertices and and
demand D(u, v) for pair (1, v) is set to be 1t(u)m(v). Note that if 7t(1) = 1 for all u
then we obtain Unirorm Sparsest Cur. If (1) € {0, 1} for all u then we are focusing
our attention on sparsity with respect to the set V' = {v | m(v) = 1} since the the
vertices with 7t(1) = 0 play no role. This may seem unnatural at first but it is closely
connected to expansion and conductance as we will see below.

vertices (u, v). For these demands the a cut S is

Alternatively the demand

Expansion: The expansion of a multi-graph G = (V, E) is defined as

ming.s|<|v|/2 Lo i S|)| Recall that G is an a-expander if the expansion of G is at least a.
A random 3-regular graph is a-expander with a = Q(1) with high probability. Thus,
to find an a-expander one can obtain an efficient randomized algorithm by picking
a random graph and then verifying its expansion. However, checking expansion is
coNP-Hard. Expansion is closely related to Unirorm Sparsest Cut. Note that when
|S| < |V]/2 we have

L 16 _ 16 _ 2 [6(5)]
REEEASRIEER

Thus ExpansioN and UnirorMm Sparsest Cut are within a factor of 2 of each other.
Sometimes it is useful to consider expansion with vertex weights w : V. — R,.

Here the expansion is defined as ming.,,(s)<w(v)/2 %. This corresponds to product
multicommodity flow instances where (v) = w(v). The term CoNDUCTANCE is
168l

sometimes used to denote the quantity ; oI5 where vol(S) = }},c5 deg(v) (here vol
is short for volume). When a graph is regular the definition of expansion and
conductance are the same but not in the general setting. Note that we can capture
conductance by setting weights on vertices where w(v) = deg(v).

Some key applications: UnirorM SparsesT Curt is fundamentally interesting be-
cause it helps us directly and indirectly solve the BALANCED SEPARATOR problem. In
the latter problem we want to partition G = (V, E) into two pieces G1 = (V1, E) and
Gz = (V, Ep) where |V1| and |V; are roughly the same size so that we minimize the
number of edges between V; and V,. One can repeatedly use a sparse cut routine
to get a balanced separator. The other key application is to certify expansion of
a graph. Expander graphs and relatives arise in many applications and knowing
whether a graph is expanding or not is very useful.

CHAPTER 17. SPARSEST CUT 194

17.1 LP Relaxation and Maximum Concurrent Flow

How do we write an LP relaxtion for Sparsest Cut? This is less obvious than it is
for Mutticur and other cut problems where we have explicit terminal pairs that
we wish to separate. We consider NoN-UnirorM Sparsest Cut. First we develop
an integer program. We have two sets of variables. For each pair (s;, t;) we have a
variable y; to indicate whether we want to separate the pair i. For each edge we
have a variable x, to indicate whether e is cut. If we decide to separate pair i then
for every path between s; and t; we should cut at least one edge on the path — this
is similar to relaxations we have seen before. We let P, ; be the set of all s;-t; paths.
The following captures the problem:

ZeeE CeXe
> Dy
Z Xe > yi P € Psi,ti/i € [k]

eep
x. € {0,1} e€kE
Yi {0,1} ie[k]
Note, however, that the objective is a ratio and not linear. It is a standard trick to

obtain an LP relaxation wherein we normalize the denominator in the ratio to 1 and
relax the variables to be real-valued. Thus we obtain the following LP relaxation.

min Z CeXe

ecE

min

m

yi p € PS,‘,t,'/i € [k]

g
&
\%

0 e€eE

>
> 0 ielk]

Exercise 17.1. Show that the LP is indeed a relaxation for the Sparsest Cut problem.
Formally, given an integer feasible solution with sparsity A find a feasible solution
to the relaxation such that its value is no more than A.

Now we consider the dual LP. For each path p € U;$, s, there is a non-negative
variable y, which is the amount of “flow” sent on path p. There is a variable A that
we will interpret later.

CHAPTER 17. SPARSEST CUT 195

max A
Z yp = AD; i€ [k]
PEPs; t;
k
Z Z Yp < ¢ e€E
i=1 pe?’si,ti,eep

yp =2 0 p€Psy,iclk]

The dual LP is a multicommodity flow. It solves the MaxmMum CONCURRENT
Mutricommonity FLow problem for the given instance. It finds the largest value of
A such that there is a feasible multicommodity flow for the given pairs in which
the flow routed for pair (s;, t;) is at least AD;. It is called concurrent flow since we
need to route all demand pairs to the same factor which is in constrast to the dual of
Multicut which corresponds to the maximum throughput multicommodity flow (in
which some pairs may have zero flow while others have a lot of flow).

Exercise 17.2. Suppose we have a cut S with sparsity c¢(6(S))/(Zi.sn(s, 1,3=1 Di)- Why
is the maximum concurrent flow at most the sparsity of S?

Note that the LP can be solved via the Ellipsoid method. One can also write a
compact LP via distance variables which will help us later to focus on constraining
the metric in other ways.

min Z c(uv)d(uov)

uveE

k
Z D;d(siti) = 1
i=1
d is a metricon V

Flow-cut gap: The flow-cut gap in this context is the following equivalent way
of thinking about the problem. Consider a multicommodity flow instance on G
with demand pairs (s1, t1), . .., (Sk, tx) and demand values Dy, ..., Di. Suppose G
satisfies the cut-condition, that is, for every S C V the capacity c(6(S)) is at least the
demand separated by S. Can we route all the demand pairs? This is true when
k =1 but is not true in general even for k = 3 in undirected graphs. The question is
the maximum value of A such that we can route AD; for every pair i? The worst-case
integrality gap of the preceding LP relaxation for Sparsest Cur is precisely the
flow-cut gap. One can ask about the flow-cut gap for all graphs, a specific class of
graphs, for a specific class of demand graphs, a specific class of supply and demand
graphs, and so on.

CHAPTER 17. SPARSEST CUT 196

In these notes we will establish that the flow-cut gap in general undirected
graphs is at most O(logk). And there are instances where the gap is Q(log k)
which are uniform instances — in fact the same expander based example we saw
for Murricur shows that the gap is)(log 1) even for UnirorMm Sparsest Cur. It is
conjectured that the gap is O(1) for planar graphs but the best upper bound we have
is O(y/log n). Resolving the flow-cut gap in planar graphs is a major open problem.

Exercise 17.3. Use the expander construction that we saw for Mutrricur to show that
the flow-cut gap for Unirorm Sparsest Cut can be Q(log).

Remark 17.2. Approximating the Sparsest Cut problem is not the same as establishing
flow-cut gaps. One can obtain improved approximations for Sparsest Curt via
stronger relaxations than the natural LP. Indeed the best approximation ratio for

Sparsest Curt is O(q/log 1) via an SDP relaxation.

17.2 Rounding LP via Connection to Multicut

There are close connections between Sparsest Cut and Mutricut. By repeatedly
using SparsesT Cut routine and Ser Cover style analysis prove the following.

Exercise 17.4. Suppose there is an a(k, n)-approximation for NoN-UNIFORM SPARSEST
Curt. Prove that this implies an O(a(k, n) In k)-approximation for Murricur.

Can we prove some form a converse? That is, can we use an approximation
algorithm for Mutricur to obtain an approximation algorithm for Sparsest Cut?
Note that if someone told us the pairs to separate in an optimum solution to the
Sparsest Cut instance then we can use an (approximation) algorithm for Murricur
to separate those pairs. Here we show that one can use information from the LP
solution to figure out which pairs to separate. We sketch the argument and focus
our attention on the simpler case when D; = 1 for all i € [k]. We give this argument
even though it does not lead to the optimum ratio, for historical interest, as well
as to illustrate a useful high-level technique that has found applications in other
settings.

Identifying the pairs to separate from LP solution: Suppose we solve the LP
and obtain a feasible solution (x,y). y; indicates the extent to which pair 7 is
separated. Suppose we have an ideal situation where y; € {0, p} for every i. Let
A ={i|yi =p}. Wehave |A| =1/p since }}; y; = 1. Then it is intutively clear
that the LP is separating the pairs in A. We can then solve the Multicut problem
for the pairs in A and consider the ratio of the cost of the cut to |A|. How do we
argue about this algorithm? We do the following. Consider a fractional assignment
x" : E — R4 where x, = min{1, x./p}; in other words we scale each x, by 1/p.

CHAPTER 17. SPARSEST CUT 197

Note that y; = d.(s;, t;). Since we scaled up each x, by 1/p it is not hard to see
that dy(s;, t;) > 1; in other words x’ is a feasible solution to the Multicut instance
on G for the pairs in A. The fractional cost of x" is }, c,x, < >, cex./p. Thus, by
the algorithm for Multicut in the previous chapter, we can find a feasible Multicut
E’ C E that separates all pairs in A and c(E’) = O(logk) 3, cex./p. What is the
sparsity of this cut? It is c¢(E’)/|A| which is O(log k) >, x.. Thus the sparsity of the
cut is O(log k)A where A is the value of the LP relaxation.

