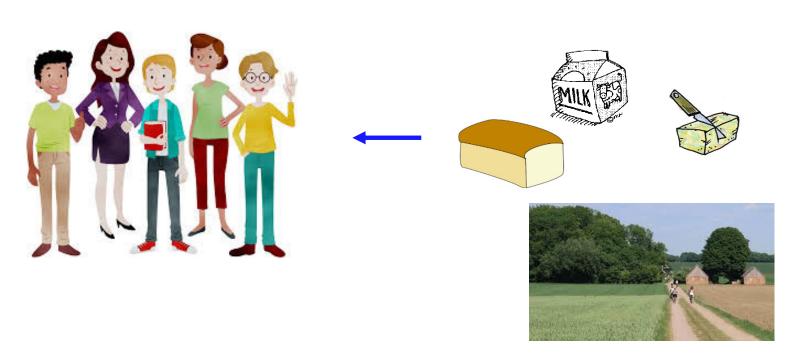
CS 580: Topics on AGT

Lec 2: Fair Division of Divisibles via Competitive Equilibirum

Instructor: Ruta Mehta

Divisible goods



Goal: Find fair and efficient allocation

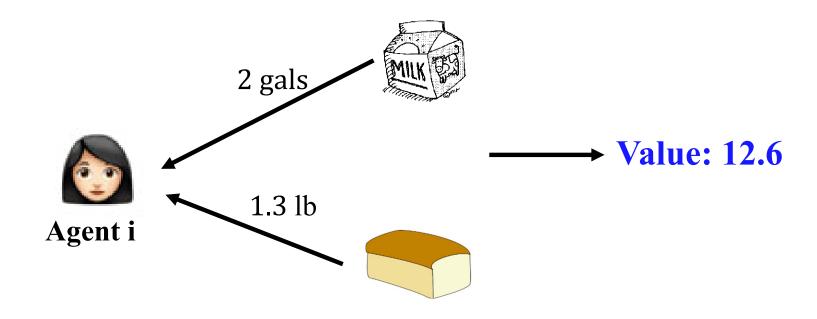
R. Mehta

Model

- \blacksquare A: set of n agents
- *M*: set of *m* divisible goods (manna)

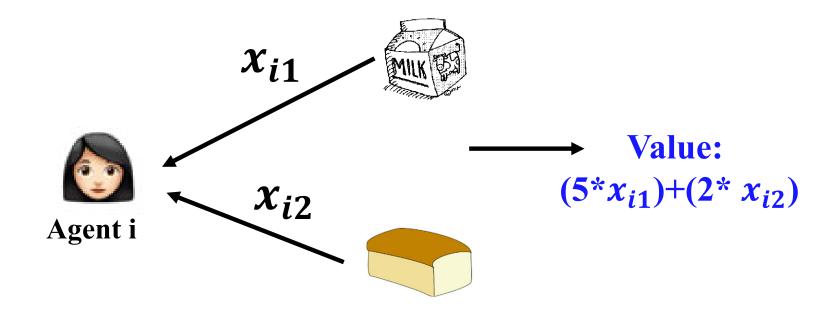
- Each agent i has
 - \square Valuation function $V_i: \mathbb{R}_+^m \to \mathbb{R}_+$ over bundles of items

Valuation function



Values milk at 5/gallon, and bread at 2/lb

Valuation function



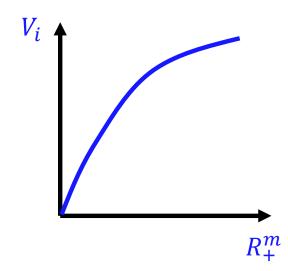
Values milk at 5/gallon, and bread at 2/lb

Linear/Additive Valuation

Model

- \blacksquare A: set of n agents
- *M*: set of *m* divisible goods (manna)

