
Lecture 3: Computation of CE

Instructor: Ruta Mehta

CS 580

(Recall) Fisher’s Model
 Set 𝐴 of 𝑛 agents.
 Set 𝐺 of 𝑚 divisible goods.

 Each agent 𝑖 has
 budget of 𝐵௜ dollars
 valuation function 𝑉௜:𝑅ା௠ → 𝑅ା

Linear: for bundle 𝑥௜ ൌ 𝑥௜ଵ, … , 𝑥௜௠ ,
𝑉௜ 𝑥௜ ൌ ∑ 𝑉௜௝𝑥௜௝௝∈ீ

 Supply of every good is one.

(Recall) Competitive Equilibrium
Pirces 𝑝 ൌ 𝑝ଵ, … ,𝑝௠ and allocation 𝑋 ൌ ሺ𝑥ଵ, … , 𝑥௡ሻ

𝑥௜௝: Amount of good j agent i gets

 Optimal bundle: Agent 𝑖 demands
𝑥௜ ∈ argmax

௫∈ோ೘శ : ௣⋅௫ஸ஻೔
𝑉௜ሺ𝑥ሻ

 Market clears: For each good 𝑗, demand ൌ supply
∑ 𝑥௜௝௜ ൌ 1

R. Mehta (ADFOCS’20)

CEEI Properties: Summary

CEEI ሺ𝐵௜ ൌ 1,∀𝑖ሻ
allocation is
 Pareto optimal (PO)
 Envy-free
 Proportional

$3

$3

2

1

1
3

CEEI
Prices

2

4

CEEI Allocation:
𝑋ଵ ൌ

ଵ
ସ

, 1 ,𝑋ଶ ൌ
ଷ
ସ

, 0

𝑉ଵ 𝑋ଵ ൌ ଷ
ଶ

, 𝑉ଶ 𝑋ଶ ൌ ଽ
ସ

𝑉ଵ 𝑋ଶ ൌ ଷ
ଶ

, 𝑉ଶ 𝑋ଵ ൌ ଻
ସ

Next…
 Nash welfare

maximizing

Max Nash Welfare

ෑ𝑉௜ሺ𝑋௜ଵ, … ,𝑋௜௠ሻ
௜∈஺

max:

s.t. ∑ 𝑋௜௝௜∈஺ ൑ 1, ∀𝑗 ∈ 𝐺
𝑋௜௝ ൒ 0, ∀𝑖,∀𝑗

Feasible allocations

log ෑ𝑉௜ 𝑋௜ଵ, … ,𝑋௜௠
௜∈஺

max:

s.t. ∑ 𝑋௜௝௜∈஺ ൑ 1, ∀𝑗 ∈ 𝐺
𝑋௜௝ ൒ 0, ∀𝑖,∀𝑗

Feasible allocations

Max Nash Welfare (MNW)

෍ log𝑉௜ሺ𝑋௜ଵ, … ,𝑋௜௠ሻ
௜∈஺

max:

s.t. ∑ 𝑋௜௝௜∈஺ ൑ 1, ∀𝑗 ∈ 𝐺
𝑋௜௝ ൒ 0, ∀𝑖,∀𝑗

Feasible allocations

Max Nash Welfare (MNW)

Eisenberg-Gale Convex Program ‘59

෍ log 𝑉௜ሺ𝑋ത௜ሻ
௜∈஺

max:

s.t. ∑ 𝑋௜௝௜∈஺ ൑ 1, ∀𝑗 ∈ 𝐺
𝑋௜௝ ൒ 0, ∀𝑖,∀𝑗

Dual var.

𝑝௝

Theorem. Solutions of EG convex program are
exactly the CEEI 𝑝,𝑋 .
Proof.