Now we consider the general setting. Recall that }}; y; = 1. We partition the pairs
into groups that have similar y; values. Forj > 0,let A; = {i | y; € (1/2/+1,1/21).
Thus all pairs in A; have a y; value that are within a factor of 2 of each other.

Claim 17.2.1. There exists a j < log, k such that };c; yi 2 Tl +11)g2 9 2 4101gk.

Proof. Consider any i such that i € A; where j > log, k. By definition we have
yi < 1/2k. Since there are only k pairs, 3,150 ZieAj yi < k/2k < 1/2. Thus
Yj<log, k Zica; Yi = 1/2 and therefore, theremustbe a j < log, k such that ¥;c4. yi >

SAFIog B +13)) (there are only so many groups). -

Consider the A; with 34, yi 2 @. For each i € Aj we have 1/2/*1 < y; <

1/2/. Therefore |A| j = min{1, 2/ /41log, k}. The algorithm now separates the pairs
in A; via an algorithm for Multicut.

Claim 17.2.2. Consider the fractional solution x’ : E — [0, 1] where x}, = min{1,2/*!x,}.
Then dy (si, t;) > 1 forall i € A;. Thus x" is a feasible fractional solution to the Multicut
LP for separating the pairs in A;.

Via the rounding algorithm in the preceding chapter we have thereisaset E’ C E
such that E’ is a feasible multicut for the pairsin A; and ¢(E’) = O(log k)2t S coxe.
The sparsity of this cut is c(E")/|A;j| = O(log2 k) Y. cex.. Thus we obtained an
O(log? k)-approximation for Searsest Cut when D; = 1 for each pair.

Remark 17.3. When demands are not 1 (or identical) the preceding argument yields
an O(log klog D) approximation where D = }; D; with the normalization that
D; > 1foralli.

17.3 Rounding via £; embeddings

The optimal rounding of the LP relaxation turns out to go via metric embedding
theory and this connection was discovered by Linial, London and Rabinovich [118]
and Aumann and Rabani [13]. We need some basics in metric embeddings to point
out the connection and rounding.

CHAPTER 17. SPARSEST CUT 198

17.3.1 A digression through trees

It is instructive to consider the simple setting when G is a tree T = (V, E). In this
case it is easy to find the sparsest cut. For each edge ¢ € T we can associate a cut
S which is one side of the two components in T — e. The capacity of the cut 6(S.),
by defintion, is c.. Let D(e) = X;s,uqs, 1;}11=1 Di be the demand separated by e. The
sparsity of the cut S, is simply c./D,. Finding sparsest cut in a tree is easy from the
following exercise.

Exercise 17.5. The sparsest cut in a tree is given by arg min, ¢, /D,.

A more interesting exercise is to prove that the LP relaxation gives an optimum
solution on a tree.

Lemma 17.1. Let (x, y) be a feasible solution to the LP with objectie value A. If G is a tree
T then there is an edge e € T such that c,/D, < A.

Proof. We have A = % where d.(s;, t;) is the shortest path distance between
s; and t;. There is a unique path Ps, , from s; to t; in a tree so dy(s;, t;) = Zeeps_lt_ Xe.
Thus,

Ze CeXe
i Didx(si, ti)
2o CeXe
Zi D; ZeePsi,ti Xe

e CoXe
e Dexe
Ce

> min —.
e D,

In the last inequality we are using the simple fact that FzZ="7# > min; " for

positive a’s and b’s. []

What made the proof work for trees? Is there a more general phenomenon than
the fact that trees are pretty simple structures? It turns out that the key fact is that
shortest path distances induced by a tree are ¢; metrics or equivalently cut metrics.

17.3.2 Cut metrics, line metrics, and £; metrics

Let (V, d) be a finite metric space. We will be interested in two special types of
metrics.

Definition 17.1. Let V be a finite set and let S C V. The metric ds associated with the cut
S is the following: ds(u,v) = 1if|S N {u,v}| = 1and ds(u,v) = 0 otherwise.

CHAPTER 17. SPARSEST CUT 199

Definition 17.2. Let (V, d) be a finite metric space. The metric d is a cut metric if there is
asetS C V suchthat d = ds. d is in the cut cone (or in the cone of cut metrics) if there exist
non-negative scalars ys, S C V such that d(u,v) = Y scy ysds(u,v) forallu,v € V.

Definition 17.3. Let (V, d) be a finite metric space. The metrid d is a line metric if there
is a mappting f : V — R (the real line) such that d(u,v) = |f(u) — f(v)| forallu,v € V.

Definition 17.4. Let (V, d) be a finite metric space. The metric d is an ¢, metric' if there is
some integer d and a mapping f : V. — R? (Euclidean space in d dimensions) such that
d(u,v) =|f(u) — f(v)|1 (the &y distance) forall u,v € V.

Claim 17.3.1. A metric (V,d) is an €, metric iff it is a non-negative combination of line
metrics (in the cone of line metrics).

Proof Sketch. If d is an ¢; metric then each dimension corresponds to a line metric and
since the ¢; metric is separable over the dimensions it is a non-negative combination
of line metric. Conversely, any non-negative combination of line metrics can be
made into an ¢; metric where each line metric becomes a separate dimension (scalar
multiplication of a line metric is also a line metric).]

Lemma 17.2. d is an &, metric iff d is in the cut cone.

Proof. Consider the metric ds. It is easy to that it is a simple line metric. Map
all vertices in S to 0 and all vertices in V — S to 1. If d is in the cut cone then it
is a non-negative combination of the cut metrics, and hence it is a non-negative
combination of line metrics, and hence an ¢; metric.

To prove the converse, it suffices to argue that any line metric is in the cut cone.
LetV = {v1,v2,...,v,} and let d be a line metric on V. Without loss of generality
assume that the coordinates of the points corresponding to the line metric d are
x1 < xp < x, onthereal line. For1 <i <nletS; = {vy,v3,...,v;}. Itis not hard to
verify that Z?:_ll |xiv1 — xilds, = d. []

17.3.3 Brief introducton to metric embeddings

Let (V, d) me a finite metric space. Note that any finite metric space can be viewed
as one that is derived from the shortest path metric induced on a graph with some
non-negative edge lengths. If G = (V, E) is a simple graph and £ : E — R, are some
edge-lengths, the metric induced on V' depends both on the “topology” of G as well
as the lengths. Finite metrics can encode graph structure and hence can be diverse.
When trying to round we may want to work with simpler metric spaces. One way

We define {1 metric with respect to finite dimensional embeddings. Technically we can allow infinite
dimensional embeddings but they are not needed for finite metrics. Moreover, it is algorithmically
more useful to confine attention to finite dimensional embeddings.

CHAPTER 17. SPARSEST CUT 200

to do this is to embed a given metric space (V,d) into a simpler host metric space
(V’,d’"). An embedding is simply a mapping of V to V’. Even though we may be
interested in finite metric spaces, the host metric space can be continuous/infinite
such as the Euclidean space in some dimenstion d. Embedding typically distorts
the distances and thus one wants to find embeddings with small distortion. We
will focus on relative notion of distortion; additive notions are also explored in the
literature although they are very restrictive due to lack of scale invariance.

Definition 17.5. An embedding of a finite metric space (V, d) to a host metric space (V’, d’)
is a mapping f : V. — V’. The embedding is an isometric embedding if d(u,v) =
d'(f(u), f(v)) forall u,v € V. An embedding is a contraction if d’(f (u), f(v)) < d(u,v)
forall u,v € V. An embedding is non-contracting if d’(f(u), f(v)) = d(u,v) for all
u,vev.

Definition 17.6. Let (V,d) and (V’, d’) be two metric spaces and let f : V — V' be an

embedding. The distortion of f is maxy, yey uzo Mmax{ d'(;((;l)/?(v))' dl({i((li)’z{)(U)) 1.

Of particular importance are embeddings of finite metric spaces into Euclidean
space R? where the distance in the host space is measured under a norm. Examples
include {1, 6, {. An embedding of a finite metric space (V, d) into R? means that we
map each v to a point (x1, X2, ..., x4) and the distance between say x, y is measured
as ||x — y|| for some norm of interest.

The dimension d is also important in various applications but in some settings
like with Sparsest Cut the dimension is not important.

Theorem 17.7 (Bourgain). Any n-point finite metric space can be embedded into ¢,
(and hence also ¢1) with distortion O(logn). Moreover the embedding is a contraction
and can be constructed in randomized polynomial time and embeds points into R® where
d= O(log2 n).

In fact one can obtain a refined theorem that is useful for Sparsest Cur.

Theorem 17.8 (Bourgain). Let (V, d) be n-point finite metric and let S C V with |S| = k.
Then there is a randomized polynomial time algorithm to compute an embedding f : V —
ROUOE" 1) syychy that (i) the embedding is a contraction (that is, || f (u) — f(v)||; < d(u,v) for
all u,v € V and (ii) for every u,v € S, || f(u) — f(v)||; = @d(u,v)for some universal
constant c.

