Lecture 3: Computation of CE

CS 580

Instructor: Ruta Mehta

(Recall) Fisher's Model

- \blacksquare Set A of n agents.
- Set *G* of *m* divisible goods.

- Each agent *i* has
 - \Box budget of B_i dollars
 - \square valuation function $V_i: \mathbb{R}_+^m \to \mathbb{R}_+$

Linear: for bundle $x_i = (x_{i1}, ..., x_{im}),$ $V_i(x_i) = \sum_{j \in G} V_{ij} x_{ij}$

Supply of every good is one.

(Recall) Competitive Equilibrium

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (x_1, ..., x_n)$ x_{ij} : Amount of good j agent i gets

Optimal bundle: Agent i demands

$$x_i \in \underset{x \in R_m^+: p \cdot x \leq B_i}{\operatorname{argmax}} V_i(x)$$

■ Market clears: For each good j, demand = supply

$$\sum_{i} x_{ij} = 1$$

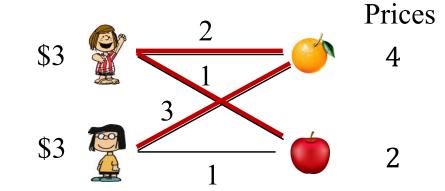
CEEI Properties: Summary

CEEI ($B_i = 1, \forall i$) allocation is

- Pareto optimal (PO)
- Envy-free
- Proportional

Next...

Nash welfare maximizing



CEEI

CEEI Allocation:

$$X_1 = \left(\frac{1}{4}, 1\right), X_2 = \left(\frac{3}{4}, 0\right)$$

$$V_1(X_1) = \frac{3}{2}, \ V_2(X_2) = \frac{9}{4}$$

$$V_1(X_2) = \frac{3}{2}, \ V_2(X_1) = \frac{7}{4}$$

Max Nash Welfare

$$\max: \prod_{i \in A} V_i(X_{i1}, \dots, X_{im})$$

s.t.
$$\sum_{i \in A} X_{ij} \le 1$$
, $\forall j \in G$
 $X_{ij} \ge 0$, $\forall i, \forall j$

Feasible allocations

Max Nash Welfare (MNW)

$$\max: \log \left(\prod_{i \in A} V_i(X_{i1}, \dots, X_{im}) \right)$$

s.t.
$$\sum_{i \in A} X_{ij} \le 1$$
, $\forall j \in G$
 $X_{ij} \ge 0$, $\forall i, \forall j$

Feasible allocations

Max Nash Welfare (MNW)

$$\max: \sum_{i \in A} \log V_i(X_{i1}, \dots, X_{im})$$

s.t.
$$\sum_{i \in A} X_{ij} \le 1$$
, $\forall j \in G$
 $X_{ij} \ge 0$, $\forall i, \forall j$

Feasible allocations

Eisenberg-Gale Convex Program '59

$$\max: \sum_{i \in A} \log V_i(\bar{X}_i)$$

Dual var.

s.t.
$$\sum_{i \in A} X_{ij} \le 1$$
, $\forall j \in G \longrightarrow \mathcal{P}_j$
 $X_{ij} \ge 0$, $\forall i, \forall j$

Theorem. Solutions of EG convex program are exactly the CEEI (p, X). *Proof.*

Consequences: CEEI

- Exists
- Forms a convex set
- Can be *computed* in polynomial time
- Maximizes Nash Welfare

Theorem. Solutions of EG convex program are exactly the CEEI (p, X).

Proof. \Rightarrow (Using KKT)

Recall: CEEI Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (X_1, ..., X_n)$

- Optimal bundle: For each buyer i
 - $\square p \cdot X_i = 1$
 - □ Spend only on the goods that give maximum value/dollar-spent

$$X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = \max_{k \in M} \frac{V_{ik}}{p_k}$$
, for all good j

 \blacksquare Market clears: For each good j,

$$\sum_{i} X_{ij} = 1.$$

Theorem. Solutions of EG convex program are exactly the CEE.