Consequences: CEEI
• Exists
• Forms a convex set
• Can be computed in

polynomial time
• Maximizes Nash Welfare

Theorem. Solutions of EG convex program are
exactly the CEEI 𝑝,𝑋 .
Proof. ⇒ (Using KKT)

Recall: CEEI Characterization

Pirces 𝑝 ൌ 𝑝ଵ, … , 𝑝௠ and allocation 𝑋 ൌ ሺ𝑋ଵ, … ,𝑋௡ሻ

 Optimal bundle: For each buyer 𝑖
 𝑝 ⋅ 𝑋௜ ൌ 1
 Spend only on the goods that give maximum value/dollar-spent

𝑋௜௝ ൐ 0 ⇒ ௏೔ೕ
௣ೕ
ൌ max

௞∈ெ
௏೔ೖ
௣ೖ

, for all good 𝑗

 Market clears: For each good 𝑗,

෍𝑋௜௝
௜

 ൌ 1.

Proof. ⇒ (Using KKT)

Theorem. Solutions of EG convex program are exactly the CEE.

max:෍ log 𝑉௜ሺ𝑋ത௜ሻ
௜∈஺

s.t. ∑ 𝑋௜௝௜∈஺ ൑ 1, ∀𝑗 ∈ 𝐺
𝑋௜௝ ൒ 0, ∀𝑖,∀𝑗

Dual var.
𝑝௝

∀𝑗, 𝑝௝ ൐ 0 ⇒ ∑ 𝑋௜௝௜ ൌ 1

௏೔ೕ
௏೔ሺ௑೔ሻ

൑ 𝑝௝ ⇒
௏೔ೕ
௣ೕ
൑ 𝑉௜ 𝑋௜ ⇒ max௝

௏೔ೕ
௣ೕ
൑ 𝑉௜ሺ𝑋௜ሻ

𝑋௜௝ ൐ 0 ⇒
𝑉௜௝
𝑝௝

ൌ 𝑉௜ሺ𝑋௜ሻ

൒ 0

buy only MBB goods ⇒ 𝑝௝ ൐ 0

∑ 𝑉௜௝𝑋௜௝௝ ൌ ∑ 𝑝௝𝑋௜௝௝ 𝑉௜ሺ𝑋௜ሻ
⇒ ∑ 𝑝௝𝑋௜௝௝ ൌ 1

⇒ optimal bundle

⇒ market clears

Dual condition to 𝑋௜௝:

∑ 𝑉௜௝𝑋௜௝௝

Efficient (Combinatorial) Algorithms

Polynomial time
 Flow based [DPSV’08]

 General exchange model (barter system) [DM’16, DGM’17, CM’18]

 Scaling + Simplex-like path following [GM.SV’13]

Strongly polynomial time
 Scaling + flow [O’10, V’12]

 Exchange model (barter system) [GV’19]

Max Flow (One slide overview)

Directed Graph
ሺ𝑉,𝐸ሻ

s
t

Given 𝑠, 𝑡 ∈ 𝑉. Capacity 𝑐௘ for each edge 𝑒 ∈ 𝐸.

𝑐௘
𝑒

Find maximum flow from 𝑠 to 𝑡: 𝒇𝒆 ୣ∈ா s.t.
• Capacity constraint

 𝑓௘ ൑ 𝑐௘ , ∀𝑒 ∈ 𝐸
• Flow conservation: at every vertex 𝑢 ് 𝑠, 𝑡

total in-flow = total out-flow

Theorem: Max-flow = Min-cut
𝑠-𝑡 𝑠-𝑡

𝑢

𝑣 s-t cut: 𝑆 ⊂ 𝑉, s ∈ 𝑆, 𝑡 ∉ 𝑆

cut-value: 𝐶 𝑆 ൌ ෍ 𝑐ሺ௨,௩ሻ
௨,௩ ∈ா:
௨∈ௌ,௩∉ௌ

Min s-t cut: min
ௌ⊂௏:

௦∈ௌ,௧∉ௌ

𝐶ሺ𝑆ሻ

𝑆 𝑉\𝑆

Can be solved in
strongly polynomial-time

CE Characterization
Pirces 𝑝 ൌ 𝑝ଵ, … , 𝑝௠ and allocation 𝑋 ൌ ሺ𝑥ଵ, … , 𝑥௡ሻ

 Optimal bundle: Agent 𝑖 demands 𝑥௜ ∈ argmax
௫: ௣⋅௫ஸ஻೔

𝑉௜ሺ𝑥ሻ

 𝑝 ⋅ 𝑥௜ ൌ 𝐵௜

 𝑥௜௝ ൐ 0 ⇒ ௏೔ೕ
௣ೕ
ൌ max

௞∈ீ
௏೔ೖ
௣ೖ

, for all good 𝑗

 Market clears: For each good 𝑗, demand ൌ supply

෍𝑥௜௝
௜

 ൌ 1.

