Other Solution Concepts and Game Models

CS580

Ruta Mehta

Most slides are borrowed from Prof. V. Conitzer's presentations.

So far

- Normal-form games
 - ☐ Multiple rational players, single shot, simultaneous move

- Nash equilibrium
 - □ Existence
 - □ Computation in two-player games.

Next:

- Issues with NE
 - □ Multiplicity
 - ☐ Selection: How players decide/reach any particular NE
- Possible Solutions
 - □ Dominance: Dominant Strategy equilibria
 - □ Arbitrator/Mediator: Correlated equilibria, Coarsecorrelated equilibria
 - □ Communication/Contract: Stackelberg equilibria, Nash bargaining
- Other Games
 - ☐ Extensive-form Games, Bayesian Games

Formally: Games and Nash Equilibrium

- *N*: Set of players/agents
- $i \in N$, S_i : Set of strategies/moves of player i
- $s = (s_1, ..., s_n) \in S_1 \times S_2 \times \cdots \times S_n,$ $u_i(s): \text{ payoff/utility of player } i$
- $\sigma_i \in \Delta(S_i)$ randomized strategy of i□ Probability distribution over the moves in S_i
- Nash equilibrium: $\sigma = (\sigma_1, ..., \sigma_n)$ s.t. $\forall i \in \mathbb{N}, \quad u_i(\sigma_i, \sigma_{-i}) \ge u_i(\tau_i, \sigma_{-i}), \quad \forall \tau_i \in \Delta(S_i)$

Dominance

- Strict dominance: For a player, move s strictly dominates t if no matter what others play, s gives her better payoff than t
 - \square for all s_{-i} , $u_i(s, s_{-i}) > u_i(t, s_{-i})$

-i = "the player(s)
other than i"

- \blacksquare s weakly dominates t if
 - \square for all s_{-i} , $u_i(s, s_{-i}) \ge u_i(t, s_{-i})$; and
 - \Box for some s_{-i} , $u_i(s, s_{-i}) > u_i(t, s_{-i})$

	\mathbf{L}	M	R	
strict dominance	0, 0	1, -1	1, -1	
weak dominance	-1, 1	0, 0	-1, 1	
B	-1 , 1	1, -1	0, 0	

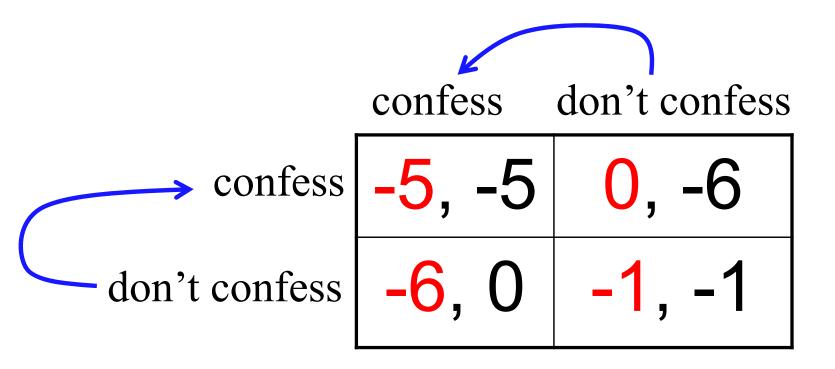
Dominant Strategy Equilibrium

Playing move *s* is best for me, no matter what others play.

- $s = (s_1, ..., s_n)$ is DSE if for each player i, there is a (strategy) move s_i that (weakly) dominates all other moves.
 - $\square \text{ for all i, } s'_i, s_{-i}, \ u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i});$ Example?

Prisoner's Dilemma

- Pair of criminals has been caught
- They have two choices: {confess, don't confess}



"Should I buy an SUV?"