Proof.
$$\Rightarrow$$
 (Using KKT)

$$\forall j, \ p_j > 0 \Rightarrow \sum_i X_{ij} = 1$$

$$\max : \sum_{i \in A} \log(V_i(\overline{X}_i)) \xrightarrow{\sum_j V_{ij} X_{ij}} \text{Dual var.}$$
s.t. $\sum_{i \in A} X_{ij} \le 1$, $\forall j \in G \longrightarrow \mathcal{P}_j \ge 0$

$$X_{ij} \ge 0$$
, $\forall i, \forall j$

Dual condition to X_{ij} :

$$\frac{v_{ij}}{v_i(X_i)} \le p_j \Rightarrow \frac{v_{ij}}{p_j} \le V_i(X_i) \Rightarrow \max_j \frac{v_{ij}}{p_j} \le V_i(X_i)$$

$$\Rightarrow p_j > 0 \Rightarrow \text{market clears}$$
buy only MBB goods

$$\left(X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = V_i(X_i)\right)$$

$$\sum_{j} V_{ij} X_{ij} \stackrel{\downarrow}{=} \left(\sum_{j} p_{j} X_{ij} \right) V_{i}(X_{i})$$

$$\Rightarrow \sum_{j} p_{j} X_{ij} = 1$$

⇒ optimal bundle

Efficient (Combinatorial) Algorithms

Polynomial time

- Flow based [DPSV'08]
 - ☐ General exchange model (barter system) [DM'16, DGM'17, CM'18]
- Scaling + Simplex-like path following [GM.SV'13]

Strongly polynomial time

- Scaling + flow [0'10, V'12]
 - ☐ Exchange model (barter system) [GV'19]

Max Flow (One slide overview)

Directed Graph



Theorem: Max-flow = Min-cut s-t

s-t cut: $S \subset V$, $s \in S$, $t \notin S$

cut-value: $C(S) = \sum_{\substack{(u,v) \in E: \\ u \in S, v \notin S}} c_{(u,v)}$

Min s-t cut: $\min_{S \subset V: s \in S, t \notin S} C(S)$

Given $s, t \in V$. Capacity c_e for each edge $e \in E$.

Find maximum flow from s to $t: (f_e)_{e \in E}$ s.t.

Capacity constraint

$$f_e \le c_e$$
, $\forall e \in E$

• Flow conservation: at every vertex $u \neq s$, t total in-flow = total out-flow

Can be solved in *strongly* polynomial-time

CE Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (x_1, ..., x_n)$

■ Optimal bundle: Agent i demands $x_i \in \underset{x: p \cdot x \leq B_i}{\operatorname{argmax}} V_i(x)$

$$\Box p \cdot x_i = B_i$$

$$\square x_{ij} > 0 \Rightarrow \frac{v_{ij}}{p_i} = \max_{k \in G} \frac{v_{ik}}{p_k}$$
, for all good j

■ Market clears: For each good j, demand = supply

$$\sum_{i} x_{ij} = 1.$$

Competitive Equilibrium → Flow

Pirces $p = (p_1, ..., p_m)$ and allocation $F = (f_1, ..., f_n)$

$$f_{ij} = x_{ij}p_j$$
 (money spent by agent i on good j)

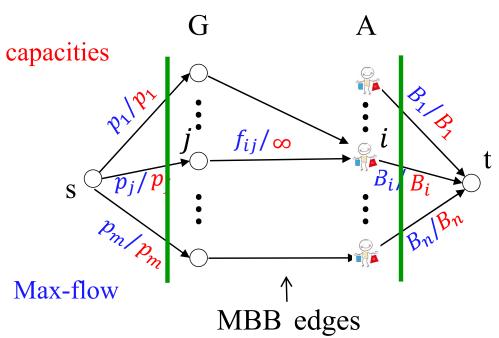
- Optimal bundle: Agent *i* demands $x_i \in argmax_{x: p \cdot x \leq B_i} v_i(x)$
 - $\square \sum_{j \in G} f_{ij} = B_i$
 - $\Box f_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = \underbrace{\max_{k \in G} \frac{V_{ik}}{p_k}}_{\text{for all good } j}$

→ Maximum bang-per-buck (*MBB*)

■ Market clears: For each good j, demand = supply

$$\sum_{i \in N} f_{ij} = p_j$$

Competitive Equilibrium → Flow



CE:
$$(p, F)$$
 s.t.