Pirces 𝑝 ൌ 𝑝ଵ, … , 𝑝௠ and allocation 𝑋 ൌ ሺ𝑥ଵ, … , 𝑥௡ሻ

 Optimal bundle: Agent 𝑖 demands 𝑥௜ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥௫: ௣⋅௫ஸ஻೔ 𝑣௜ 𝑥
 𝑝 ⋅ 𝑥௜ ൌ 𝐵௜
 𝑥௜௝ ൐ 0 ⇒ ௩೔ೕ

௣ೕ
ൌ max

௞∈ெ
௩೔ೖ
௣ೖ

, for all good 𝑗

 Market clears: For each good 𝑗, demand ൌ supply

෍𝑥௜௝
௜

 ൌ 1.

Competitive Equilibrium → Flow

𝑓௜௝ ൌ 𝑥௜௝𝑝௝ (money spent by agent i on good j)

∑ 𝑓௜௝௝∈ீ ൌ 𝐵௜

𝑓௜௝ ൐ 0 ⇒ ௏೔ೕ
௣ೕ
ൌ max

௞∈ீ
௏೔ೖ
௣ೖ

෍𝑓௜௝
௜∈ே

ൌ 𝑝௝

Maximum bang-per-buck (𝑀𝐵𝐵)

𝐹 ൌ ሺ𝑓ଵ, … , 𝑓௡ሻ

𝑝௝

⋮

⋮

G

Competitive Equilibrium → Flow

s
t

𝑗
𝐵௜

∞

MBB edges

capacities

Max-flow

𝑓௜௝/

𝑝௝/ 𝐵௜/ ෍𝑓௜௝
௜∈ே

ൌ 𝑝௝

𝑓௜௝ ൐ 0 on MBB edges

෍𝑓௜௝
௝∈ெ

ൌ 𝐵௜

CE: 𝑝,𝐹 s.t.

Issue: Eq. prices and hence
also MBB edges not known!

Fix [DPSV’08]: Start with low
prices, keep increasing. Max-flow = min-cut

= ∑ 𝑝௝௝∈ீ ൌ ∑ 𝐵௜௜∈஺

⋮

⋮

A

𝑖

Maintain:
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ (goods are fully sold)

Demand ൒ Supply

Opt.
Bundle

Market
clears

Example

$5

$1

2

3

1

2

Input

Invariants
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ

(Demand ൒ Supply)

Init.

s t

5

1

Algorithm (Pictorial)

s
t⋮ ⋮

MBB
edges
∞ cap.

Init: ∀𝑗 ∈ G, 𝑝௝ ൏ min
௜

஻೔
௠

, and
at least one MBB edge to 𝑗

G A

Invariants
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ (goods are sold)

Algorithm (Pictorial)

s
t⋮ ⋮

MBB
edges
∞ cap.

Init: ∀𝑗 ∈ G, 𝑝௝ ൏ min
௜

஻೔
௠

, and
at least one MBB edge to 𝑗

G A

Increase 𝒑:

↑
argmax

௝∈ீ

𝑉௜௝
𝑝௝

Invariants
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ (goods are sold)

Algorithm (Pictorial)

s
t⋮ ⋮

𝛼 ൌ 1
Init: ∀𝑗 ∈ 𝑀, 𝑝௝ ൏ min

௜
஻೔
௡

And at least one MBB edge to 𝑗

Increase 𝒑: ↑ 𝛼

G A

MBB
edges
∞ cap.

↑
ൌ argmax

௝∈ீ

𝑉௜௝
𝛼𝑝௝

Invariants
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ (goods are sold)

Algorithm (Pictorial)

s
t⋮ ⋮

Init: ∀𝑗 ∈ 𝑀, 𝑝௝ ൏ min
௜

஻೔
௡

And at least one MBB edge to 𝑗

Increase 𝒑: ↑ 𝛼

Event 𝟏: New cross-cutting min-cut

G A
MBB
edges
∞ cap.