purchasing cost

accident cost

cost: 5

cost: 5

cost: 5

cost: 3

cost: 8

cost: 2

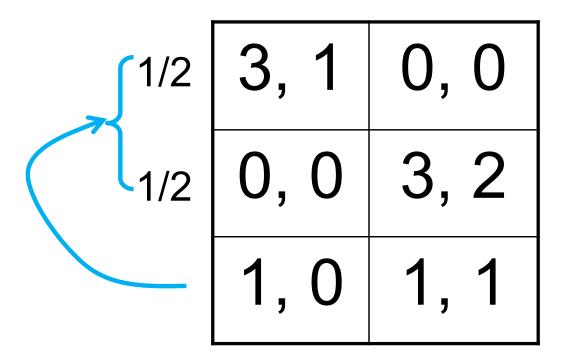
cost: 5

cost: 5

-10, -10	-7, -11
-11, -7	-8, -8

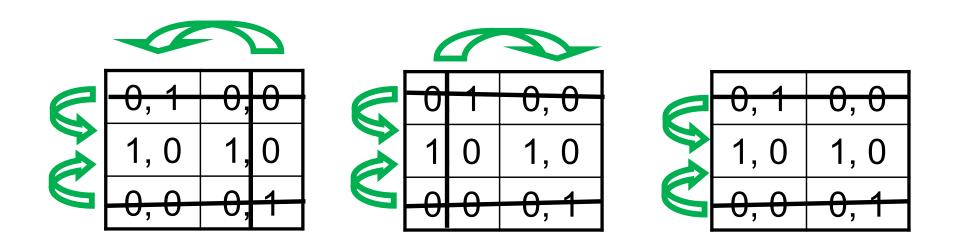
Dominance by Mixed strategies

Example of dominance by a mixed strategy:

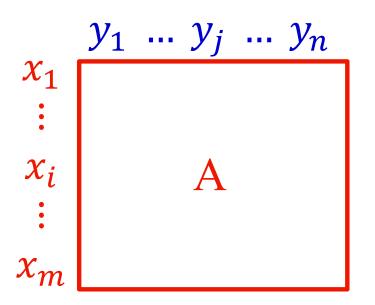


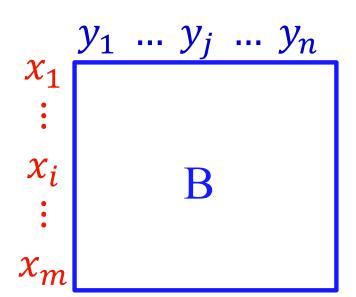
Iterated dominance: path (in)dependence

Iterated weak dominance is path-dependent: sequence of eliminations may determine which solution we get (if any) (whether or not dominance by mixed strategies allowed)



Iterated strict dominance is path-independent: elimination process will always terminate at the same point (whether or not dominance by mixed strategies allowed)



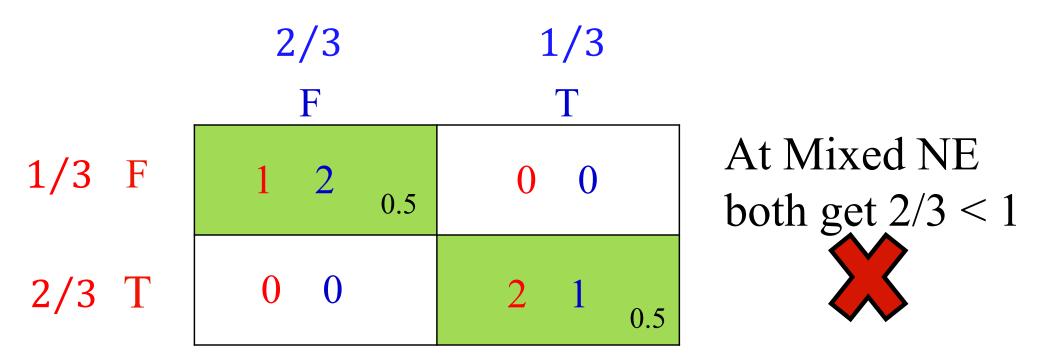


NE:
$$x^T A y \ge x'^T A y$$
, $\forall x'$ $x^T B y \ge x^T B y'$, $\forall y'$

No one plays Why? dominated strategies. What if they can discuss beforehand?

Players: {Alice, Bob}

Two options: {Football, Tennis}



Instead they agree on $\frac{1}{2}(F, T)$, $\frac{1}{2}(T, F)$ Payoffs are (1.5, 1.5) Fair!

Needs a common coin toss!