Opt.

Bundle
$$\begin{cases}
\sum_{j \in M} f_{ij} = B_i \\
f_{ij} > 0 \text{ on MBB edges}
\end{cases}$$
Market
$$\begin{cases}
\sum_{i \in N} f_{ij} = p_j
\end{cases}$$

Max-flow = min-cut
=
$$\sum_{j \in G} p_j = \sum_{i \in A} B_i$$

Issue: Eq. prices and hence also MBB edges not known!

Fix [DPSV'08]: Start with low prices, keep increasing.

Maintain:

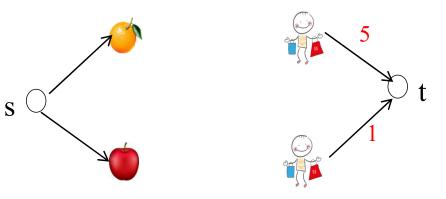
- 1. Flow only on MBB edges
- 2. $Min-cut = \{s\}$ (goods are fully sold) $Demand \ge Supply$

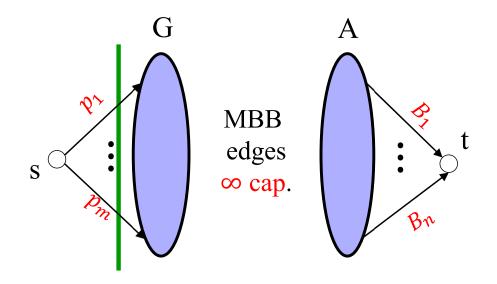
Example

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (Demand \geq Supply)

Init.





Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in G$, $p_j < \min_i \frac{B_i}{m}$, and at least one MBB edge to j

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in G$, $p_j < \min_i \frac{B_i}{m}$, and at least one MBB edge to j

Increase **p**:

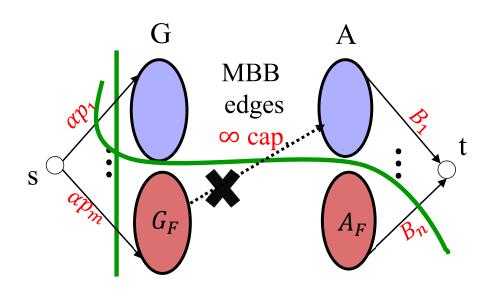
$\alpha = 1$ $MBB \\ edges \\ \infty cap.$ $= \underset{j \in G}{\text{argmax}} \frac{V_{ij}}{\alpha p_j}$

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$



Observation: Supply = Demand for G_F ! So, if prices of G_F are increased, then these will be under-demanded (supply > demand for G_F). And $\{s\}$ will cease to be a min-cut.

Should freeze prices in G_F .

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

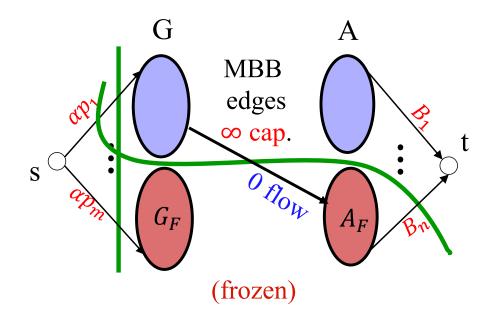
Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase $p: \uparrow \alpha$

Event 1: New cross-cutting min-cut

Agents in A_F exhaust all their money. G_F : Goods that have MBB edges only from A_F .

A tight-set.