𝐺ி

Agents in 𝐴ி exhaust all their money.

Observation: Supply = Demand for 𝑮𝑭!
So, if prices of G୊ are increased, then
these will be under-demanded (supply >
demand for 𝐺ிሻ. And ሼ𝑠ሽ will cease to
be a min-cut.

𝐺ி: Goods that have MBB edges only
from 𝐴ி.

𝐴ி

A tight-set.

Invariants
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ (goods are sold)

Should freeze prices in 𝑮𝑭.

Algorithm (Pictorial)

s
t⋮ ⋮

Init: ∀𝑗 ∈ 𝑀, 𝑝௝ ൏ min
௜

஻೔
௡

And at least one MBB edge to 𝑗

Increase 𝒑: ↑ 𝛼

Event 𝟏: A tight subset 𝐺ி

G A

(frozen)

MBB
edges
∞ cap.

𝐺ி

Call it frozen: ሺ𝐺ி ,𝐴ிሻ.

𝐴ி

Invariants
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ (goods are sold)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗 ∈ 𝑀, 𝑝௝ ൏ min
௜

஻೔
௡

And at least one MBB edge to 𝑗

Increase 𝒑: ↑ 𝛼

G A(dynamic)

(frozen)

𝐺஽

𝐺ி

𝐴஽

Call it frozen: ሺ𝐺ி ,𝐴ிሻ.
Freeze prices in 𝐺ி .
Increase prices in 𝐺஽.

Event 𝟏: A tight subset 𝐺ி
𝐴ி

Invariants
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ (goods are sold)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗 ∈ 𝑀, 𝑝௝ ൏ min
௜

஻೔
௡

And at least one MBB edge to 𝑗

Increase 𝒑: ↑ 𝛼

G A(dynamic)

(frozen)

𝐺஽

𝐺ி

𝐴஽

Move ሺ𝑆,𝑁 𝑆 ሻ from dynamic to
frozen.

𝑆 Nሺ𝑆ሻ

Event 𝟏: A tight subset 𝑆 ⊆ 𝐺஽

Observation: Again, supply=demand for
goods in 𝑆. If prices of 𝑆 is increased
further, then 𝐒 can not be fully sold.
And ሼ𝑠ሽ will cease to be a min-cut.

Hence it needs to be moved to the
frozen set.

𝐴ி

𝑁 𝑆 : Neighbors of S

Invariants
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ (goods are sold)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗 ∈ 𝑀, 𝑝௝ ൏ min
௜

஻೔
௡

And at least one MBB edge to 𝑗

Increase 𝒑: ↑ 𝛼

G

(frozen)

𝐺ி

Freeze prices in 𝐺ி , and
increase in 𝐺஽.

Move ሺ𝑆, N 𝑆 ሻ to frozen part
Event 𝟏: A tight subset 𝑆 ⊆ 𝐺஽

A

𝐺஽ 𝐴஽

𝐴ி

(dynamic)

𝑆 Nሺ𝑆ሻ

Invariants
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ (goods are sold)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗 ∈ 𝑀, 𝑝௝ ൏ min
௜

஻೔
௡

And at least one MBB edge to 𝑗

Increase 𝒑: ↑ 𝛼

G

(frozen)

𝐺ி 𝐴ி

OR

Event 𝟐: New MBB edge
Must be between 𝑖 ∈ 𝐴஽ & 𝑗 ∈ 𝐺ி.
Recompute dynamic and frozen.

Move ሺ𝑆, N 𝑆 ሻ from dynamic to frozen
Event 𝟏: A tight subset 𝑆 ⊆ 𝐺஽

A

𝐺஽ 𝐴஽

(dynamic)

Freeze prices in 𝐺ி , and
increase in 𝐺஽.

Invariants
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ (goods are sold)

𝑖

𝑗

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗 ∈ 𝑀, 𝑝௝ ൏ min
௜

஻೔
௡

And at least one MBB edge to 𝑗

Increase 𝒑: ↑ 𝛼

G

(frozen)

𝐺ி

Recompute dynamic and frozen:
Move the component containing
good 𝑗 from frozen to dynamic.