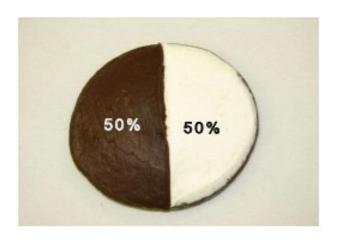


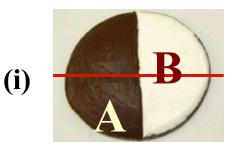


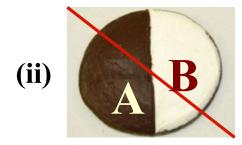
- Each agent i has
 - \square Valuation function $V_i: \mathbb{R}_+^m \to \mathbb{R}_+$ over bundles of items
 - □ Concave: Captures *decreasing marginal returns*.

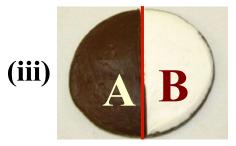
Goal: Find fair and efficient allocation

Example: Half moon cookie









Efficient (Non-wasteful)

Allocation: Bundle $X_i \in \mathbb{R}_+^m$ to agent i

Envy-free: No agent *envies* other's allocation over her own.

For each agent i, $V_i(X_i) \ge V_i(X_j), \forall j \in [n]$

Proportional: Each agent i gets value at least $\frac{V_i(M)}{n}$

For each agent $i, V_i(X_i) \ge \frac{V_i(M)}{n}$

Pareto-optimal: No other allocation is better for all.

There is no Y, s. t. $V_i(Y_i) \ge V_i(X_i), \forall i \in [n]$

Welfare Maximizing

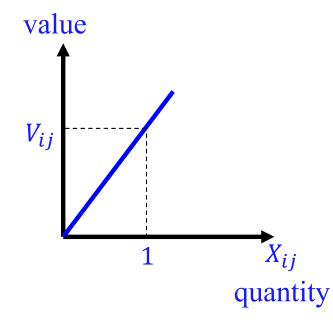
 $(max: \sum_i V_i)$

Model

- \blacksquare A: set of n agents
- *M*: set of *m* divisible goods (manna)

□ Additive/linear $V_i: \mathbb{R}_+^m \to \mathbb{R}_+$:

$$V_i(X_{i1},\ldots,X_{im}) = \sum_{j \in M} V_{ij}X_{ij}$$



Efficient (Non-wasteful)

Envy-free: No agent *envies* other's allocation over her own.

Proportional: Each agent *i* gets value at least $\frac{V_i(M)}{n}$

[3, 2, 2] [0, 0, 0]

Allocation in red

[20, 20, 30] [0, 0, 0]

Efficient (Non-wasteful)

Envy-free: No agent *envies* other's allocation over her own.

Pareto-optimal: No other allocation is better for all.

Proportional: Each agent i gets value at least $\frac{V_i(M)}{}$

[3, 2, 2] [1/2, 1/2, 1/2]

[20, 20, 30] [1/2, 1/2, 1/2]



Efficient (Non-wasteful)

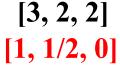
Envy-free: No agent *envies* other's allocation over her own.

Pareto-optimal: No other allocation is better for all.

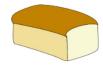
Proportional: Each agent i gets value at least $\frac{V_i(M)}{m}$

Welfare Maximizing

 $(max: \sum_i V_i)$







Efficient (Non-wasteful)

Envy-free: No agent *envies* other's allocation over her own.

Pareto-optimal: No other allocation is better for all.

Proportional: Each agent i gets value at least $\frac{V_i(M)}{n}$

Welfare Maximizing

 $(max: \sum_i V_i)$

Efficient (Non-wasteful)

Envy-free: No agent *envies* other's allocation over her own.

Pareto-optimal: No other allocation is better for all.