Correlated Equilibrium – (CE) (Aumann'74)

- Mediator declares a joint distribution P over $S=\times_i S_i$
- Tosses a coin, chooses $s = (s_1, ..., s_n) \sim P$.
- \blacksquare Suggests s_i to player i in private
- *P* is at equilibrium if each player wants to follow the suggestion when others do.
 - $\Box U_i(s_i, P_{(s_i, .)}) \ge U_i(s_i', P_{(s_i, .)}), \ \forall s_i' \in S_1$

CE for 2-Player Case

- Mediator declares a joint distribution $P = \begin{bmatrix} p_{11} & \dots & p_{1n} \\ p_{m1} & \dots & p_{mn} \end{bmatrix}$
- Suggests *i* to Alice, *j* to Bob, in private.
- P is a CE if each player wants to follow the suggestion, when the other does.

Given Alice is suggested i, she knows Bob is suggested $j \sim P(i, .)$

$$\langle A(i,.), P(i,.) \rangle \ge \langle A(i',.), P(i,.) \rangle : \forall i' \in S_1$$

 $\langle B(.,j), P(.,j) \rangle \ge \langle B(.,j'), P(.,j) \rangle : \forall j' \in S_2$

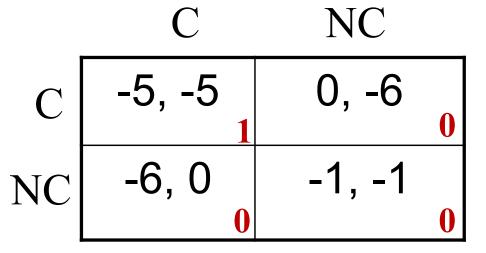
Players: {Alice, Bob}

Two options: {Football, Shopping}

	\mathbf{F}	S
F	1 2 0.5	0 0
S	0 0	2 1 0.5

Instead they agree on $\frac{1}{2}(F, S)$, $\frac{1}{2}(S, F)$ CE! Payoffs are (1.5, 1.5) Fair!

Prisoner's Dilemma



C strictly dominates NC

Rock-Paper-Scissors (Aumann)

	R	P	S
R	0, 0	0, 1	1, 0 1/6
P	1, 0	0, 0	0, 1
S	0, 1	1, 0 _{1/6}	0, 0

When Alice is suggested R Bob must be following $P_{(R,.)} \sim (0,1/6,1/6)$ Following the suggestion gives her 1/6 While P gives 0, and S gives 1/6.

Computation: Linear Feasibility Problem

Game (A, B). Find, joint distribution
$$P = \begin{bmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \vdots & \vdots \\ p_{m1} & \dots & p_{mn} \end{bmatrix}$$

$$\frac{1}{\sum_{j} p_{ij}} \sum_{j} A_{ij} p_{ij} \geq \frac{1}{\sum_{j} p_{ij}} \sum_{j} A_{i'j} p_{ij} \quad \forall i, i' \in S_1$$

$$\frac{1}{\sum_{i} p_{ij}} \sum_{i} B_{ij} p_{ij} \geq \frac{1}{\sum_{i} p_{ij}} \sum_{i} B_{ij'} p_{ij} \quad \forall j, j' \in S_2$$

$$\sum_{ij} p_{ij} = 1; \quad p_{ij} \geq 0, \quad \forall (i, j)$$

Computation: Linear Feasibility Problem

Game (A, B). Find, joint distribution
$$P = \begin{bmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \vdots & \vdots \\ p_{m1} & \dots & p_{mn} \end{bmatrix}$$

$$\sum_{j} A_{ij} p_{ij} \ge \sum_{j} A_{i'j} p_{ij} \quad \forall i, i' \in S_1$$

$$\sum_{i} B_{ij} p_{ij} \ge \sum_{i} B_{ij'} p_{ij} \quad \forall j, j' \in S_2$$

$$\sum_{ij} p_{ij} = 1; \quad p_{ij} \ge 0, \quad \forall (i, j)$$

N-player game: Find distribution P over $S = \times_{i=1}^{N} S_i$ s.t. $U_i(s_i, P_{(s_i, .)}) \ge U_i(s_i', P_{(s_i, .)}), \forall s_i, s_i' \in S_i$ $\uparrow \sum_{s \in S} P(s) = 1$ $\sum_{s_{-i} \in S_{-i}} U_i(s_i, s_{-i}) P(s_i, s_{-i})$ Linear in P variables!