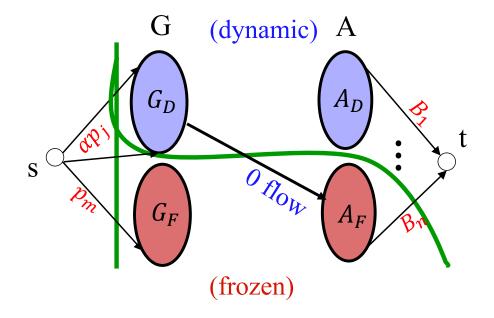
Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset G_F Call it *frozen*: (G_F, A_F) .



Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

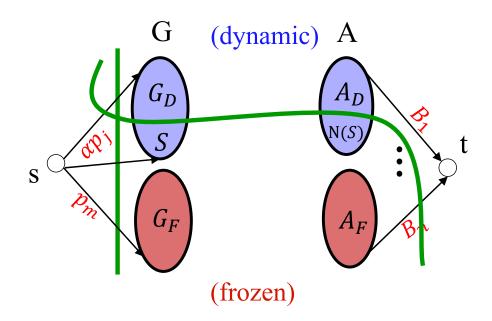
Increase p: $\uparrow \alpha$

Event 1: A tight subset G_F

Call it *frozen*: (G_F, A_F) .

Freeze prices in G_F .

Increase prices in G_D .



Observation: Again, supply=demand for goods in *S*. If prices of *S* is increased further, then **S** can not be fully sold. And {*s*} will cease to be a min-cut.

Hence it needs to be moved to the frozen set.

Invariants

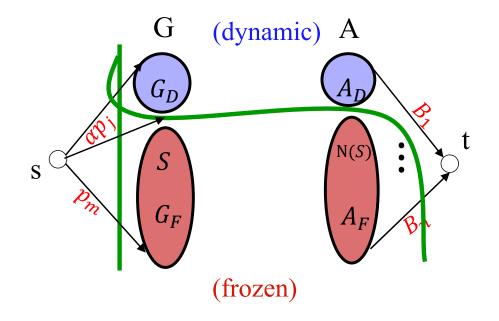
- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase $p: \uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$

N(S): Neighbors of SMove (S, N(S)) from dynamic to frozen.



Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) to frozen part *Freeze prices in* G_F , and increase in G_D .

G (dynamic) A G_{D} G_{F} G_{F}

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) from dynamic to frozen Freeze prices in G_F , and increase in G_D .

OR

Event 2: New MBB edge

Must be between $i \in A_D \& j \in G_F$. Recompute dynamic and frozen.

G (dynamic) A G_D i i G_F

(frozen)

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

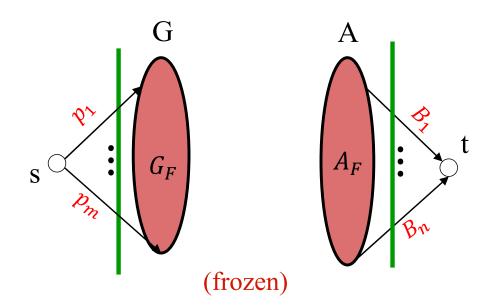
Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) from dynamic to frozen Freeze prices in G_F , and increase in G_D .

OR

Event 2: New MBB edge

Has to be from $i \in A_D$ to $j \in G_F$. Recompute dynamic and frozen: Move the component containing good j from frozen to dynamic.



Observations: Prices only increase.

Each increase can be lower bounded.

Both the events can be computed efficiently.

Converges to CE in finite time.

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase $p: \uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) from dynamic to frozen Freeze prices in G_F , and increase in G_D .

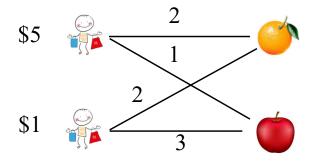
OR

Event 2: New MBB edge Must be from $i \in A_D$ to $j \in G_F$. Recompute dynamic and frozen.

Stop: all goods are frozen.