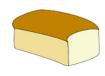
Proportional: Each agent *i* gets value at least $\frac{V_i(M)}{n}$

(Nash) Welfare Maximizing $(\Pi_i V_i)$

[3, 2, 2] [1, 1/2, 0]

Allocation in red

[20, 20, 30] [0, 1/2, 1]



Efficient (Non-wasteful)

Envy-free

Proportional

Pareto-optimal

(Nash) Welfare Maximizing

Competitive Equilibrium (with equal income)

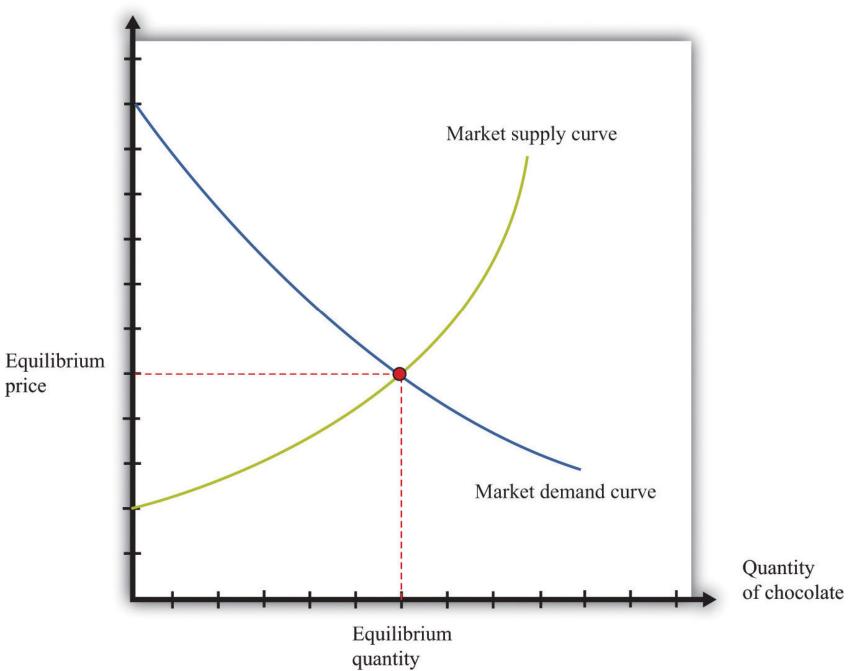
Beginning of Competitive Equilibrium

Adam Smith (1776)

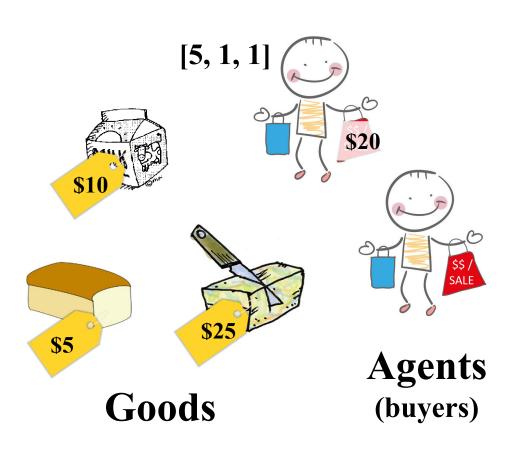
Invisible hand

"Economic concept that describes the unintended greater social benefits and public good brought about by individuals acting in their own self-interests.[1][2] The concept was first introduced by Adam Smith in *The Theory of Moral Sentiments*, written in 1759. According to Smith, it is literally divine providence, that is the hand of God, that works to make this happen."

Price of chocolate



Competitive (market) Equilibrium (CE)



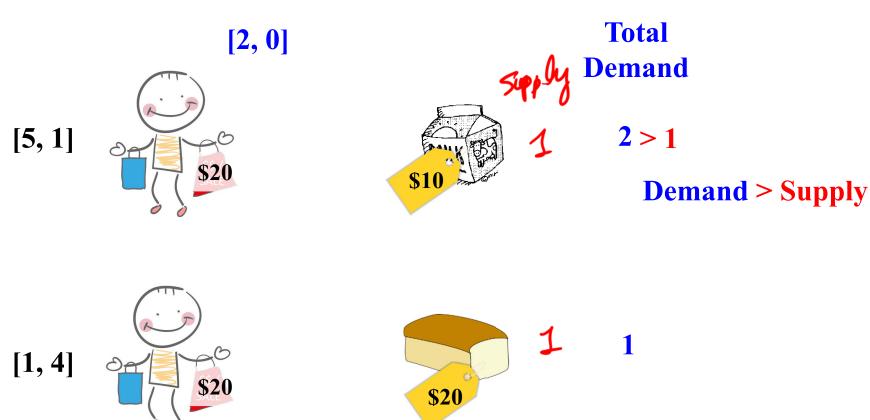
Demand optimal bundle $argmax_{X \text{ affordable}} V_i(X)$