Computation: Linear Feasibility Problem

N-player game: Find distribution P over $S = \times_{i=1}^{N} S_i$ s.t. $U_i(s_i, P_{(i,.)}) \ge U_i(s_i', P_{(s_i,.)}), \ \forall s_i, s_i' \in S_i$ $\uparrow \sum_{s \in S} P(s) = 1$ $\sum_{s_{-i} \in S_{-i}} U_i(s_i, s_{-i}) P(s_i, s_{-i}) \quad \text{Linear in P variables!}$

Can optimize any convex function as well!

Coarse-Correlated Equilibrium

- After mediator declares P, each player opts in or out.
- Mediator tosses a coin, and chooses $s \sim P$.
- If player i opted in, then the mediator suggests her s_i in private, and she has to obey.
- If she opted out, then (knowing nothing about s) plays a fixed strategy $t \in S_i$
- At equilibrium, each player wants to opt in, if others are opting in.

$$U_i(P) \ge U_i(t, P_{-i}), \ \forall t \in S_i$$

Where P_{-i} is joint distribution of all players except *i*.

Importance of (Coarse) CE

- Natural dynamics quickly arrive at approximation of such equilibria.
 - No-regret, Multiplicative Weight Update (MWU)

- Poly-time computable in the size of the game.
 - □ Can optimize a convex function too.

Show the following

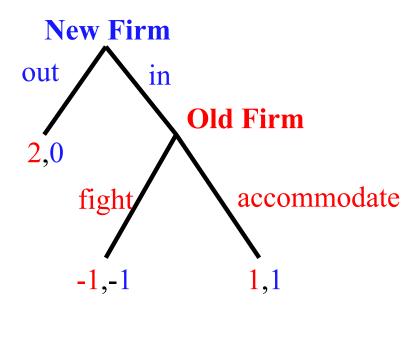


Extensive-form Game

- Players move one after another
 - ☐ Chess, Poker, etc.
 - ☐ Tree representation.

Strategy of a player: What to play at each of its node.

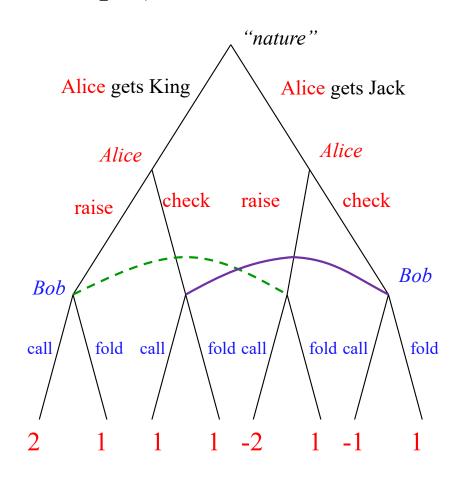
	I	O
F	-1, -1	2, 0
A	1, 1	2, 0



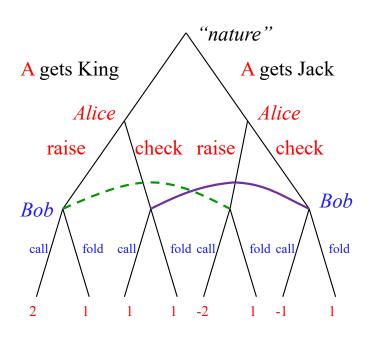
Entry game

A poker-like game

- Both players put 1 chip in the pot
- Alice gets a card (King is a winning card, Jack a losing card)
- Alice decides to raise (add one to the pot) or check
- Bob decides to call (match) or fold (Alice wins)
- If Bob called, Alice's card determines pot winner



Poker-like game in normal form

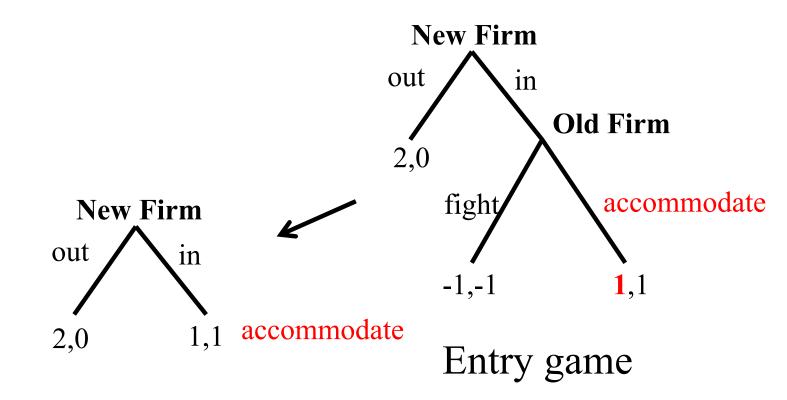


_	cc	cf	fc	ff
rr	0, 0	0, 0	1, -1	1, -1
rc	.5,5	1.5, -1.5	0, 0	1, -1
cr	5, .5	5, .5	1, -1	1, -1
cc	0, 0	1, -1	0, 0	1, -1

Can be exponentially big!