Example

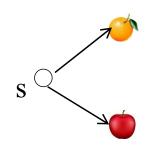
Input

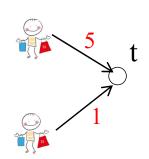


Invariants

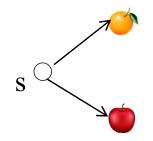
- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

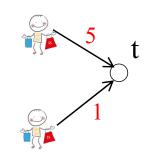
Init.

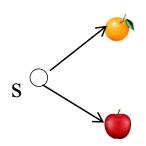


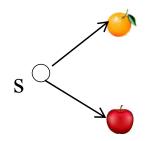


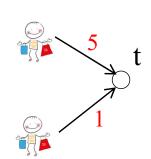
Event 1



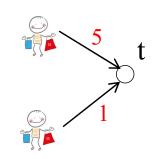








Event 2



Formal Description

- Init: $p \leftarrow$ "low-values" s.t. $\{s\}$ is a min-cut. $(G_D, A_D) \leftarrow (G, A), (G_F, A_F) \leftarrow (\emptyset, \emptyset)$
- While($G_D \neq \emptyset$)
 - \square $\alpha \leftarrow 1$, $p_j \leftarrow \alpha p_j \ \forall j \in G_D$. Increase α until

Event 1: Set $S \subseteq G_D$ becomes tight. $N(S) \leftarrow \text{agents w/ MBB edges to } S \text{ (neighbors of } S).$

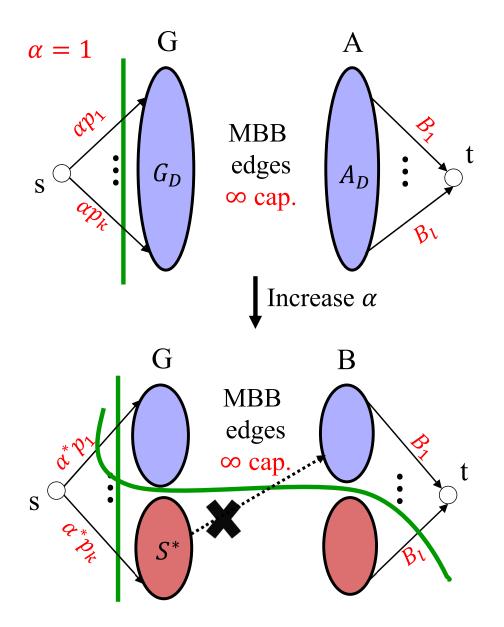
Move (S, N(S)) from (G_D, A_D) to (G_F, A_F) .

Event 2: New MBB edge appears between $i \in A_D$ and $j \in G_F$ Add $(j \to i)$ edge to graph. Move component of j from (G_F, A_F) to (G_D, A_D) .

• Output (p, F)

Event 2: New MBB edge appears between $i \in A_D$ and $j \in G_F$

Exercise ©

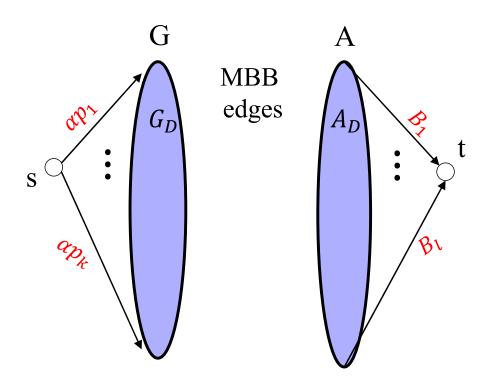


Event 1: Set $S^* \subseteq G_D$ becomes tight.