Competitive (market) Equilibrium (CE)

_ -

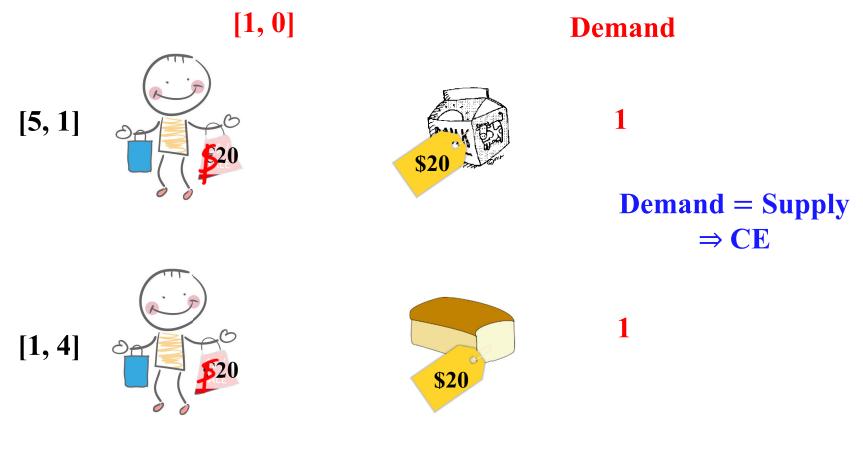
CE Example

Demands



[0, 1]

CE Example

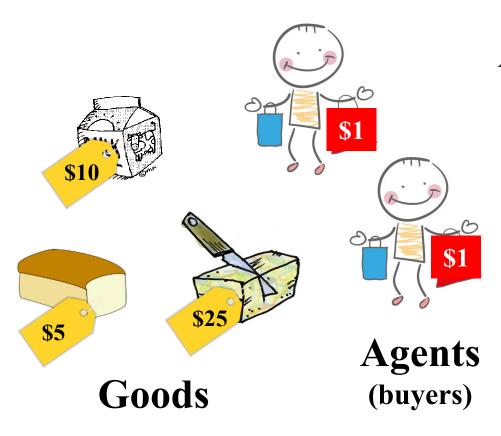


[0, 1]

w/ equal income (CEEI):

Agents have the same amount of money

CEEI: Properties



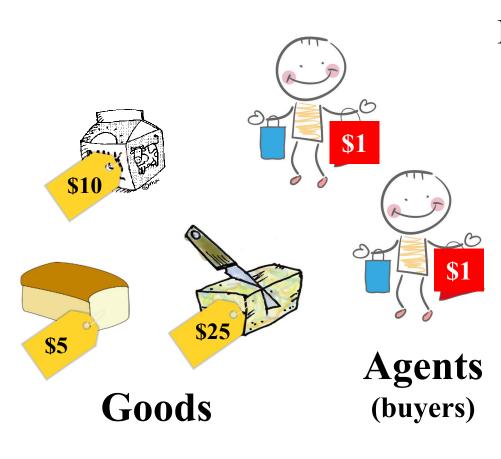
An agent can afford anyone else's bundle, but demands her own ⇒ Envy-free

 1^{st} welfare theorem \Rightarrow Pareto-optimal

Demand optimal bundle

Competitive Equilibrium: Demand = Supply

CEEI: Properties



Demand optimal bundle

Competitive Equilibrium: Demand = Supply

Envy-free & "Demand=Supply" ⇒ Proportional

Proof.