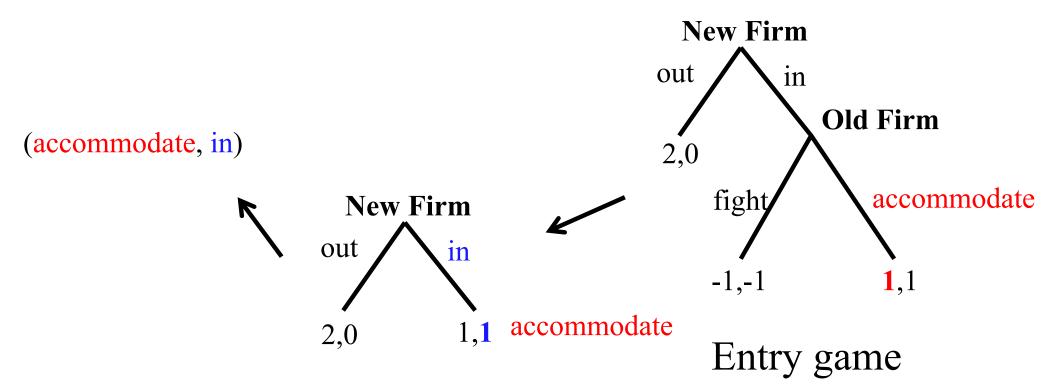
Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction



Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction



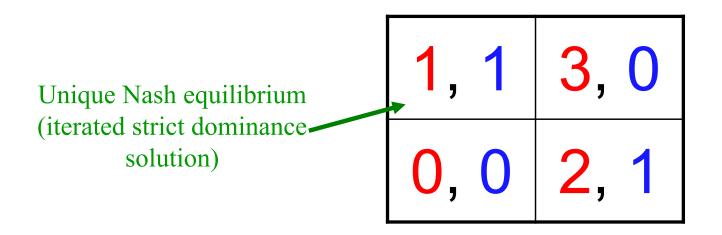
Corr. Eq. in Extensive form Game

- How to define?
 - □ CE in its normal-form representation.
- Is it computable?
 - □ Recall: exponential blow up in size.
- Can there be other notions?

See "Extensive-Form Correlated Equilibrium: Definition and Computational Complexity" by von Stengel and Forges, 2008.

Commitment (Stackelberg strategies)

Commitment

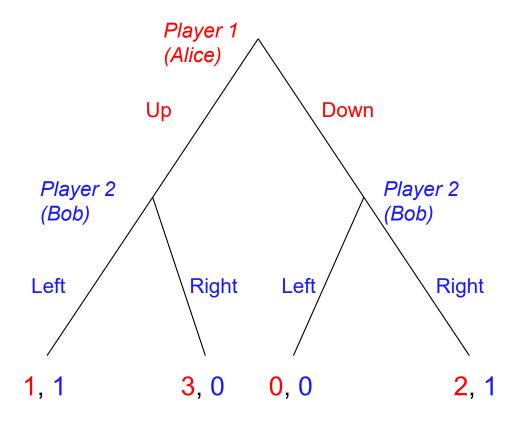


von Stackelberg

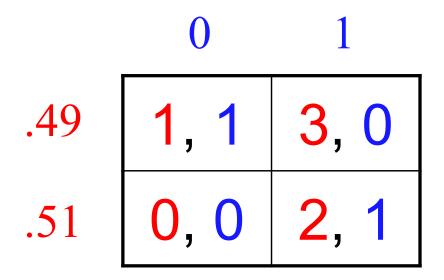
- Suppose the game is played as follows:
 - Alice commits to playing one of the rows,
 - Bob observes the commitment and then chooses a column
- Optimal strategy for Alice: commit to Down

Commitment: an extensive-form game

For the case of committing to a pure strategy:



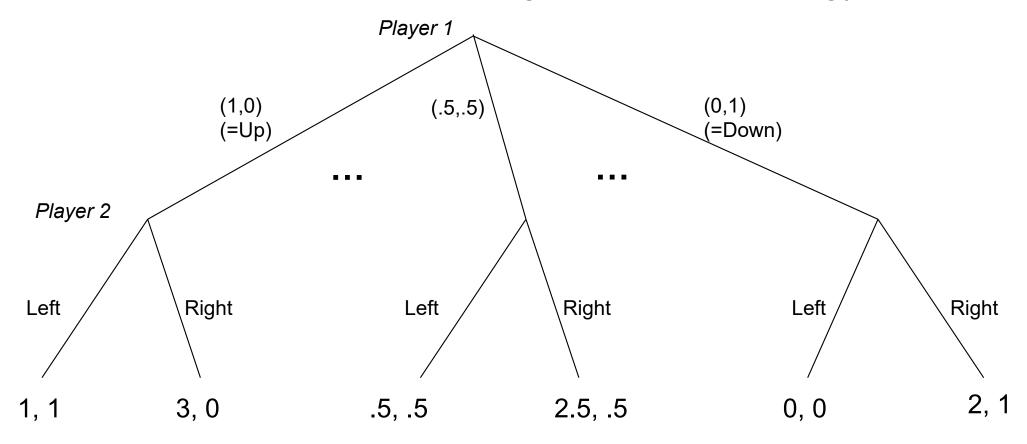
Commitment to mixed strategies



Also called a Stackelberg (mixed) strategy

Commitment: an extensive-form game

... for the case of committing to a mixed strategy:



- Economist: Just an extensive-form game, nothing new here
- Computer scientist: Infinite-size game! Representation matters

Computing the optimal mixed strategy to commit to

[Conitzer & Sandholm EC'06]

- Player 1 (Alice) is a leader.
- Separate LP for every column $j^* \in S_2$:

maximize
$$\sum_{i} x_{i} A_{ij}^{*}$$
 Alice's utility when Bob plays j^{*} subject to $\forall j$, $(x^{T}B)_{j^{*}} \geq (x^{T}B)_{j}$ Playing j^{*} is best for Bob $x \geq 0$, $\sum_{i} x_{i} = 1$ x is a probability distribution

Among soln. of all the LPs, pick the one that gives max utility.

On the game we saw before

$$x_1$$
 1, 1 3, 0 x_2 0, 0 2, 1

maximize
$$1x_1 + 0 x_2$$

subject to

1
$$x_1 + 0$$
 $x_2 \ge 0$ $x_1 + 1$ x_2

$$x_1 + x_2 = 1$$

$$x_1 \ge 0, x_2 \ge 0$$

maximize
$$3 x_1 + 2 x_2$$

subject to

$$0 x_1 + 1 x_2 \ge 1 x_1 + 0 x_2$$
$$x_1 + x_2 = 1$$

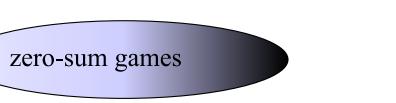
$$x_1 \ge 0, x_2 \ge 0$$

Visualization

	L	С	R	
U	0,1	1,0	0,0	(0,1,0) = M
M	4,0	0,1	0,0	
D	0,0	1,0	1,1	
			(1,0,0) = U	(0,0,1) = D

Generalizing beyond zero-sum games

Minimax, Nash, Stackelberg all agree in zero-sum games



minimax strategies

0, 0	-1, 1
-1, 1	0, 0

zero-sum games

general-sum games

Nash equilibrium

zero-sum games

general-sum games

Stackelberg mixed strategies

Other nice properties of commitment to mixed strategies

No equilibrium selection problem

0, 0	-1, 1
1, -1	-5, -5

 Leader's payoff at least as good as any Nash eq. or even correlated eq.

von Stengel & Zamir [GEB '10]

<u>></u>

Bayesian Games

So far in Games,

- Complete information (each player has perfect information regarding the element of the game).

