"

Lecture 3: Computation of CE

CS 580

Instructor: Ruta Mehta
I LLINOTIS

"
(Recall) Fisher’s Model

m Sct A of n agents.

m Sect G of m divisible goods.

m Each agent i has
budget of B; dollars
valuation function V;: RI* - R,

Linear: for bundle x; = (xj1, ..., X),

Vilxi) = Xjec Vijxij

m Supply of every good is one.

(Recall) Competitive Equilibrium

Pirces p = (p4, ..., pm) and allocation X = (x4, ..., X5,)
x;j: Amount of good j agent 1 gets

m Optimal bundle: Agent i demands

x; € argmax V;(x)
XER} : p-x<B;

A (e
R
m Market clears: For each good j, demand = supply
ixij =1

CEEI Properties: Summary

CEEI
Prices
CEEI (B; = 1,Vi) 4
allocation 1s
m Pareto optimal (PO) 2
m Envy-free
m Proportional ,
CEEI Allocation:
1 3
t= (1) k= (0
Next... V(Y 3 V(X = 9
m Nash welfare 1) =3, 2e) =,
maximizing V,(X,) = % V,(X,) = Z

Max Nash Welfare
max: 1_[Vi(Xi1, ooy Xim)
€A
4 A
S.t. ZiEAXij < 1, V] EG
Xij =0, Vi, Vj
_ Y,

Feasible allocations

"
Max Nash Weltare (MNW)

max: 108 (1_[Vi(Xi1s oo Xim)>

LEA
4)
S.t. ZiEAXij < 1, V] EG
X;; =0, Vi, Vj

ij =
\ J

Feasible allocations

"
Max Nash Weltare (MNW)

maxzz log Vy(Xi1,) Xim)

LEA
4 h
S.t. ZiEAXij < 1, V] EG
X;j =0, Vi, Vj
_ J

Feasible allocations

Eisenberg-Gale Convex Program ‘59

max: z log Vi (%)
. Dual var.

S.t. ZiEAXij <1, V] eEG — DPj

Xij =0, Vi, Vj

Theorem. Solutions of EG convex program are
exactly the CEEI (p, X).
Proof.

Consequences: CEEI

o EXIists
e Forms a convex set

e Can be computed 1n
polynomial time

e Maximizes Nash Welfare

Theorem. Solutions of EG convex program are
exactly the CEEI (p, X).
Proof. = (Using KKT)

Recall: CEEI Characterization

Pirces p = (p4, ..., P;) and allocation X = (X4, ..., X;,)

m Optimal bundle: For each buyer i
p-X;=1
Spend only on the goods that give maximum value/dollar-spent

X;;>0= % = max 2 for all good j
pj kEM Pk’

m Market clears: For each good j,

EXU — 1
l

Theorem. Solutions of EG convex program are exactly the CEE.

o ZiVuX
. max:) log(V;(X;))
PVOOf. = (USlng KKT) = Dual var.
. s.t. ZiEAXij <1l VvjeG — Pj=0
Vi, pj >0 TZiXiJ' =1 X;; =0, Vi, Vj

Dual condition to Xl-j: ﬁ
Vij Vij ij
V(X)_p]: <V(X)=>maxjp <V(X)

o buy only MBB goods = pj > 0= market clears

e
X;i >0=>—2=v(X)
Pj

l — = optimal bundle
% ViiXij = (B0 X)Vi (X))
= 2ipiXij =1

Efficient (Combinatorial) Algorithms

Po ST
m|Flow based [DPSV’OS]]

General exchange model (barter system) [pm16, DGM’17, CM’18]

m Scaling + Simplex-like path following [Gm.sv’13]

Strongly polynomial time

m Scaling + flow [0°10, v’12]
Exchange model (barter system) [GV’19]

Max Flow (One slide overview)

Directed Graph Theorem: Max-flow = Min-cut
(V,E) s-t s-t

s-tcut:ScV,seS, té&s

O cut-value: C(S) = z Cluw)

(u,v)€EE:
UES, VES

Min s-t cut: min C(S)
ScV:
SES,tES

Given s,t € V. Capacity c, for each edge e € E.
Find maximum flow from s to t: (f,)eeg S.t.