Envyfree

$$\Rightarrow V_i(\bar{X}_i) \ge V_i(\bar{X}_k), \forall k \in [n]$$

$$\Rightarrow nV_i(\bar{X}_i) \ge \sum_{k \in [n]} V_i(\bar{X}_k)$$

"Demand = Supply"

$$\Rightarrow \sum_{k \in [n]} V_i(\bar{X}_k) \ge V_i(M) \ (\because V_i \text{ concave})$$

$$\Rightarrow V_i(\bar{X}_i) \ge \frac{V_i(M)}{n}$$

CE History

Adam Smith (1776)

Leon Walras (1880s)

Irving Fisher (1891)

Arrow-Debreu (1954)

(Nobel prize)

(Existence of CE in the exchange model w/ firms)

Computation of CE (w/ goods)

Algorithms

- Convex programming formulations
 - □ Eisenberg-Gale (1959): CEEI w/ 1-homogeneous valuations
 - □ Shmyrev (2009), DGV (2013), CDGJMVY (2017) ...
- (Strongly) Poly-time algorithms (linear valuations)
 - □ DPSV (2002), Orlin (2010), DM (2015), GV (2019) ...
- Simplex-like algorithms: Eaves (1976), GM.SV (2011), GM.V (2014), ...

Complexity

- PPAD: Papadimitrou'92, CDDT'09, VY'11, CPY'17, Rubinstein'18, ...
- FIXP: EY'09, GM.VY'17, F-RHHH'21 ...

Learning: RZ'12, BDM.UV'14, ..., FPR'22, ...

Matching/mechanisms: BLNPL'14, ..., KKT'15, ..., FGL'16, ..., AJT'17, ..., BGH'19, BNT-C'19, ...

Simple Tatonnement Procedure (Algo)

Increase prices of the over demanded goods.

Theorem. Tatonnement process Converges to a CE if $V_i s$ are weak gross substitutes (WGS).

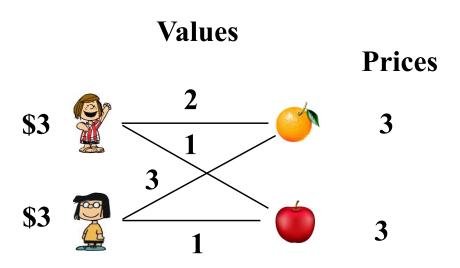
WGS: Increase in price of a good does not decrease demand of any other good.

Example: Linear $V_i s$

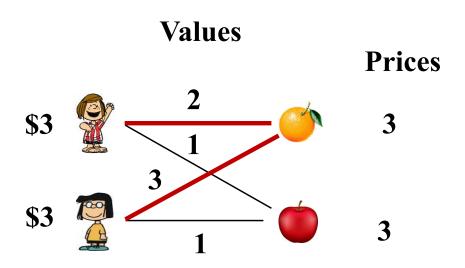
$$V_i(X_i) = \sum_{j \in [m]} V_{ij} X_{ij}$$

Fast Computation: Characterization

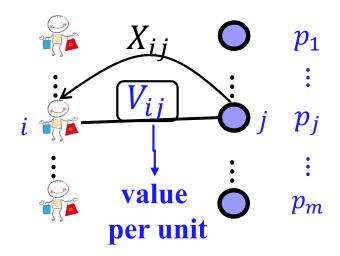
Example (Intuition)



Example (Intuition)



$$V_i(X_i) = \sum_{j \in M} V_{ij} X_{ij}$$

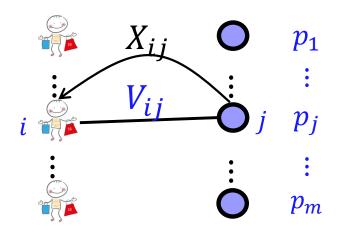


Optimal bundle: can spend at most one dollar.