17.3.4 Utilizing the ¢; embedding

We saw that the integrality gap of the LP is 1 on trees since the shortest path metric
on trees is in the cut cone (equivalently ¢;-embeddable). More generally one can
prove that if the shortest path metric on a graph G embeds into ¢; with distortion

CHAPTER 17. SPARSEST CUT 201

«a then the integrality gap of the LP for Sparsest Cur is at most a. This will imply
an O(log n)-integrality gap via Bourgain’s theorem since any # point finite metric
embeds in to ¢; with distortion O(log n).

Theorem 17.9. Let G = (V, E) be a graph. Suppose any finite metric induced by edge
lengths on E can be embedded into ¢1 with distortion . Then the integrality gap of the LP
for Sparsest Cur is at most « for any instance on G.

Proof. Let (x,y) be a feasible fractional solution and let d be the metric induced

by edge lengths given by x. Let A be the value of the solution and recall that
A= Suveg C(uv)d(uv)
Yh Did(siti)
Since d can be embedded into ¢; with distortion at most a and any ¢; metric is in
the cut-cone, it implies that there are scalaras zs, S C V such that for all u, v

i Z ysds(u,v) <d(u,v) < Z ysds(u,v).

ScVv ScVv

Here we assumed without loss of generality that the embedding is a contraction.
For aset S C V we use Dem(5(S)) = X sn(s, 1,31=1 Di to denote the total demand
crossing the cut S.

Duver €(uv)d(uv)
¥ Did(si, t)
1 Yuver c(uv) Yscy zsds(uv)
K Di Nsey ds(si, ti)
2scy 25¢(6(5))
a Y scy zsDem(5(5))
l min —0(6(5)) .
a scv Dem(d(S))

A =

\%

(using embedding of d with distortion «

= =

2

Thus there is a cut whose sparsity is at most « - A.]

Polynomial-time algorithm: How do we fine a sparse cut? The preceding proof
used the embedding of d into the cut-cone. The proof shows that one of the cuts
with zg > 0 has sparsity at most a - A. Recall the proof that a metric is in the cut-cone
iff it is ¢;-embeddable. That argument shows the following. Suppose we have an ¢;
embedding into d-dimensions. Each dimension corresponds to a line-embedding.
Each line embedding is in the cut-cone with only n — 1 cuts used to express it. Thus,
given an {; embedding into d dimensions with distortion a we only need to try
d(n — 1) cuts and one of them will be guaranteed to have sparsity at most « - A.

Via Theorem 17.6 we can obain an O(log k) randomized approximation and the
algorithm is described below.

CHAPTER 17. SPARSEST CUT 202

SparseCutviaEmbedding

1. Solve LP relaxation to obtain (x,y) and metric dy on V
2. Use Theorem 17.6 obtain map f:V — RY where d = O(log2 n)
3. For i=to d do

A. Let vj,0j,,...,0j, be the sorting of V according to dimension i

B. For h=1ton—-11let S;y ={vj1,vj2,...,vjh}

4. Among all cuts S;j with 1 <i<d and 1 <h <n—1 output the one with the

smallest sparsity.

Exercise 17.6. Use the refined guarantee in and the proof outline in Theorem 17.9
to show that the described algorithm is a randomized O(log k)-approximation
algorithm for Sparsest Cur.

17.4 SDP and Spectral Relaxations

To be filled.

Bibliographic Notes

The highly influential paper of Leighton and Rao [114] obtained an O(logn)-
approximation and flow-cut gap for Unirorm Sparsest Cut and introduced the
region growing argument as well as the lower bound via expanders (an important
influence is the paper of Sharokhi and Matula [140]). [114] demonstrated many
applications of the divide and conquer approach. There is a large literature on
Sparsest Cut and related problems and we only touched upon a small part. An
outstanding open problem is whether the flow-cut gap for NoN-UNIFORM SPARSEST
Cur in planar graphs is O(1) (this called the GNRS conjecture [74] in the more
general context of minor-free graphs); Rao, building on ideas from [105], showed
that the gap is O(y/logn) [135]. No super-constant lower bound is known for
planar graphs. The theory of metric embeddings has been a fruitful bridge between
TCS and mathematics and there are several surveys and connections from both
perspectives. The argument via Mutticur is attributed to Nabil Kahale — see the
chapter by Shmoys on approximation algorithms for cut problems [142].

Chapter 18

(Spanning) Tree Embeddings

TODO

203

Chapter 19

SDP Based Approximation

TODO

204

Bibliography

(1]

(2]

[5]

6]

Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal
Talwar. “Cops, robbers, and threatening skeletons: Padded decomposition
for minor-free graphs”. In: SIAM Journal on Computing 48.3 (2019), pp. 1120-
1145.

Anna Adamaszek, Parinya Chalermsook, Alina Ene, and Andreas Wiese.
“Submodular unsplittable flow on trees”. In: International Conference on Integer
Programming and Combinatorial Optimization. Springer. 2016, pp. 337-349.

Amit Agarwal, Noga Alon, and Moses S Charikar. “Improved approximation
for directed cut problems”. In: Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing. 2007, pp. 671-680.

Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. “Adaptive sampling
for k-means clustering”. In: Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques. Springer, 2009, pp. 15-28.

Ajit Agrawal, Philip Klein, and Ramamoorthi Ravi. “When trees collide: An
approximation algorithm for the generalized Steiner problem on networks”.
In: SIAM journal on Computing 24.3 (1995), pp. 440—456.

Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. “Streaming k-means
approximation.” In: NIPS. Vol. 22. 2009, pp. 10-18.

Karhan Akcoglu, James Aspnes, Bhaskar DasGupta, and Ming-Yang Kao.
“Opportunity cost algorithms for combinatorial auctions”. In: Computational
Methods in Decision-Making, Economics and Finance. Springer, 2002, pp. 455
479.

Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna,
Kunal Talwar, and Lisa Zhang. “Inapproximability of edge-disjoint paths
and low congestion routing on undirected graphs”. In: Combinatorica 30.5
(2010), pp. 485-520.

Kenneth Appel, Wolfgang Haken, et al. “Every planar map is four colorable.
Part I: Discharging”. In: Illinois Journal of Mathematics 21.3 (1977), pp. 429-490.

205

BIBLIOGRAPHY 206

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Sanjeev Arora. “Polynomial time approximation schemes for Euclidean
traveling salesman and other geometric problems”. In: Journal of the ACM
(JACM) 45.5 (1998), pp. 753-782.

Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh
Munagala, and Vinayaka Pandit. “Local search heuristics for k-median and
facility location problems”. In: SIAM Journal on computing 33.3 (2004), pp. 544—
562.

Arash Asadpour, Michel X Goemans, Aleksander Madry, Shayan Oveis
Gharan, and Amin Saberi. “An O (log n/log log n)-approximation algorithm
for the asymmetric traveling salesman problem”. In: Operations Research 65.4
(2017). Preliminary version in Proc. of ACM-SIAM SODA, 2010., pp. 1043—
1061.

Yonatan Aumann and Yuval Rabani. “An O (log k) approximate min-cut max-
flow theorem and approximation algorithm”. In: SIAM Journal on Computing
27.1 (1998), pp. 291-301.

Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali
Kemal Sinop. “The Hardness of Approximation of Euclidean k-Means”.
In: 31st International Symposium on Computational Geometry (SoCG 2015). Ed.
by Lars Arge and Janos Pach. Vol. 34. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2015, pp. 754-767. 1sBN: 978-3-939897-83-5. por: 10. 4230/
LIPIcs.SOCG.2015.754. URL: http://drops.dagstuhl.de/opus/volltexte/
2015/5117.

Baruch Awerbuch, Yossi Azar, and Yair Bartal. “On-line generalized Steiner
problem”. In: Theoretical Computer Science 324.2-3 (2004), pp. 313-324.

Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and
Sergei Vassilvitskii. “Scalable K-Means++". In: Proc. VLDB Endow. 5.7 (Mar.
2012), pp. 622-633. 1ssN: 2150-8097. por: 10.14778/2180912. 2180915. URL:
https://doi.org/10.14778/2180912.2180915.

Tanvi Bajpai, Deeparnab Chakrabarty, Chandra Chekuri, and Maryam
Negahbani. “Revisiting Priority k-Center: Fairness and Outliers”. In: arXiv
preprint arXiv:2103.03337 (2021).

Brenda S Baker. “Approximation algorithms for NP-complete problems on
planar graphs”. In: Journal of the ACM (JACM) 41.1 (1994), pp. 153-180.

Nikhil Bansal, Nitish Korula, Viswanath Nagarajan, and Aravind Srini-
vasan. “Solving packing integer programs via randomized rounding with
alterations”. In: Theory of Computing 8.1 (2012), pp. 533-565.

https://doi.org/10.4230/LIPIcs.SOCG.2015.754
https://doi.org/10.4230/LIPIcs.SOCG.2015.754
http://drops.dagstuhl.de/opus/volltexte/2015/5117
http://drops.dagstuhl.de/opus/volltexte/2015/5117
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.14778/2180912.2180915

BIBLIOGRAPHY 207

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Reuven Bar-Yehuda and Shimon Even. “A linear-time approximation algo-
rithm for the weighted vertex cover problem”. In: Journal of Algorithms 2.2
(1981), pp. 198-203.