* Capacity constraint

fe < ce, Ve EE Can be solved in

e Flow conservat.lon: at every vertex u # S, t strong ly polynomial—time
total in-flow = total out-flow

CE Characterization

Pirces p = (p4, ..., P;y) and allocation X = (x4, ..., x;,)

m Optimal bundle: Agent i demands x; € argmax V; (x)

X:p-X<Bj
p-x; =B
Vij Vik

xX:: > 0 =>— =max—, for all good j
Y pj keG Pk’ £00¢J

m Market clears: For each good j, demand = supply

Exij = 1.

l

Competitive Equilibrium — Flow
F = (fli '"an)

fi j = Xijpj (money spent by agent 1 on good j)

2jec fij = Bi
Vij v,
fij > 0= -~ =lmax—~
pj | keG D

L— Maximum bang-per-buck (MBB)

Zfij = pj

LEN

Competitive Equilibrium — Flow

G A CE: (p, I% s.t.
capacities | fij = B;
Q> /? \ i JEM
% j: fiif oo : fij > 0 on MBB edges
>0 > ¥ t _
S % . . Zf"f — P
° LEN
,b °
}72/27,72 \Q N
Max-flow i
MBB edges Fix [DPSV’08]: Start with low
Max-flow = min-cut prices, keep increasing.
=jec Pj = dieaBi Maintain:

I - E - nd hen 1. Flow only on MBB edges
Ssues Bq. prices a cnee 2. Min-cut = {s} (goods are fully sold)

also MBB edges not known! Demand > Supply

Example
Input
O :
$5 ig ;e, 2 J“
1
2
O,
$1 B 3

l.
2.

<
e

Invariants
Flow only on MBB edges
Min-cut = {s}
(Demand = Supply)

Init.

Invariants

Algorithm (PiCtOI‘ial) 1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

A

Init: Vj € G, p; < min ﬂ, and
l m

MBB at least one MBB edge to j

edges
oo cap.

Algorithm (Pictorial)

A

MBB
edges
oo cap.

Lj
argmax —

jEG Dj

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € G, p; < min ﬂ, and
l m
at least one MBB edge to j

Increase p:

Invariants

Algorithm (PiCtorial) 1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

A
Init: Vj € M, p; < min=*
l
MBB And at least one MBB edge to j
edges
oo cap. Increase p: T a

V:

T

= argmax ——
jeG Aap;j

Invariants

Algorithm (Pictorial) 2. Minout () (zoods are sold

Init: Vj € M, p; < mjn%
l
And at least one MBB edge to j

Increase p: T «

Event 1: New cross-cutting min-cut

Agents in A exhaust all their money.

Gr: Goods that have MBB edges only

Observation: Supply = Demand for G! from Ap.

So, if prices of Gy are increased, then

these will be under-demanded (supply > A tight-set.
demand for Gr). And {s} will cease to

be a min-cut.

Should freeze prices in Gp.

Algorithm (Pictorial)

(frozen)

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € M, p; < mjn%
l
And at least one MBB edge to j

Increase p: T «

Event 1: A tight subset G

Call it frozen: (Gg, Ar).

Algorithm (Pictorial)

G (dynamic) A

(frozen)

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € M, p; < mjn%
l
And at least one MBB edge to j

Increase p: T «

Event 1: A tight subset G
Call it frozen: (Gg, Ar).
Freeze prices in Gp.
Increase prices in Gp.

Invariants

Algorithm (PiCtOI‘ial) 1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)
(dynamic) A
Init: Vj € M, p; < mjn%
l
And at least one MBB edge to j

Increase p: T «

Event 1: A tight subset S € G
(frozen) N (S): Neighbors of S

Move (S,N(S)) from dynamic to
frozen.

Observation: Again, supply=demand for
goods 1n S. If prices of S is increased
further, then S can not be fully sold.
And {s} will cease to be a min-cut.

Hence it needs to be moved to the
frozen set.

Algorithm (Pictorial)

(dynamic)

(frozen)

Invariants
1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

Init: Vj € M, p; < mjn%
l
And at least one MBB edge to j

Increase p: T «

Event 1: A tight subset S € G

Move (S, N(S)) to frozen part

Freeze prices in G, and
increase in Gp.

Algorithm (Pictorial)

G

(dynamic) A

(frozen)

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € M, p; < mjn%
l
And at least one MBB edge to j

Increase p: T «

Event 1: A tight subset S € Gp
Move (S,N(S)) from dynamic to frozen

Freeze prices in G, and
increase in Gp.

OR

Event 2: New MBB edge
Must be between i € Ap & j € Gp.
Recompute dynamic and frozen.

. . . Invariants
Algorithm (Pictorial) . Minont = 5} (goods e sold

G (dynamic) A

Init: Vj € M, p; < mjn%
l
And at least one MBB edge to j

Increase p: T «

Event 1: A tight subset S € Gp
(frozen) Move (S,N(S)) from dynamic to frozen

Freeze prices in G, and
increase in Gp.

OR

Event 2: New MBB edge
Has to be from i € Ap to] € Gp.
Recompute dynamic and frozen:
Move the component containing
good j from frozen to dynamic.

Algorithm (Pictorial)

X

(frozen)

Observations: Prices only increase.
Each increase can be lower bounded.
Both the events can be computed
efficiently. u

Converges to CE in finite time.