Intuitition

spend wisely: on goods that gives maximum value-per-dollar $\frac{v_{ij}}{p_j}$

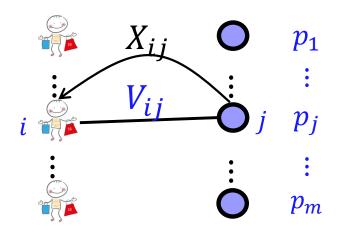
$$V_i(X_i) = \sum_{j \in M} V_{ij} X_{ij}$$



Optimal bundle: can spend at most one dollar.

$$\sum_{j \in M} V_{ij} X_{ij} = \sum_{j} V_{ij} \binom{p_j X_{ij}}{p_j} \le \binom{\max V_{ik}}{p_k} \sum_{j} p_j X_{ij} \le \binom{\max V_{ik}}{p_k} 1$$
value per dollar spent
(\$ spent)
MBB
Maximum
bang-per-buck

$$V_i(X_i) = \sum_{j \in M} V_{ij} X_{ij}$$



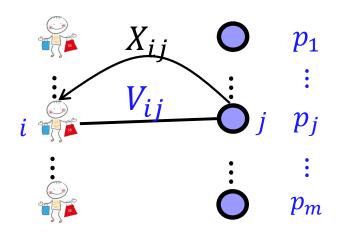
Optimal bundle: can spend at most one dollar.

$$\sum_{j \in M} V_{ij} X_{ij} = \sum_{j} V_{ij} \binom{p_j X_{ij}}{p_j} \le \binom{\max_{k \in G} \frac{V_{ik}}{p_k}}{\sum_{j} p_j X_{ij}} \le \binom{\max_{k \in G} \frac{V_{ik}}{p_k}}{\sum_{j \in G} \frac{V_{ik}}{p_j X_{ij}}} \le \binom{\max_{k \in G} \frac{V_{ik}}{p_k}}{\sum_{j \in G} \frac{V_{ik}}{p_j X_{ij}}} \le \binom{\max_{k \in G} \frac{V_{ik}}{p_k}}{\sum_{j \in G} \frac{V_{ik}}{p_j X_{ij}}} \le \binom{\max_{k \in G} \frac{V_{ik}}{p_k}}{\sum_{j \in G} \frac{V_{ik}}{p_j X_{ij}}} \le \binom{\max_{k \in G} \frac{V_{ik}}{p_k}}{\sum_{j \in G} \frac{V_{ik}}{p_j X_{ij}}} \le \binom{\max_{k \in G} \frac{V_{ik}}{p_k}}{\sum_{j \in G} \frac{V_{ik}}{p_j X_{ij}}} \le \binom{\max_{k \in G} \frac{V_{ik}}{p_k}}$$

Buy only MBB goods.

$$X_{ij} > 0 \implies \frac{V_{ij}}{p_j} = MBB$$

$$V_i(X_i) = \sum_{j \in M} V_{ij} X_{ij}$$



Optimal bundle: can spend at most one dollar.

$$\sum_{j \in M} V_{ij} X_{ij} = \sum_{j} \overline{v_{ij} \choose p_j} \left(p_j X_{ij} \right) \le \left(\max_{k \in G} \frac{V_{ik}}{p_k} \right) \sum_{j} p_j X_{ij} \le \left(\max_{k \in G} \frac{V_{ik}}{p_k} \right) 1$$
value per dollar spent
(bang-per-buck)
MBB
Maximum
bang-per-buck

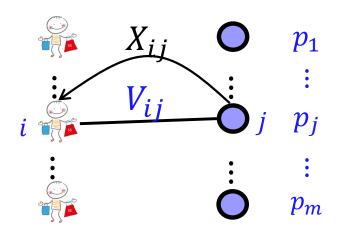
Buy only MBB goods.

$$X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = MBB$$

Spends all of 1 dollar.

$$\sum_{j} p_{j} X_{ij} = 1$$

$$V_i(X_i) = \sum_{j \in M} V_{ij} X_{ij}$$



Optimal bundle: can spend at most one dollars.