OR

Event 𝟐: New MBB edge
Has to be from 𝑖 ∈ 𝐴஽ to 𝑗 ∈ 𝐺ி.

Move ሺ𝑆, N 𝑆 ሻ from dynamic to frozen
Event 𝟏: A tight subset 𝑆 ⊆ 𝐺஽

A

𝐺஽ 𝐴஽

𝐴ி

(dynamic)

Freeze prices in 𝐺ி , and
increase in 𝐺஽.

Invariants
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ (goods are sold)

𝑖
𝑗

Algorithm (Pictorial)

s
t⋮ ⋮

Init: ∀𝑗 ∈ 𝑀, 𝑝௝ ൏ min
௜

஻೔
௡

And at least one MBB edge to 𝑗

Increase 𝒑: ↑ 𝛼

G

(frozen)

𝐺ி

Recompute dynamic and frozen.

OR

Event 𝟐: New MBB edge
Must be from 𝑖 ∈ 𝐴஽ to 𝑗 ∈ 𝐺ி.

Move ሺ𝑆, N 𝑆 ሻ from dynamic to frozen

Observations: Prices only increase.
Each increase can be lower bounded.
Both the events can be computed
efficiently.

Converges to CE in finite time. Stop: all goods are frozen.

Event 𝟏: A tight subset 𝑆 ⊆ 𝐺஽

A

𝐴ி

Freeze prices in 𝐺ி , and
increase in 𝐺஽.

Invariants
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ (goods are sold)

Example

$5

$1

2

3

1

2

Init.Input

s
t

Event 2

s
t

Event 1

s
t

Invariants
1. Flow only on MBB edges
2. Min-cut = ሼ𝑠ሽ (goods are sold)

5

1

5

1

5

1

s
t5

1

Formal Description

 Init: 𝑝 ← “low-values” s.t. 𝑠 is a min-cut.
𝐺஽,𝐴஽ ← 𝐺,𝐴 , 𝐺ி ,𝐴ி ← ∅,∅

 While(𝐺஽ ് ∅ሻ
 𝛼 ← 1, 𝑝௝ ← 𝛼𝑝௝ ∀𝑗 ∈ 𝐺஽ . Increase 𝛼 until

Event 1: Set 𝑆 ⊆ 𝐺஽ becomes tight.
N 𝑆 ← agents w/ MBB edges to 𝑆 (neighbors of 𝑆).
Move ሺS, NሺSሻሻ from 𝐺஽ ,𝐴஽ to 𝐺ி ,𝐴ி .

Event 2: New MBB edge appears between 𝑖 ∈ 𝐴஽ and 𝑗 ∈ 𝐺ி
Add (𝑗 → 𝑖ሻ edge to graph.
Move component of 𝑗 from 𝐺ி ,𝐴ி to 𝐺஽ ,𝐴஽ .

 Output ሺ𝑝,𝐹ሻ

Efficiently Computing Event 2
Event 2: New MBB edge appears between 𝑖 ∈ 𝐴஽ and 𝑗 ∈ 𝐺ி

Exercise 

Efficiently Computing Event 1
Event 1: Set 𝑆∗ ⊆ 𝐺஽ becomes tight.

 𝛼∗ ൌ
∑ ஻೔೔∈ಿሺೄ∗ሻ
∑ ௣ೕೕ∈౏∗

 Find 𝑆∗ ൌ argmin
ௌ⊆ீವ

 𝛼ሺ𝑆ሻ

s
t⋮ ⋮

G A

MBB
edges
∞ cap.

𝐺஽ 𝐴஽

Increase 𝛼

𝛼 ൌ 1

s
t⋮ ⋮

G B
MBB
edges
∞ cap.

𝑆∗

ൌ min
ௌ⊆ீವ

∑ ஻೔೔∈ಿሺೄሻ
∑ ௣ೕೕ∈౏ 𝛼ሺ𝑆ሻ

Efficiently Computing Event 1
Event 1: Set 𝑆∗ ⊆ 𝐺஽ becomes tight.