Yair Bartal, Moses Charikar, and Danny Raz. “Approximating Min-Sum
<i>k</i>-Clustering in Metric Spaces”. In: Proceedings of the Thirty-Third An-
nual ACM Symposium on Theory of Computing. STOC "01. Hersonissos, Greece:
Association for Computing Machinery, 2001, pp. 11-20. 1sBN: 1581133499.
DOI: 10.1145/380752.380754. URL: https://doi.org/10.1145/380752.380754.

Krist6f Bérczi, Karthekeyan Chandrasekaran, Tamds Kirdly, and Vivek
Madan. “Improving the integrality gap for multiway cut”. In: Mathematical
Programming 183.1 (2020), pp. 171-193.

Marshall Bern and Paul Plassmann. “The Steiner problem with edge lengths
1 and 2”. In: Information Processing Letters 32.4 (1989), pp. 171-176.

Glencora Borradaile, Philip Klein, and Claire Mathieu. “An O(nlogn)
approximation scheme for Steiner tree in planar graphs”. In: ACM Transactions
on Algorithms (TALG) 5.3 (2009), pp. 1-31.

Simon Bruggmann and Rico Zenklusen. “Submodular maximization through
the lens of linear programming”. In: Mathematics of Operations Research 44.4
(2019), pp. 1221-1244.

Niv Buchbinder and Moran Feldman. “Submodular functions maximization
problems”. In: Handbook of Approximation Algorithms and Metaheuristics, Second
Edition. Chapman and Hall/CRC, 2018, pp. 753-788.

Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvof, and Laura Sanita. “An
improved LP-based approximation for Steiner tree”. In: Proceedings of the
forty-second ACM symposium on Theory of computing. 2010, pp. 583-592.

G. Calinescu, H. Karloff, and Y. Rabani. “Approximation algorithms for the
0-extension problem”. In: Proceedings of the twelfth annual ACM-SIAM sympo-
sium on Discrete algorithms. Society for Industrial and Applied Mathematics
Philadelphia, PA, USA. 2001, pp. 8-16.

Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrak. “Maximiz-
ing a monotone submodular function subject to a matroid constraint”. In:
SIAM Journal on Computing 40.6 (2011), pp. 1740-1766.

Robert Carr and Santosh Vempala. “Randomized metarounding”. In: Pro-
ceedings of the thirty-second annual ACM symposium on Theory of computing.
2000, pp. 58-62.

Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar. “Ap-
proximation algorithms for the unsplittable flow problem”. In: Algorithmica
47.1 (2007), pp. 53-78.

https://doi.org/10.1145/380752.380754
https://doi.org/10.1145/380752.380754

BIBLIOGRAPHY 208

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Deeparnab Chakrabarty and Maryam Negahbani. “Generalized center prob-
lems with outliers”. In: ACM Transactions on Algorithms (TALG) 15.3 (2019),
pp. 1-14.

Timothy M Chan. “Approximation schemes for 0-1 knapsack”. In: Ist Sym-
posium on Simplicity in Algorithms (SOSA 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. 2018.

Ashok K Chandra, Daniel S. Hirschberg, and Chak-Kuen Wong. “Approxi-
mate algorithms for some generalized knapsack problems”. In: Theoretical
Computer Science 3.3 (1976), pp. 293-304.

Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel,
Sudipto Guha, and Ming Li. “Approximation algorithms for directed Steiner
problems”. In: Journal of Algorithms 33.1 (1999), pp. 73-91.

Moses Charikar, Sudipto Guha, Eva Tardos, and David B Shmoys. “A
constant-factor approximation algorithm for the k-median problem”. In:
Journal of Computer and System Sciences 65.1 (2002), pp. 129-149.

Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D
Sivakumar. “On the hardness of approximating multicut and sparsest-cut”.
In: computational complexity 15.2 (2006), pp. 94-114.

Chandra Chekuri, Sreeram Kannan, Adnan Raja, and Pramod Viswanath.
“Multicommodity flows and cuts in polymatroidal networks”. In: SIAM
Journal on Computing 44.4 (2015), pp. 912-943.

Chandra Chekuri and Sanjeev Khanna. “A polynomial time approximation
scheme for the multiple knapsack problem”. In: SIAM Journal on Computing
35.3 (2005), pp. 713-728.

Chandra Chekuri and Vivek Madan. “Approximating multicut and the
demand graph”. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM. 2017, pp. 855-874.

Chandra Chekuri and Kent Quanrud. “On approximating (sparse) cover-
ing integer programs”. In: Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM. 2019, pp. 1596-1615.

Chandra Chekuri and Thapanapong Rukkanchanunt. “A note on iterated
rounding for the Survivable Network Design Problem”. In: 1st Symposium
on Simplicity in Algorithms (SOSA 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik. 2018.

Miroslav Chlebik and Janka Chlebikova. “Approximation hardness of the
Steiner tree problem on graphs”. In: Scandinavian Workshop on Algorithm
Theory. Springer. 2002, pp. 170-179.

BIBLIOGRAPHY 209

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Nicos Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Tech. rep. Carnegie-Mellon Univ Pittsburgh Pa Management
Sciences Research Group, 1976.

Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, and Kunal Talwar.
“Hardness of Routing with Congestion in Directed Graphs”. In: Proceedings
of the Thirty-Ninth Annual ACM Symposium on Theory of Computing. STOC
‘07. San Diego, California, USA: Association for Computing Machinery,
2007, pp. 165-178. 1sBN: 9781595936318. por: 10.1145/1250790.1250816. URL:
https://doi.org/10.1145/1250790.1250816.

Julia Chuzhoy and Sanjeev Khanna. “Polynomial flow-cut gaps and hardness
of directed cut problems”. In: Journal of the ACM (JACM) 56.2 (2009), pp. 1-28.

Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Sey-
mour, and Mihalis Yannakakis. “The complexity of multiterminal cuts”. In:
SIAM Journal on Computing 23.4 (1994), pp. 864-894.

George Dantzig, Ray Fulkerson, and Selmer Johnson. “Solution of a large-
scale traveling-salesman problem”. In: Journal of the operations research society
of America 2.4 (1954), pp. 393—410.

W Fernandez De La Vega and George S. Lueker. “Bin packing can be solved
within 1+ ¢ in linear time”. In: Combinatorica 1.4 (1981), pp. 349-355.

Yefim Dinitz, Naveen Garg, and Michel X Goemans. “On the single-source
unsplittable flow problem”. In: Combinatorica 19.1 (1999), pp. 17-41.

Irit Dinur and Samuel Safra. “On the hardness of approximating minimum
vertex cover”. In: Annals of mathematics (2005), pp. 439-485.

D-Z Du and Frank K. Hwang. “A proof of the Gilbert-Pollak conjecture on
the Steiner ratio”. In: Algorithmica 7.1 (1992), pp. 121-135.

Jack Edmonds. “Optimum branchings”. In: Journal of Research of the National
Bureau of Standards, B 71 (1967), pp. 233-240.

Guy Even, Joseph Seffi Naor, Satish Rao, and Baruch Schieber. “Divide-and-
conquer approximation algorithms via spreading metrics”. In: Journal of the
ACM (JACM) 47 4 (2000), pp. 585-616.

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. “A tight bound on
approximating arbitrary metrics by tree metrics”. In: Journal of Computer and
System Sciences 69.3 (2004), pp. 485-497.

Tomas Feder and Daniel Greene. “Optimal algorithms for approximate
clustering”. In: Proceedings of the twentieth annual ACM symposium on Theory
of computing. 1988, pp. 434—444.

https://doi.org/10.1145/1250790.1250816
https://doi.org/10.1145/1250790.1250816

BIBLIOGRAPHY 210

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Uriel Feige. “A threshold of In n for approximating set cover”. In: Journal of
the ACM (JACM) 45.4 (1998), pp. 634-652.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrak. “Maximizing non-monotone
submodular functions”. In: SIAM Journal on Computing 40.4 (2011), pp. 1133—
1153.

Uriel Feige and Jan Vondrak. “Approximation algorithms for allocation prob-
lems: Improving the factor of 1-1/e”. In: 2006 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’06). IEEE. 2006, pp. 667-676.

Moran Feldman, Joseph Seffi Naor, Roy Schwartz, and Justin Ward. “Im-
proved approximations for k-exchange systems”. In: European Symposium on
Algorithms. Springer. 2011, pp. 784-798.

Moran Feldman, Joseph Seffi Naor, Roy Schwartz, and Justin Ward. “Im-
proved approximations for k-exchange systems”. In: European Symposium on
Algorithms. Springer. 2011, pp. 784-798.

Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey. “An
analysis of approximations for maximizing submodular set functions II"”. In:
Polyhedral combinatorics (1978), pp. 73-87.

Michael R Garey and David S Johnson. Computers and intractability. Vol. 174.
Freeman, San Francisco, 1979.

N. Garg, V.V. Vazirani, and M. Yannakakis. “Approximate max-flow min-
(multi) cut theorems and their applications”. In: Proceedings of the twenty-fifth
annual ACM symposium on Theory of computing. ACM New York, NY, USA.
1993, pp. 698-707.

Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. “A randomized
rounding approach to the traveling salesman problem”. In: 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science. IEEE. 2011, pp. 550-559.

Michel X Goemans, Neil Olver, Thomas Rothvof3, and Rico Zenklusen.
“Matroids and integrality gaps for hypergraphic steiner tree relaxations”. In:
Proceedings of the forty-fourth annual ACM symposium on Theory of computing.
2012, pp. 1161-1176.

Michel X Goemans and David P Williamson. “The primal-dual method for
approximation algorithms and its application to network design problems”.
In: Approximation algorithms for NP-hard problems (1997), pp. 144-191.

Michel X Goemans and David P Williamson. “The primal-dual method for
approximation algorithms and its application to network design problems”.
In: Approximation algorithms for NP-hard problems (1997), pp. 144-191.

BIBLIOGRAPHY 211

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Ronald L Graham. “Bounds for certain multiprocessing anomalies”. In: Bell
system technical journal 45.9 (1966), pp. 1563-1581.

Ronald L. Graham. “Bounds on multiprocessing timing anomalies”. In: SIAM
journal on Applied Mathematics 17.2 (1969), pp. 416—429.

Fabrizio Grandoni, Tobias Momke, Andreas Wiese, and Hang Zhou. “A
(5/3+ ¢)-approximation for unsplittable flow on a path: placing small tasks
into boxes”. In: Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing. 2018, pp. 607-619.

Sudipto Guha and Samir Khuller. “Greedy strikes back: Improved facility
location algorithms”. In: Journal of algorithms 31.1 (1999), pp. 228-248.

Anupam Gupta and Jochen Kénemann. “Approximation algorithms for
network design: A survey”. In: Surveys in Operations Research and Management
Science 16.1 (2011), pp. 3-20.

Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair. “Cuts,
trees and 1-embeddings of graphs”. In: Combinatorica 24.2 (2004), pp. 233—
269.

Anupam Gupta and Kanat Tangwongsan. Simpler Analyses of Local Search
Algorithms for Facility Location. 2008. arXiv: 809.2554 [cs.DS].

Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. “New constructive
aspects of the Lovész local lemma”. In: Journal of the ACM (JACM) 58.6 (2011),
pp. 1-28.

Eran Halperin and Robert Krauthgamer. “Polylogarithmic inapproxima-
bility”. In: Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing. 2003, pp. 585-594.

Sariel Har-Peled and Manor Mendel. “Fast construction of nets in low-
dimensional metrics and their applications”. In: SIAM Journal on Computing
35.5 (2006), pp. 1148-1184.

Sariel Har-Peled and Benjamin Raichel. “Net and prune: A linear time
algorithm for euclidean distance problems”. In: Journal of the ACM (JACM)
62.6 (2015), pp. 1-35.

Sariel HarPeled. Concentration of Random Variables — Chernoff’s Inequality.
Avaialble at https://sarielhp.org/teach/13/b_574_rand_alg/lec/07_
chernoff.pdf.

Johan Hastad. “Clique is hard to approximate within n/sup 1-/spl epsiv”.
In: Proceedings of 37th Conference on Foundations of Computer Science. IEEE.
1996, pp. 627-636.

https://arxiv.org/abs/0809.2554
https://sarielhp.org/teach/13/b_574_rand_alg/lec/07_chernoff.pdf
https://sarielhp.org/teach/13/b_574_rand_alg/lec/07_chernoff.pdf

BIBLIOGRAPHY 212

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Michael Held and Richard M Karp. “The traveling-salesman problem and
minimum spanning trees”. In: Operations Research 18.6 (1970), pp. 1138-1162.

Rebecca Hoberg and Thomas Rothvoss. “A logarithmic additive integrality
gap for bin packing”. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM. 2017, pp. 2616-2625.

Dorit S Hochbaum and David B Shmoys. “A polynomial approximation
scheme for scheduling on uniform processors: Using the dual approximation
approach”. In: SIAM journal on computing 17.3 (1988), pp. 539-551.

Dorit S Hochbaum and David B Shmoys. “A unified approach to approxima-
tion algorithms for bottleneck problems”. In: Journal of the ACM (JACM) 33.3
(1986), pp. 533-550.

Ian Holyer. “The NP-completeness of edge-coloring”. In: SIAM Journal on
computing 10.4 (1981), pp. 718-720.

Shlomo Hoory, Nathan Linial, and Avi Wigderson. “Expander graphs and
their applications”. In: Bulletin of the American Mathematical Society 43.4 (2006),
pp- 439-561.

Ellis Horowitz and Sartaj Sahni. “Exact and approximate algorithms for
scheduling nonidentical processors”. In: Journal of the ACM (JACM) 23.2
(1976), pp. 317-327.

Wen-Lian Hsu and George L Nemhauser. “Easy and hard bottleneck location
problems”. In: Discrete Applied Mathematics 1.3 (1979), pp. 209-215.

Makoto Imase and Bernard M Waxman. “Dynamic Steiner tree problem”. In:
SIAM Journal on Discrete Mathematics 4.3 (1991), pp. 369-384.

Kamal Jain. “A factor 2 approximation algorithm for the generalized Steiner
network problem”. In: Combinatorica 21.1 (2001), pp. 39-60.

Kamal Jain and Vijay V Vazirani. “Approximation algorithms for metric
facility location and k-median problems using the primal-dual schema and
Lagrangian relaxation”. In: Journal of the ACM (JACM) 48.2 (2001), pp. 274—
296.

Ragesh Jaiswal, Amit Kumar, and Sandeep Sen. “A simple D 2-sampling
based PTAS for k-means and other clustering problems”. In: Algorithmica
70.1 (2014), pp. 22-46.

Klaus Jansen. “An EPTAS for scheduling jobs on uniform processors: using
an MILP relaxation with a constant number of integral variables”. In: SIAM
Journal on Discrete Mathematics 24.2 (2010), pp. 457-485.

Klaus Jansen. “Parameterized approximation scheme for the multiple knap-
sack problem”. In: SIAM Journal on Computing 39.4 (2010), pp. 1392-1412.

BIBLIOGRAPHY 213

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Klaus Jansen and Lars Rohwedder. “A quasi-polynomial approximation for
the restricted assignment problem”. In: International Conference on Integer
Programming and Combinatorial Optimization. Springer. 2017, pp. 305-316.

David S Johnson. “Approximation algorithms for combinatorial problems”.
In: Journal of computer and system sciences 9.3 (1974), pp. 256-278.

EG Co man Jr, MR Garey, and DS Johnson. “Approximation algorithms for
bin packing: A survey”. In: Approximation algorithms for NP-hard problems
(1996), pp. 46-93.

George Karakostas. “A better approximation ratio for the vertex cover
problem”. In: ACM Transactions on Algorithms (TALG) 5.4 (2009), p. 41.

Anna R Karlin, Nathan Klein, and Shayan Oveis Gharan. “A (slightly)
improved approximation algorithm for metric TSP”. In: Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing. 2021, pp. 32—45.

Narendra Karmarkar and Richard M Karp. “An efficient approximation
scheme for the one-dimensional bin-packing problem”. In: 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982). IEEE. 1982, pp. 312—
320.

Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. “Embeddings of
Planar Quasimetrics into Directed ¢; and Polylogarithmic Approximation for
Directed Sparsest-Cut”. In: Proceedigns of IEEE FOCS (2021). To appear. 2021.

H. Kellerer, HK.U.P.D. Pisinger, U. Pferschy, and D. Pisinger. Knapsack
Problems. Springer Nature Book Archives Millennium. Springer, 2004. 1sBN:
9783540402862. URL: https://books.google.com/books?id=u5DB7gck@8YC.

Subhash Khot and Oded Regev. “Vertex cover might be hard to approximate
to within 2- ¢”. In: Journal of Computer and System Sciences 74.3 (2008), pp. 335—
349.

Philip Klein, Serge A Plotkin, and Satish Rao. “Excluded minors, network
decomposition, and multicommodity flow”. In: Proceedings of the twenty-fifth
annual ACM symposium on Theory of computing. 1993, pp. 682-690.

Philip N Klein, Serge A Plotkin, Satish Rao, and Eva Tardos. “Approximation
algorithms for Steiner and directed multicuts”. In: Journal of Algorithms 22.2
(1997), pp. 241-269.

Stavros G Kolliopoulos and Neal E Young. “Approximation algorithms for
covering/packing integer programs”. In: Journal of Computer and System
Sciences 71.4 (2005), pp. 495-505.

https://books.google.com/books?id=u5DB7gck08YC

BIBLIOGRAPHY 214

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Guy Kortsarz and Zeev Nutov. “Approximating minimum cost connectivity
problems”. In: Parameterized complexity and approximation algorithms. Ed. by
Erik D. Demaine, MohammadTaghi Hajiaghayi, and Daniel Marx. Dagstuhl
Seminar Proceedings 09511. Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2010. URL: http://drops.dagstuhl.de/
opus/volltexte/2010/2497.

Madhukar R Korupolu, C Greg Plaxton, and Rajmohan Rajaraman. “Analysis
of a local search heuristic for facility location problems”. In: Journal of
algorithms 37.1 (2000), pp. 146-188.

Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish
Sabharwal, and Barna Saha. “The matroid median problem”. In: Proceedings
of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms.
SIAM. 2011, pp. 1117-1130.

Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in
combinatorial optimization. Vol. 46. Cambridge University Press, 2011.

Eugene L Lawler. “Fast approximation algorithms for knapsack problems”.
In: Mathematics of Operations Research 4.4 (1979), pp. 339-356.

Jon Lee, Maxim Sviridenko, and Jan Vondrak. “Matroid matching: the power
of local search”. In: SIAM Journal on Computing 42.1 (2013), pp. 357-379.

T. Leighton and S. Rao. “Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms”. In: Journal of the ACM
(JACM) 46.6 (1999). Conference version is from 1988., pp. 787-832.

Tom Leighton, Satish Rao, and Aravind Srinivasan. “Multicommodity flow
and circuit switching”. In: Proceedings of the Thirty-First Hawaii International
Conference on System Sciences. Vol. 7. IEEE. 1998, pp. 459-465.

Jan Karel Lenstra, David B Shmoys, and Eva Tardos. “Approximation al-
gorithms for scheduling unrelated parallel machines”. In: Mathematical
programming 46.1 (1990), pp. 259-271.

Shi Li. “A 1.488 approximation algorithm for the uncapacitated facility
location problem”. In: Information and Computation 222 (2013), pp. 45-58.

Nathan Linial, Eran London, and Yuri Rabinovich. “The geometry of graphs
and some of its algorithmic applications”. In: Combinatorica 15.2 (1995),
pp. 215-245.

Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. “The planar
k-means problem is NP-hard”. In: Theoretical Computer Science 442 (2012),
pp- 13-21.

http://drops.dagstuhl.de/opus/volltexte/2010/2497
http://drops.dagstuhl.de/opus/volltexte/2010/2497

BIBLIOGRAPHY 215

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

G.A. Margulis. “Explicit constructions of expanders”. In: Problemy Peredaci
Informacii 9.4 (1973), pp. 71-80.

Julidn Mestre. “Greedy in approximation algorithms”. In: European Sympo-
sium on Algorithms. Springer. 2006, pp. 528-539.

Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization
and probabilistic techniques in algorithms and data analysis. Cambridge university
press, 2017.

Sarah Morell and Martin Skutella. “Single source unsplittable flows with
arc-wise lower and upper bounds”. In: Mathematical Programming (2021),
pp- 1-20.

Robin A Moser and Gébor Tardos. “A constructive proof of the general
Lovasz local lemma”. In: Journal of the ACM (JACM) 57.2 (2010), pp. 1-15.

Dana Moshkovitz. “The Projection Games Conjecture and the NP-Hardness of
In n-Approximating Set-Cover”. In: Theory of Computing 11.1 (2015), pp. 221-
235.

Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge
university press, 1995.

Viswanath Nagarajan, R Ravi, and Mohit Singh. “Simpler analysis of LP
extreme points for traveling salesman and survivable network design prob-
lems”. In: Operations Research Letters 38.3 (2010), pp. 156-160.

Viswanath Nagarajan, Baruch Schieber, and Hadas Shachnai. “The Euclidean
k-supplier problem”. In: Mathematics of Operations Research 45.1 (2020), pp. 1-
14.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. “An
analysis of approximations for maximizing submodular set functions—I".
In: Mathematical Programming 14.1 (1978), pp. 265-294.

Zeev Nutov. “Node-connectivity survivable network problems”. In: Handbook
of Approximation Algorithms and Metaheuristics. Chapman and Hall/CRC,
2018, pp. 233-253.

Rafail Ostrovsky, Yuval Rabani, Leonard] Schulman, and Chaitanya Swamy.
“The effectiveness of Lloyd-type methods for the k-means problem”. In:
Journal of the ACM (JACM) 59.6 (2013), pp. 1-22.

Jan Plesnik. “A heuristic for the p-center problems in graphs”. In: Discrete
Applied Mathematics 17.3 (1987), pp. 263-268.

Prabhakar Raghavan. “Probabilistic construction of deterministic algorithms:
approximating packing integer programs”. In: Journal of Computer and System
Sciences 37.2 (1988), pp. 130-143.

BIBLIOGRAPHY 216

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

Prabhakar Raghavan and Clark D Tompson. “Randomized rounding: a
technique for provably good algorithms and algorithmic proofs”. In: Combi-
natorica 7.4 (1987), pp. 365-374.

Satish Rao. “Small distortion and volume preserving embeddings for planar
and Euclidean metrics”. In: Proceedings of the fifteenth annual symposium on
Computational geometry. 1999, pp. 300-306.

Gabriel Robins and Alexander Zelikovsky. “Tighter bounds for graph Steiner
tree approximation”. In: SIAM Journal on Discrete Mathematics 19.1 (2005),
pp. 122-134.

Sartaj Sahni and Teofilo Gonzalez. “P-complete approximation problems”.
In: Journal of the ACM (JACM) 23.3 (1976), pp. 555-565.

Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Vol. 24.
Springer Science & Business Media, 2003.

Paul D. Seymour. “Packing directed circuits fractionally”. In: Combinatorica
15.2 (1995), pp. 281-288.

Farhad Shahrokhi and David W Matula. “The maximum concurrent flow
problem”. In: Journal of the ACM (JACM) 37.2 (1990), pp. 318-334.

Ankit Sharma and Jan Vondrak. “Multiway cut, pairwise realizable distri-
butions, and descending thresholds”. In: Proceedings of the forty-sixth annual
ACM symposium on theory of computing. 2014, pp. 724-733.

David B Shmoys. “Cut problems and their application to divide-and-
conquer”. In: Approximation algorithms for NP-hard problems (1997), pp. 192—
235.

David B Shmoys and Eva Tardos. “An approximation algorithm for the
generalized assignment problem”. In: Mathematical programming 62.1 (1993),
pp. 461-474.

Martin Skutella. “A note on the ring loading problem”. In: SIAM Journal on
Discrete Mathematics 30.1 (2016), pp. 327-342.

Aravind Srinivasan. “An extension of the Lovasz Local Lemma, and its
applications to integer programming”. In: SIAM Journal on Computing 36.3
(2006), pp. 609-634.

Larry Stockmeyer. “Planar 3-colorability is Polynomial Complete”. In: SIGACT

News 5.3 (July 1973), pp. 19-25. 1ssn: 0163-5700. por: 10.1145/1008293.1008294.
URL: http://doi.acm.org/10.1145/1008293.1008294.

Ola Svensson. “Approximating ATSP by relaxing connectivity”. In: 2015
IEEE 56th Annual Symposium on Foundations of Computer Science. IEEE. 2015,
pp- 1-19.

https://doi.org/10.1145/1008293.1008294
http://doi.acm.org/10.1145/1008293.1008294

BIBLIOGRAPHY 217

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

Ola Svensson. “Santa claus schedules jobs on unrelated machines”. In: SIAM
Journal on Computing 41.5 (2012), pp. 1318-1341.

Ola Svensson, Jakub Tarnawski, and Laszl6 A Végh. “A constant-factor
approximation algorithm for the asymmetric traveling salesman problem”.
In: Journal of the ACM (JACM) 67.6 (2020), pp. 1-53.

Chaitanya Swamy. “Improved approximation algorithms for matroid and
knapsack median problems and applications”. In: ACM Transactions on
Algorithms (TALG) 12.4 (2016), pp. 1-22.

Hiromitsu Takahashi and A Matsuyama. “An approximate solution for the
Steiner problem in graphs”. In: Math. Jap. 24.6 (1980), pp. 573-577.

Robin Thomas. “An update on the four-color theorem”. In: Notices of the
AMS 45.7 (1998), pp. 848-859.

Vera Traub and Jens Vygen. “An improved approximation algorithm for
ATSP”. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing. 2020, pp. 1-13.

Sergei Vassilvitskii and David Arthur. “k-means++: The advantages of careful
seeding”. In: Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms. 2006, pp. 1027-1035.

Vijay V Vazirani. Approximation algorithms. Springer Science & Business
Media, 2013.

Robert Vicari. “Simplex based Steiner tree instances yield large integrality
gaps for the bidirected cut relaxation”. In: arXiv preprint arXiv:2002.07912
(2020).

Douglas Brent West et al. Introduction to graph theory. Vol. 2. Prentice hall
Upper Saddle River, 2001.

David P Williamson and David B Shmoys. The design of approximation algo-
rithms. Cambridge university press, 2011.

David P. Williamson. “On the design of approximation algorithms for a class
of graphs problems”. PhD thesis. Cambridge, MA: MIT, 1993.

David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V.
Vazirani. “A Primal-Dual Approximation Algorithm for Generalized Steiner
Network Problems”. In: 15 (1995), pp. 435—454. por: http://dx.doi.org/10.
1007/BF01299747.

Laurence A Wolsey. “An analysis of the greedy algorithm for the submodular
set covering problem”. In: Combinatorica 2.4 (1982), pp. 385-393.