$$\sum_{j \in M} V_{ij} X_{ij} \leq \left(\max_{k \in G} \frac{V_{ik}}{p_k} \right) \mathbf{1}$$

iff

1. Buy only MBB goods.

$$X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = MBB$$

2. Spends all of 1 dollar.

$$\sum_{i} p_{i} X_{ij} = 1$$

Linear V_is : CEEI Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (\bar{X}_1, ..., \bar{X}_n)$ are at equilibrium iff

■ Optimal bundle (OB): For each agent *i*

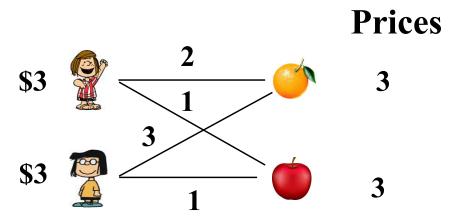
$$\square \sum_{i} p_{i} X_{ij} = 1$$

$$\square X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_i} = \max_{k \in M} \frac{V_{ik}}{p_k}$$
, for all good j

■ Market clears: For each good *j*,

$$\sum_{i} X_{ij} = 1.$$

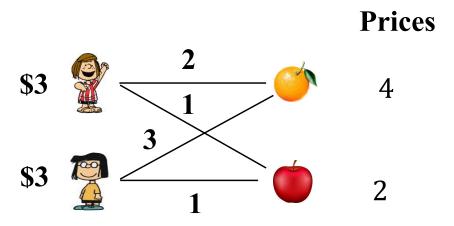
- 2 Buyers (②, ②), 2 Items (◇, ⑥) with unit supply
- Each buyer has budget of \$3 and a linear utility function



- 2 Buyers (②, ②), 2 Items (◇, ⑥) with unit supply
- Each buyer has budget of \$3 and a linear utility function

Not an Equilibrium!

- 2 Buyers (②, ②), 2 Items (◇, ⑥) with unit supply
- Each buyer has budget of \$3 and a linear utility function



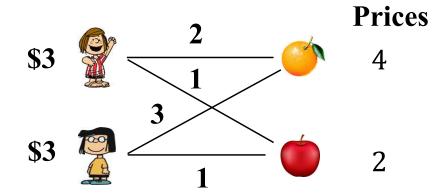
- 2 Buyers (②, ②), 2 Items (◇), ⑥) with unit supply
- Each buyer has budget of \$3 and a linear utility function

Equilibrium!

CEEI Properties: Summary

CEEI allocation is

- Pareto optimal (PO)
- Envy-free
- Proportional



CEEI

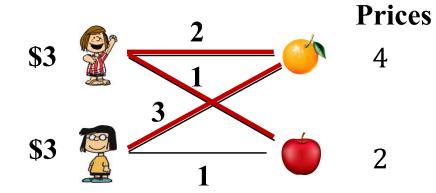
CEEI Properties: Summary

CEEI allocation is

- Pareto optimal (PO)
- Envy-free
- Proportional $\forall i: \forall i \forall x_i > \forall i (M)$

Next...

Nash welfare maximizing



CEEI

CEEI Allocation:

$$X_1 = \left(\frac{1}{4}, 1\right), X_2 = \left(\frac{3}{4}, 0\right)$$

$$V_1(X_1) = \frac{3}{2}, \ V_2(X_2) = \frac{9}{4}$$

$$V_1(X_2) = \frac{3}{2}, \ V_2(X_1) = \frac{7}{4}$$

Social Welfare

$$\sum_{i \in A} V_i(X_{i1}, \dots, X_{im})$$

Utilitarian

Issues: May assign 0 value to some agents.

Not scale invariant!