 𝛼∗ ൌ
∑ ஻೔೔∈ಿሺೄ∗ሻ
∑ ௣ೕೕ∈౏∗

 Find 𝑆∗ ൌ argmin
ௌ⊆ீವ

 𝛼ሺ𝑆ሻ

s
t⋮ ⋮

G A
MBB
edges𝐺஽ 𝐴஽

ൌ min
ௌ⊆ீವ

∑ ஻೔೔∈ಿሺೄሻ
∑ ௣ೕೕ∈౏ 𝛼ሺ𝑆ሻ

Efficiently Computing Event 1
Event 1: Set 𝑆∗ ⊆ 𝐺஽ becomes tight.

 𝛼ሺ𝑆ሻ ൌ
∑ ஻೔೔∈ಿሺೄሻ
∑ ௣ೕೕ∈ೄ

Find 𝑆∗ ൌ argmin
ௌ⊆ீವ

 𝛼ሺ𝑆ሻ

Claim. Can be done in O(n) min-cut
computations

s
t⋮ ⋮

G A
MBB
edges𝐺஽ 𝐴஽

𝐺ᇱ,𝐴ᇱ ← ሺ𝐺஽,𝐴஽ሻ
Repeat{
𝛼 ← 𝛼ሺ𝐺′ሻ. Set 𝑐ሺ௦,௝ሻ ← 𝛼𝑝௝ ,∀𝑗 ∈ 𝐺′
ሺ𝑠 ∪ 𝑆 ∪ 𝑁 𝑆 ሻ ← min-cut in ሺ𝐺ᇱ,𝐴ᇱሻ
𝐺ᇱ,𝐴ᇱ ← ሺ𝑆,𝑁 𝑆 ሻ

}Until(ሼ𝑠ሽ not a min-cut)
Return 𝛼

Efficient Flow-based Algorithms

 Polynomial running-time
 Compute balanced-flow: minimizing 𝑙ଶ norm of agents’

surplus [DPSV’08]

 Strongly polynomial: Flow + scaling [Orlin’10]

Exchange model (barter):
 Polynomial time [DM’16, DGM’17, CM’18]

 Strongly polynomial for exchange
 Flow + scaling + approximate LP [GV’19]

Application to Display Ads: Pacing Eq.

 Google Display Ads
Each advertiser has

 Budget 𝐵௜. Value 𝑣௜௝ for keyword 𝑗

Pacing Eq.: 𝜆ଵ, … , 𝜆௡ ∈ 0,1 ௡ s.t.
 First price auction with bids 𝜆௜𝑣௜௝
 For each agent 𝑖, if 𝜆௜ ൏ 1 then total payment = 𝐵௜, else
൑ 𝐵௜

 Equivalent to Fisher market with quasi-linear
utilities!

What about chores?

 CEEI exists but may form a non-convex set [BMSY’17]

 Efficient Computation?
Open: Fisher as well as for CEEI
 For constantly many agents (or chores) [BS’19, GM’20]

 Fast path-following algorithm [CGMM.’20]

 Hardness result for an exchange model [CGMM.’20]

References.
[AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." Proceedings of
the 2017 ACM Conference on Economics and Computation. 2017.
[BMSY17] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna.
Econometrica, 85(6):1847–1871, 2017.
[BMSY19] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive utilities. Social
Choice and Welfare, 52(3):395–417, 2019.
[BS19] Brânzei, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chores." arXiv preprint
arXiv:1907.01766 (2019).
[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems. 2020.
[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. arXiv
preprint arXiv:2008.02753.
[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Dividing Bads is Harder than Dividing Goods: On the
Complexity of Fair and Efficient Division of Chores. arXiv preprint arXiv:2008.00285.
[DK08] Devanur, Nikhil R., and Ravi Kannan. "Market equilibria in polynomial time for fixed number of goods or agents." 2008 49th
Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008.
[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." Journal of the ACM
(JACM) 55.5 (2008): 1-18.
[HZ79] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293–
314, 1979.
[VY20] Vazirani, Vijay V., and Mihalis Yannakakis. "Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided
Matching Markets." arXiv preprint arXiv:2004.01348 (2020).

R. Mehta (ADFOCS’20)

THANK YOU