Yuli Ye and Allan Borodin. “Elimination graphs”. In: ACM Transactions on
Algorithms (TALG) 8.2 (2012), pp. 1-23.

https://doi.org/http://dx.doi.org/10.1007/BF01299747
https://doi.org/http://dx.doi.org/10.1007/BF01299747

BIBLIOGRAPHY 218

[163] Alexander Z Zelikovsky. “An 11/6-approximation algorithm for the network
Steiner problem”. In: Algorithmica 9.5 (1993), pp. 463—470.

Appendix A

Basic Feasible Solutions to LPs and
the Rank Lemma

We discuss the rank lemma about vertex solutions for linear programs. Recall that
a polyhedron in R" is defined as the intersection of finite collection of half spaces.
Without loss of generality we can assume that it is defined by a system of inequalities
of the form Ax < b where A is a m Xn matrix and b is a m X 1 vector. A polyhedron P
is bounded if P is contained in finite radius ball around the origin. A polytope in R"
is defined as the convex hull of a finite collection of points. A fundamental theorem
about linear programming states that any bounded polyhedron is a polytope. If
the polyhedron is not bounded then it can be expressed as the Minkowski sum of a
polytope and a cone.

A bounded polyhedron P in R" defined by a system Ax < b must necessarily
have m > n. A point p € P is a basic feasible solution or a vertex solution of the
system if it is the unique solution to a system A’y = b’ where A’ is a sub-matrix of
A with n inequalities and the rank of A’ is equal to n. The inequalities in A’ are said
to be tight for y. Note that there may be many other inequalities in Ax < b that are
tight at y and in general there many be many different rank n sub-matrices that give
rise to the same basic feasible solution y.

Lemma A.1. Suppose y is a basic feasible solution of a system Ax < b,{ < x < u where A
is a m X n matrix and € and u are vectors defining lower and upper bounds on the variables
x € R". Let S = {i : {; <y; < u;} be the set of indices of “fractional” variables in y. Then
|S| < rank(A) < m. In particular the number of fractional variables in y is at most the
number of “non-trivial” constraints (those that are defined by A).

An extension of the previous lemma is often useful when the system defining
the polyhedron has equality constraints.

219

APPENDIX A. BASIC FEASIBLE SOLUTIONS TO LPS AND THE RANK LEMMA?220

Corollary A.1. Suppose y is a basic feasible solution of a system Ax < b,Cx =d,{ <
x < u where A isa m X n matrix, C isa m’ X n matrix, and { and u are vectors defining
lower and upper bounds on the variables x € R". Let S = {i : {; < y; < u;} be the set of
indices of “fractional” variables in y. Then |S| < rank(A,C) < m +m’.

A special case of the preceding corollary is called the rank lemma in [111].

The lemmas are a simple consequence of the definition of basic feasible solution.
We will focus on the proof of Lemma A.1. It is interesting only when rank(A) or
m is smaller than 7, otherwise the claim is trivial. Before we prove it formally we
observe some simple corollaries. Suppose we have a system Ax < b, x > 0 where
m < n. Then the number of non-zero variables in a basic feasible solution is at most
m. Similarly if the system is Ax < b, x € [0,1]" then the number of non-integer
variables in y is at most m. For example in the knapsack LP we have m =1 and
hence in any basic feasible solution there can only be one fractional variable.

Now for the proof. We consider the system Ax < b, —x < —{,x < u as a single
system Cx < d which has m + 2n inequalities. Since y is a basic feasible solution to
this system, from the definition, it is the unique solution of sub-system C’x = d’
where C’ is a n X n full-rank matrix. How many rows of C’ can come from A? At
most rank(A) < m rows. It means that the rest of the rows of C” are of the from the
other set of inequalities —x < ¢ or x < u. There are at least n — rank(A) such rows
which are tight at y. Thus n — rank(A) variables in y are tight at lower or upper
bounds and hence there can only be rank(A) fractional variables in y.

See [111] for iterated rounding based methodology for exact and approximation
algorithms. The whole methodology relies on properties of basic feasible solutions
to LP relaxations of combinatorial optimization problems.

A.0.1 Some Examples

We give some examples to illustrate the utility of the rank lemma in the context of
LP relaxations that arise in approximation algorithms.

Knapsack: The natural LP relaxation for this of the form max Z?:l w;x; subject to
x €10,1]", X7, six; < 1 consisting of a single non-trivial constraint. A basic feasible
solution has at most 1 fractional variable. See Chapter 3.

Packing Integer Programs (PIPs): The LP relaxation is of the form max wx subject
to Ax < b,x €[0,1]" where A is a m X n non-negative matrix. See Chapter 4. When
m =1 we have the Knapsack problem and hence the general problem is some-times
referred to as the m-dimensional Knapsack problem, especially when m is a fixed
constant. A basic feasible solution for the LP has at most m fractional variables.
When m is a fixed constant one can exploit this after guessing the big items to obtain
a PTAS.

APPENDIXA. BASIC FEASIBLE SOLUTIONS TO LPS AND THE RANKLEMMA221

Generalized Assignment: See Chapter 6.

A.0.2 Connection to Caratheodary’s Theorem

Suppose we have n points P = {p1,p2,...,pn} in d-dimensional Euclidean space
R?. A point p € R? is in the convex hull of P iff p is a convex combination of points
in P. Formally, this means that exist scalars Ay, ..., A, > 0such that };; A; =1 and
p = 2; Aipi (note that this is a vector sum). Caratheordary’s theorem states that if p
is in the convex hull of P then there is subset P” C P such that p is in the convex
hull of P’ and |P’| < d + 1. One can prove Caratheodary’s theorem directly but it is
helpful to see it also as a consequence of the rank lemma. Consider the system of
inequalities A; > 0,1 <i <mn,};A; =1,3;Aipi = p where the system }; A;p; = p
consists of d equalities. This system of inequalities in the variables Ay,..., A, is
feasible by assumption (since p is in the convex hull of P). If we take any basic
teasible solution of this system of inequalities we see that at most d + 1 of them are
non-zero by the rank lemma.

One implication of Caratheordary’s theorem in the context of combinatorial
optimization is the following. Suppose we have a polytope P which is an LP
relaxation of some combinatorial problem and let x € P be any feasible point. Then
x can be written as a convex combination of at most 1 + 1 vertices of P where n
is number of variables. Moreover, via the Ellipsoid method, one can find such a
convex combination efficiently as long as one can optimize over P efficiently. As an
example suppose G = (V,E) is a graph and P is the spanning tree polytope of G
(the vertices are the characteristic vectors of spanning trees) which is R™ (m = |E|).
Then any fractional spanning tree x € P can be decomposed into at most m + 1
spanning trees.

In the context of approximation P is typically a relaxation of some hard combi-
natorial optimization problem. In such a case the vertices of P do not correspond to
structures we are interested in. For example we can consider the minimum Steiner
tree problem in a graph G = (V, E) with terminal set S C V. There are several LP
relaxations but perhaps the simplest one is the cut relaxation which has an integrality
gap of 2. In such a case a feasible point x € P cannot be decomposed into convex
combination of Steiner trees. However it can be shown that 2x dominates a convex
combination of Steiner trees and such a convex combination can be found efficiently.
It requires more technical work to precisely formalize this and we refer the reader to
the work of Carr and Vempala [30] — you can also find a few applications of such
decompositions in the same paper and it is a simple yet powerful tool to keep in
mind.

Appendix B

Probabilistic Inequalities

The course will rely heavily on proababilistic methods. We will mostly rely on
discrete probability spaces. We will keep the discussion high-level where possible
and use certain results in a black-box fashion.

Let () be a finite set. A probability measure p assings a non-negative number
p(w) for each w € Q such that)} .o p(w) = 1. The tuple (Q, p) defines a discrete
probability space; an event in this space is any subset A € Q) and the probability
of an event is simply p(A) = X yea P(w). When Q is a continuous space such as
the interval [0, 1] things get trickier and we need to talk about a measure spaces
o-algebras over (); we can only assign probability to certain subsets of Q. We will
not go into details since we will not need any formal machinery for what we do in
this course.

An important definition is that of a random variable. We will focus only on
real-valued random variables in this course. A random variable X in a probability
space is a function X : (Q — R. In the discrete setting the expectation of X, denoted
by E[X], is defined as }},cq p(w)X(w). For continuous spaces E[X] = f X(w)dp(w)
with appropriate definition of the integral. The variance of X, denoted by Var[X] or
as oﬁ, is defined as E [(X - E[X]])Z] The standard deviation is ox, the square root
of the variance.

Theorem B.1 (Markov’s Inequality). Let X be a non-negative random variable such that
Ey is finite. Then for any t > 0, P[X > t] < E[X]/t.

Proof. The proof is in some sense obvious, especially in the discrete case. Here
is a sketch. Define a new random variable Y where Y(w) = X(w) if X(w) < t
and Y(w) =t if X(w) > t. Y is non-negative and Y < X point-wise and hence

222

APPENDIX B. PROBABILISTIC INEQUALITIES 223

E[Y] < E[X]. We also see that:

E[X]2E[Y] =) ZX@p@+ Y tpw)
w:X(w)<t w:X(w)>t
>t Z p(w) (since X is non-negative)
w:X(w)=>t
> tP[X > t].
The continuous case follows by replacing sums by integrals. [

Markov’s inequality is tight under the assumption. It is useful to construct an
example. The more information we have about a random variable the better we can
bound its deviation from the expectation.