Bayesian Game

- A game with incomplete information
- Each player has initial private information, type.
- Bayesian equilibrium: solution of the Bayesian game



Bayesian game

- Utility of a player depends on her type and the actions taken in the game
 - \square θ_i is player i's type, $\theta_i \sim \Theta_i$. Utilily when θ_i type and s play is $u_i(\theta_i, s)$
 - □ Each player knows/learns its own type, but only distribution of others (before choosing action)
 - Pure strategy $s_i: \Theta_i \to S_i$ (where S_i is i's set of actions)

(In general players can also receive signals about other players' utilities; we will not go into this)

Example: Single Item Auction

For player i

- Type: $v_i \sim D_i$
- Strategy: bid $b_i = s_i(v_i)$
- Utility $u_i(v_i, bids) = v_i payment(bids)$

Bayes-Nash equilibrium

■ A profile of strategies is a Bayes-Nash equilibrium iff

Mixed strategy of player i, $\sigma_i: \Theta_i \to \Delta(S_i)$

□ for every i, for every type θ_i , for every alternative action z_i ∈ $\Delta(S_i)$, we must have:

$$\Sigma_{\theta\text{--}i} P(\theta_{\text{--}i}) u_i(\theta_i, \, \sigma_i(\theta_i), \, \sigma_{\text{--}i}(\theta_{\text{--}i})) \geq \Sigma_{\theta\text{--}i} \, P(\theta_{\text{--}i}) \, u_i(\theta_i, \, z_i, \, \sigma_{\text{--}i}(\theta_{\text{--}i}))$$

$$\Pi_{p\neq i}P(\theta_p)$$

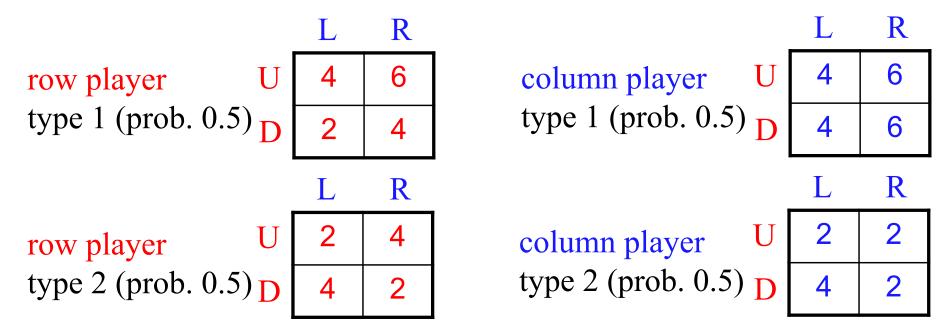
Bayesian game

- Utility of a player depends on her type and the actions taken in the game
 - \square θ_i is player i's type, $\theta_i \sim \Theta_i$. Utilily when θ_i type and s play is $u_i(\theta_i, s)$
 - □ Each player knows/learns its own type, but only distribution of others (before choosing action)
 - Pure strategy $s_i: \Theta_i \to S_i$ (where S_i is i's set of actions)

(In general players can also receive signals about other players' utilities; we will not go into this)

	L	R		L	R
row player (Alice) U	4	6	column player (Bob)U	4	6
type 1 (prob. 0.5) D	2	4	type 1 (prob. 0.5) D	4	6
	L	R		L	R
row player U	2	4	column player U	2	2
type 2 (prob. 0.5) D			type 2 (prob. 0.5)	4	0

Converting Bayesian games to normal form



type 1 · R

type 1 · R

	type 2: L	type 1: E	type 2: L	type 2: R
type 1: U type 2: U	3, 3	3.5, 3	4, 4	5 , 4
type 1: U type 2: D	4, 3.5	3, 3	4, 4.5	4, 4
type 1: D type 2: U	2, 3.5	3, 3	3, 4.5	4, 4
type 1: D type 2: D	3, 4	3, 3	3, 5	3, 4

type 1. L

type 1. L

exponential blowup in size

Car Selling Game

- A seller wants to sell a car
- A buyer has private value 'v' for the car w.p. P(v)
- Sellers knows P, but not v
- Seller sets a price 'p', and buyer decides to buy or not buy.
- If sell happens then the seller gets p, and buyer gets (v-p).

```
S_1=All possible prices, \Theta_1={1}

S_2={buy, not buy}, \Theta_2 =All possible 'v'

U_1(1,(p,\text{buy})) = p, U_1(1,(p,\text{not buy})) = 0

U_2(v,(p,\text{buy}))=v-p, U_2(v,(p,\text{not buy})) = 0
```

Again what about corr. eq. in Bayesian games?

Notion of signaling.

Look up the literature.

Security Games

Bargaining

Meanfield Games