Max Nash Welfare

$$\mathbf{max:} \prod_{i \in A} V_i(X_{i1}, \dots, X_{im})$$

s.t.
$$\sum_{i \in A} X_{ij} \le 1$$
, $\forall j \in G$
 $X_{ij} \ge 0$, $\forall i, \forall j$

Feasible allocations

Max Nash Welfare (MNW)

$$\mathbf{max:} \log \left(\prod_{i \in A} V_i(X_{i1}, \dots, X_{im}) \right)$$

s.t.
$$\sum_{i \in A} X_{ij} \leq 1$$
, $\forall j \in G$
 $X_{ij} \geq 0$, $\forall i, \forall j$

Feasible allocations

Max Nash Welfare (MNW)

$$\max \sum_{i \in A} \log V_i(X_{i1}, \dots, X_{im})$$

s.t.
$$\sum_{i \in A} X_{ij} \leq 1$$
, $\forall j \in G$
 $X_{ij} \geq 0$, $\forall i, \forall j$

Feasible allocations

Eisenberg-Gale Convex Program '59

$$\mathbf{max:} \sum_{i \in A} \log V_i(\bar{X}_i)$$

Dual var.

s.t.
$$\sum_{i \in A} X_{ij} \leq 1$$
, $\forall j \in G \longrightarrow \mathcal{P}_j$
 $X_{ij} \geq 0$, $\forall i, \forall j$

Theorem. Solutions of EG convex program are exactly the CEEI (p, X).

Proof.

Consequences: CEEI

- Exists
- Forms a convex set
- Can be *computed* in polynomial time
- Maximizes Nash Welfare

Theorem. Solutions of EG convex program are exactly the CEEI (p, X).

Proof. \Rightarrow (Using KKT)

Recall: CEEI Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (X_1, ..., X_n)$

- Optimal bundle: For each buyer i
 - $\square p \cdot X_i = 1$
 - $\square X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = \max_{k \in M} \frac{V_{ik}}{p_k}$, for all good j
- \blacksquare Market clears: For each good j,

$$\sum_{i} X_{ij} = 1.$$

Theorem. Solutions of EG convex program are exactly the CEE.

Proof.
$$\Rightarrow$$
 (Using KKT)

$$\forall j, \ p_j > 0 \Rightarrow \sum_i X_{ij} = 1$$

$$\max : \sum_{i \in A} \log(V_i(\bar{X}_i)) \xrightarrow{\sum_j V_{ij} X_{ij}} \underbrace{\text{Dual var.}}_{i \geq 0}$$

s.t.
$$\sum_{i \in A} X_{ij} \le 1$$
, $\forall j \in G \longrightarrow \mathcal{P}_j \ge 0$
 $X_{ij} \ge 0$, $\forall i, \forall j$

Dual condition to X_{ij} :

$$\frac{V_{ij}}{V_i(X_i)} \le p_j \Rightarrow \frac{V_{ij}}{p_i} \le V_i(X_i) \Rightarrow p_j > 0 \Rightarrow \text{market clears}$$

→buy only MBB goods

$$\left(X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = V_i(X_i)\right)$$

$$\sum_{j} V_{ij} X_{ij} \stackrel{\longleftarrow}{=} \left(\sum_{j} p_{j} X_{ij} \right) V_{i}(X_{i})$$

$$\Rightarrow \sum_{j} p_{j} X_{ij} = 1$$

⇒ optimal bundle

Efficient (Combinatorial) Algorithms

Polynomial time

- Flow based [DPSV'08]
 - ☐ General exchange model (barter system) [DM'16, DGM'17, CM'18]
- Scaling + Simplex-like path following [GM.SV'13]

Strongly polynomial time

- Scaling + flow [0'10, V'12]
 - □ Exchange model (barter system) [GV'19]

We will discuss some of these if there is interest.

Application to Display Ads: Pacing Eq.

- Google Display Ads
 - Each advertiser has
 - Budget B_i . Value v_{ij} for keyword j
 - \square Pacing Eq.: $(\lambda_1, ..., \lambda_n) \in [0,1]^n$ s.t.
 - First price auction with bids $\lambda_i v_{ij}$
 - For each agent i, if $\lambda_i < 1$ then total payment = B_i , else $\leq B_i$
- Equivalent to Fisher market with quasi-linear utilities!