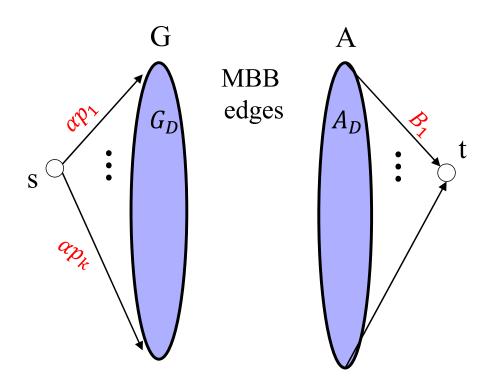
$$\alpha^* = \frac{\sum_{i \in N(S^*)} B_i}{\sum_{j \in S^*} p_j}$$

$$= \min_{S \subseteq G_D} \frac{\sum_{i \in N(S)} B_i}{\sum_{j \in S} p_j} \rightarrow \alpha(S)$$

Find $S^* = \underset{S \subseteq G_D}{\operatorname{argmin}} \alpha(S)$



Event 1: Set $S^* \subseteq G_D$ becomes tight.



Event 1: Set $S^* \subseteq G_D$ becomes tight.

$$\alpha(S) = \frac{\sum_{i \in N(S)} B_i}{\sum_{j \in S} p_j}$$
Find $S^* = \underset{S \subseteq G_D}{\operatorname{argmin}} \alpha(S)$

Claim. Can be done in O(n) min-cut computations

```
(G', A') \leftarrow (G_D, A_D)

Repeat {
\alpha \leftarrow \alpha(G'). Set c_{(s,j)} \leftarrow \alpha p_j, \forall j \in G'

(s \cup \{S\} \cup N(S)) \leftarrow \text{min-cut in } (G', A')

(G', A') \leftarrow (S, N(S))

} Until(\{s\} not a min-cut)

Return \alpha
```

Efficient Flow-based Algorithms

- Polynomial running-time
 - □ Compute *balanced-flow:* minimizing *l*₂ norm of agents' surplus [DPSV'08]
- Strongly polynomial: Flow + scaling [Orlin'10]

Exchange model (barter):

- Polynomial time [DM'16, DGM'17, CM'18]
- Strongly polynomial for exchange
 - ☐ Flow + scaling + approximate LP [GV'19]

Application to Display Ads: Pacing Eq.

- Google Display Ads
 - Each advertiser has
 - Budget B_i . Value v_{ij} for keyword j
 - \square Pacing Eq.: $(\lambda_1, ..., \lambda_n) \in [0,1]^n$ s.t.
 - First price auction with bids $\lambda_i v_{ij}$
 - For each agent i, if $\lambda_i < 1$ then total payment = B_i , else $\leq B_i$
- Equivalent to Fisher market with quasi-linear utilities!

What about chores?

- CEEI exists but may form a non-convex set [BMSY'17]
- Efficient Computation?
 - □ Open: Fisher as well as for CEEI
 - ☐ For constantly many agents (or chores) [BS'19, GM'20]
 - \square *Fast* path-following algorithm [CGMM.'20]
- Hardness result for an exchange model [CGMM.'20]

References.

[AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." *Proceedings of the 2017 ACM Conference on Economics and Computation*. 2017.

[BMSY17] Anna Bogomolnaia, Herv'e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna. Econometrica, 85(6):1847–1871, 2017.

[BMSY19] Anna Bogomolnaia, Herv'e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive utilities. Social Choice and Welfare, 52(3):395–417, 2019.

[BS19] Brânzei, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chores." *arXiv preprint arXiv:1907.01766* (2019).

[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." *Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems*. 2020.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. *arXiv* preprint arXiv:2008.02753.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Dividing Bads is Harder than Dividing Goods: On the Complexity of Fair and Efficient Division of Chores. *arXiv preprint arXiv:2008.00285*.

[DK08] Devanur, Nikhil R., and Ravi Kannan. "Market equilibria in polynomial time for fixed number of goods or agents." 2008 49th Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008.

[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." *Journal of the ACM (JACM)* 55.5 (2008): 1-18.

[HZ79] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293–314, 1979.

[VY20] Vazirani, Vijay V., and Mihalis Yannakakis. "Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided Matching Markets." *arXiv preprint arXiv:2004.01348* (2020).

THANK YOU