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € M, p; < mjn%
l
And at least one MBB edge to j

Increase p: T «

Event 1: A tight subset S € Gp
Move (S,N(S)) from dynamic to frozen

Freeze prices in G, and
increase in Gp.

OR

Event 2: New MBB edge
Must be from i € Ap to j € Gp.
Recompute dynamic and frozen.

Stop: all goods are frozen.

Example
Input

55wk ?)
2

Event 1

/;m
S Q\'

©),
s 5 t
) 1
iR

/:S\
e
e

&
S
C)i/gljl ﬂ t
) |

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init.
©,
fwgi\5bt
© /
ai/ﬁVG
Event 2
@
ai/ﬁvﬁ’ 5 t
B 1
B

Formal Description

m Init: p < “low-values” s.t. {s} is a min-cut.
(Gp,Ap) « (G, A), (Gp,Ap) < (9,0)
m While(G, # 0)
a < 1, pj < ap; Vj € Gp. Increase a until
Event 1: Set S € Gp becomes tight.
N(S) « agents w/ MBB edges to S (neighbors of S).
Move (S,N(S)) from (Gp, Ap) to (Gg, Ap).
Event 2: New MBB edge appears between i € Ap and j € G
Add (j = i) edge to graph.
Move component of j from (G, Ar) to (Gp, Ap).

m QOutput (p, F)

Efficiently Computing Event 2

Event 2: New MBB edge appears between i € Ap and j € G

Exercise ©

Efficiently Computing Event 1

Event 1: Set S* € G becomes tight.

. o = 2ien(s*) Bi
ZjeS* pj

— min 2ien(s) Bi
SCGp| XjesPj al(s)

m Find S* = argmin a(S)
SCGp

Efficiently Computing Event 1

MBB
edges

Event 1: Set S* € Gp becomes tight.

. Xien(s*) Bi

ZjeS* Pj

B g =
= min

SEGD

m Find S* =

2ien(s) Bi

argmin a(S)
SCGp

Efficiently Computing Event 1

Event 1: Set S* C G becomes tight.

MBB

edges Lien(s) Bi

Z:jeS Pj

Find §* = argmin a(S)
SCGp

m a(S) =

Claim. Can be done in O(n) min-cut
computations

(G",A") < (Gp,Ap)

Repeat{
a < a(G"). Set ¢ jy < apj,Vj € G

(sU{S} UN(S)) < min-cutin (G',A")
(G",A") « (S,N(S))

+ Until({s} not a min-cut)

Return a

"
Efficient Flow-based Algorithms

m Polynomial running-time

Compute balanced-flow: minimizing [, norm of agents’
surplus [DPSV’08]

m Strongly polynomial: Flow + scaling [orlin’10]

Exchange model (barter):
m Polynomial time [pm’16, DGM’17, CM*18]

m Strongly polynomial for exchange
Flow + scaling + approximate LP [GV’19]

Application to Display Ads: Pacing Eq.

m Google Display Ads
Each advertiser has
= Budget B;. Value v;; for keyword j
Pacing Eq.: (44, ..., 4,,) € [0,1]™ s.t.
m First price auction with bids 4;v;;
m For each agent i, 1f A; < 1 then total payment = B;, else
< B;
m Equivalent to Fisher market with quasi-linear
utilities!

What about chores?

m CEEI exists but may form a non-convex set [BMSY’17]

m Efficient Computation?
Open: Fisher as well as for CEEI

For constantly many agents (or chores) [BS’19, GM*20]
Fast path-following algorithm [CGMM."20]

m Hardness result for an exchange model [comm. 20

Retferences.

[AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." Proceedings of
the 2017 ACM Conference on Economics and Computation. 2017.

[BMSY17] Anna Bogomolnaia, Herv” e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna.
Econometrica, 85(6):1847-1871, 2017.

[BMSY19] Anna Bogomolnaia, Herv” e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive utilities. Social
Choice and Welfare, 52(3):395-417, 2019.

[BS19] Branzei, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chores." arXiv preprint
arXiv:1907.01766 (2019).

[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems. 2020.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. arXiv
preprint arXiv:2008.02753.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Dividing Bads is Harder than Dividing Goods: On the
Complexity of Fair and Efficient Division of Chores. arXiv preprint arXiv:2008.00285.

[DKO08] Devanur, Nikhil R., and Ravi Kannan. "Market equilibria in polynomial time for fixed number of goods or agents." 2008 49th
Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008.

[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." Journal of the ACM
(JACM) 55.5 (2008): 1-18.

[HZ79] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293—
314, 1979.

[VY20] Vazirani, Vijay V., and Mihalis Yannakakis. "Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided
Matching Markets." arXiv preprint arXiv:2004.01348 (2020).

THANK YOU