Theorem B.2 (Chebyshev’s Inequality). Let X be a random variable with E[X] and
Var[X] are finite. Then P[|X| > t] < E[X?]/t? and P[|X — E[X]| > tox] < 1/#2.

Proof. Consider the non-negative random variable Y = X2. P[|X| > t] = P[Y > #?]
and we apply Markov’s inequality to the latter. The second inequality is similar by
considering Y = (X — E[X])%.]

Chernoff-Hoeffding Bounds: We will use several times various forms of the
Chernoff-Hoeffding bounds that apply to a random variable that is a a finite sum
of bounded and independent random variables. There are several versions of these
bounds. First we state a general bound that is applicable to non-negative random
variables and is dimension-free in that it depends only the expectation rather than
the number of variables.

Theorem B.3 (Chernoff-Hoeffding). Let X1, X», ..., X, be independent binary random
variables and let aq, as, . .., a, be coefficients in [0,1]. Let X = 3}; a;X;. Then

e Forany u > E[X]and any 6 >0, P[X > (1 +0)u] < (ﬁ)y

o Forany u < E[X]and any 6 > 0, P[X < (1 - 8)u] < e™H0*/2,

The following corollary bounds the deviation from the mean in both directions.
Corollary B.4. Under the conditions of Theorem B.3, the following hold:

o If6>2e—1,P[X > (1+05)u] <2 1+,

 For any U there is a constant c¢(U) such that for 0 < 6 < U, P[X > (1 + 0)u] <
e~ Iy particular, combining with the lower tail bound,

P[|X — | > 6] < 26—k,

APPENDIX B. PROBABILISTIC INEQUALITIES 224

We refer the reader to the standard books on randomized algorithms [126] and
[122] for the derivation of the above bounds.

If we are interested only in the upper tail we also have the following bounds
which show the dependence of 11 on 7 to obtain an inverse polynomial probability.

Corollary B.5. Under the conditions of Theorem B.3, there is a universal constant a such that
forany u > max{1, E[X]}, and sufficiently large n and for c > 1, P[X > 421 ;] < 1/n€.
Similarly, there is a constant « such that forany € > 0, P[X > (1+€e)u+aclogn/e] < 1/n°.

Remark B.1. If the X; are in the range [0, b] for some b not equal to 1 one can scale
them appropriately and then use the standard bounds.

Some times we need to deal with random variables that are in the range [-1, 1].
Consider the setting where X = }}; X; where for each i, X; € [-1,1] and Ex, =0,
and the X; are independent. In this case E[X] = 0 and we can no longer expect
a dimension-free bound. Suppose each X; is 1 with probability 1/2 and -1 with
probability 1/2. Then X = }}; X; corresponds to a 1-dimensional random walk and
even though the expected value is 0 the standard deviation of X is ®(y/n). One
can show that P[|X]| > ty/n] < 2¢~**/2, For these settings we can use the following
bounds.

Theorem B.6. Let X1, X, ..., X, be independent random variables such that for each i,
X; €la;, b;i). Let X = Y};a;X; and let u = E[X]. Then

2t2

P[|X — u| >] <2 i’

In particular if b; — a; < 1 for all i then

2

P[|X — y| >] < 2.

Note that Var[X] = }}; Var[X;]. One can show a bound based of the following

form
[2

P[|X — u| > t] < 2¢ XM
where |X;| < M for all i.

Remark B.2. Compare the Chebyshev bound to the Chernoff-Hoeffding bounds for
the same variance.

Sariel Har-Peled maintains a cheat sheet of Chernoff bounds and also has an
interesting derivation. See his notes [80].

APPENDIX B. PROBABILISTIC INEQUALITIES 225

Statistical Estimators, Reducing Variance and Boosting: Randomized algorithms
compute a function f of the input. In many cases they producing an unbiased
estimator, via a random variable X, for the the function value. That is, the algorithm
will have the property that the E[X] is the desired value. Note that the randomness is
internal to the algorithm and not part of the input (we can also consider randomness
in the input). Having an estimator is not often useful. We will also typically try to
evaluate Var[X] and then we can use Chebyshev’s inequality. One way to reduce
the variance of the estimate is to run the algorithm in parallel (with separate random
bits) and get estimators X1, Xp,..., X, and use X = % 2. Xi as the final estimator.
Note that Var[X]) = % 2.; Var[X;] since the X; are independent. Thus the variance
has been reduced by a factor of /. A different approach is to use the median value of
X1, X2, ..., Xy, as the final estimator. We can then use Chernoff-Hoeffding bounds
to get a much better dependence on h. In fact both approaches can be combined.

	Introduction
	Formal Aspects
	NP Optimization Problems
	Relative Approximation
	Additive Approximation
	Hardness of Approximation

	Designing Approximation Algorithms

	Covering Problems
	Greedy for Set Cover and Maximum Coverage
	Greedy Algorithm
	Analysis of Greedy Cover
	Dominating Set

	Vertex Cover
	A 2-approximation for Vertex Cover
	Set Cover with small frequencies

	Vertex Cover via LP
	Set Cover via LP
	Deterministic Rounding
	Randomized Rounding
	Dual-fitting
	Greedy for implicit instances of Set Cover

	Submodularity
	Submodular Set Cover
	Submodular Maximum Coverage

	Covering Integer Programs (CIPs)

	Knapsack
	The Knapsack Problem
	A Greedy Algorithm
	A Polynomial Time Approximation Scheme
	Rounding and Scaling

	Other Problems

	Packing Problems
	Maximum Independent Set Problem in Graphs
	Elimination Orders and MIS

	The efficacy of the Greedy algorithm for a class of Independence Families
	Randomized Rounding with Alteration for Packing Problems
	Packing Integer Programs (PIPs)
	Randomized Rounding with Alteration for PIPs

	Load Balancing and Bin Packing
	Load Balancing / MultiProcessor Scheduling
	Problem Description
	Greedy Algorithm
	A PTAS for Multi-Processor Scheduling
	Section Notes

	Bin Packing
	Problem Description
	Greedy Approaches
	(Asymptotic) PTAS for Bin Packing
	Asymptotic PTAS for Bin Packing
	Section Notes

	Unrelated Machine Scheduling and Generalized Assignment
	Scheduling on Unrelated Parallel Machines
	Generalized Assignment Problem
	Shmoys-Tardos Rounding
	Iterative Rounding

	Maximization version of GAP
	Bibilographic Notes

	Congestion Minimization in Networks
	Congestion Minimization and VLSI Routing
	Min-max Integer Programs

	Introduction to Local Search
	Local Search for Max Cut
	Local Search for Submodular Function Maximization

	Clustering and Facility Location
	k-Center
	Gonzalez's algorithm and nets in metric spaces
	Hochbaum-Shmoys bottleneck approach
	Related Problems and Discussion

	Uncapacitated Facility Location
	LP Rounding
	Primal-Dual
	Local Search

	k-Median
	Local Search

	k-Means
	Lloyd's algorithm, D2-sampling and k-Means ++
	Bibliographic Notes

	Introduction to Network Design
	The Steiner Tree Problem
	The MST Algorithm
	The Greedy/Online Algorithm
	LP Relaxation
	Other Results on Steiner Trees

	The Traveling Salesperson Problem (TSP)
	TSP in Undirected Graphs
	LP Relaxation
	TSP in Directed Graphs
	LP Relaxation

	Steiner Forest Problem
	Primal Dual for Constrained Forest Problems
	Classes of Functions and Setup
	A Primal-Dual Algorithm for Covering Uncrossable Functions
	Proof of [lemma:uncrossable-funcs-main]Lemma 12.6

	Survivable Network Design Problem
	Augmentation approach
	Iterated rounding based 2-approximation
	Basic feasible solutions and laminar family of tight sets
	Counting argument

	Introduction to Cut and Partitioning Problems
	s-t mincut via LP Rounding and Maxflow-Mincut
	A Catalog of Cut and Partitioning Problems

	Multiway Cut
	Isolating Cut Heuristic
	Distance based LP Relaxation
	A Partitioning View and Geometric Relaxation
	Node-weighted and Directed Multiway Cut

	Multicut
	Upper Bound on the Integrality Gap
	Lower Bound on the Integrality Gap
	Expander Graphs
	The Multicut Instance

	Sparsest Cut
	LP Relaxation and Maximum Concurrent Flow
	Rounding LP via Connection to Multicut
	Rounding via 1 embeddings
	A digression through trees
	Cut metrics, line metrics, and 1 metrics
	Brief introducton to metric embeddings
	Utilizing the 1 embedding

	SDP and Spectral Relaxations

	(Spanning) Tree Embeddings
	SDP Based Approximation
	Basic Feasible Solutions to LPs and the Rank Lemma
	Some Examples
	Connection to Caratheodary's Theorem

	Probabilistic Inequalities

