Optimal Bidding in Large Scale Multi-Item Auctions

Presented by:
Ishas Kekre and Tom Herschberg
Single vs Multi-Item

- **Single Item**
 - n bidders with valuations v_i
 - Second Price Auction $\Rightarrow b_i = v_i$ maximizes utility and social welfare

- **Multi-Item Auction**
 - Collection of m items to be distributed to n bidders
 - V_{ij} for some allocation $j = \{x_1, x_2, \ldots\}$ is agent i's valuation of allocation j
 - Introduces lots of additional complexity

(Roughgarden 2013)
Background

- Different types of multi-item auctions
 - Are items identical?
 - Are items divisible?
 - Are items complements/substitutes?
 - $V(A) + V(B) = V(\{A,B\})$?
 - Are items auctioned simultaneously?
 - Sealed or opened?

- Discussion
 - Spectrum Auctions
 - Sponsored Search Auctions
Spectrum Auctions

- Auction system used to sell and assign spectrum resources to various bidders.
- Why Auction?
 - Administrative process, lottery, first come first served etc.
 - Transparent & Fair
 - Maximize Revenues and Utility
 - Economic (McMillan 1995)
- Not identical
- Not divisible
- Simultaneous and Open Bidding
- Not monotone
 - Package Bidding
Simultaneous Ascending Auction

- Introduced by FCC in 1994

<table>
<thead>
<tr>
<th>Bidder 1</th>
<th>Bidder 2</th>
<th>Bidder 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(0,1,0)</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>(0,0,0)</td>
<td>(0,1,0)</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>(0,0,0)</td>
<td>(0,1,0)</td>
<td>(3,0,0)</td>
</tr>
<tr>
<td>(0,0,0)</td>
<td>(0,1,0)</td>
<td>(3,0,0)</td>
</tr>
</tbody>
</table>
Package Bidding

- More efficient and revenue generating format
- Rise of free rider problem for individual license bids
 - $V1(A) = 4$, $V2(B) = 4$, $V3(AB) = 3$

<table>
<thead>
<tr>
<th></th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>p2</th>
<th>1-p2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>8-4 = 4</td>
<td>8 - 3 = 5</td>
</tr>
<tr>
<td>1-p1</td>
<td>8 - 3 = 5</td>
<td>3-2 = 1</td>
</tr>
</tbody>
</table>
Collusion

- Bidders working together to reduce auction prices
 - Bid Signaling
 - Retaliation
 - Withdrawal
 - Market Division

- Bid Restricting
- Bidder Identities
- Transparency
- Competition for higher revenue
- Signaling

- Withdrawal Limit
- Reserve Prices
- FCC introduced two round limit
- Market Closing
Reserve Prices Example

- Two identical items, two bidders A and B
- \(V_a \) (one item) = 20, \(V_a \) (both) = 50, \(V_b \) (one) = 17
- Bidder B will put one truthful bid of 17
- No Reserve Price
 - A puts one bid at 20 -> A and B win an item for 0, A's utility is 20
 - A puts one bid at 20 and one at 30 -> A wins both items for 17, utility is 50 - 2(17) = 16
 - Demand Reduction
- Reserve Price = 5
 - A puts one bid at 20 -> A and B win an item for 5, A's utility is 20-5 = 15
 - A puts one bid at 20 and one at 30 -> A wins both items for 17, utility is 50 - 2(17) = 16
Price Forecasting + Budgeting

- For licenses that are substitutes, where should you bid to get the best licenses at the best price? - Price Forecasting (Stanford 2009)

- Exposure
 - Sum of all a bidder’s bids in a given round
 - Total Price * Demand/Supply
 - Equilibrium where Demand = Supply, exposure meets budget
 - Useful for revenue prediction < 10% error

(Bulow, Levin, Milgrom 2009)
Managing Exposure

- Agent bidding on two licenses, \(v_{12} > v_1 + v_2 \)
- Unknown final price \(c_i \) from distribution \(F_i \)
- If opponent on license \(i \) exits, expected utility:

\[
\pi_i(p_1, p_2) = v_i - p_i + Q_j(p_1, p_2). \tag{1}
\]

\[
Q_j(p_1, p_2) = \int_{p_j}^{\max\{b-p_i, p_j\}} \max\{0, (v_{12} - v_i - c_j)\} dF_j(c_j | c_j \geq p_j). \tag{2}
\]

\[
\pi_1(p_1, p_2) = 0 \quad \text{and} \quad \pi_2(p_1, p_2) = 0. \tag{3}
\] (Bulow, Levin, Milgrom 2009)
• Prop1 - Optimal strategy involves raising prices along any path to the unique price pair \((p_{1*}, p_{2*})\) that will solve for (3), drop out at this point if both competitors are still active.

• Prop2 - If the individual bidder for license \(i\) drops out first, continue bidding on license \(j\) until \(p_j = v_{12} - \max\{p_i, v_i\}\)

(Bulow, Levin, Milgrom 2009)
Managing Price Increase

- Holding Back Demand
- Parking
- Jump Bidding
 - Ineffective if done early
 - Risk of overpaying if done late
- SpectrumCo
 - Forecasted final prices
 - Alter rate of price increase
 - Massive market share with a billion dollar discount vs competitor’s prices
Sponsored Search Auctions (SSAs)

- Advertisers bid to be shown alongside results of search engine query
- Multiple advertising slots are available for each search
 - Slots higher on the page are considered more valuable
- Highest bidder gets the highest slot, second-highest bidder gets second slot, etc.
- Auction is run every time a query is made
- Most use generalized second price (GSP) auctions
- For this discussion, assume unlimited budget and full rationality
pizza
Generalized Second Price Auctions

- n bidders compete for k ad slots
 - $n > k$
 - Slot 1 is displayed first, slot k is displayed last
 - $\text{CTR}_1 \geq \text{CTR}_2 \geq \ldots \geq \text{CTR}_k$
- Each bidder i has a private value v_i
- Each bidder submits a bid $b_i \leq v_i$
- Bidders are numbered in the descending order of their bids
- Bidder i wins slot i and pays b_{i+1} each time their ad is clicked
- Truth-telling is not a dominant strategy

(Varian 2007)
Truth-Telling in GSPs

- 3 bidders with values per click {10, 4, 2}
- 2 ad slots with CTRs {200, 199}
- If bidder 1 bids truthfully:
 - Payoff = \((v_i - b_{k+1}) \times CTR_k = (10 - 4) \times 200 = 1200\)
- If bidder 1 shades bid to $3:
 - Payoff = \((v_i - b_{k+1}) \times CTR_k = (10 - 2) \times 199 = 1592 > 1200\)
- Bidder 1 increases payout by bidding less than their true value

(Edelman, Ostrovsky, and Schwarz 2005)
Optimal Bidding in SSAs

- Because GSPs are not incentive-compatible, bidders must choose a bidding strategy.
- This results in a continuum of possible Nash equilibria.
- VCG Equilibrium:
 - Possible Nash equilibrium of GSP
 - Player payments are identical to those made if VCG auction was used
 - Cheapest envy-free equilibrium for bidders
- How can we converge to VCG equilibrium over repeated GSPs?
Best-Response Bidding

- Bidder i chooses a bid for the next round that maximizes their utility assuming all other bidders b_{-i} behave the same
 - Utility $u_i = CTR_s(v_i - p_s)$
- i will make a bid $b' \in (p_{s*}(i), p_{s*-1}(i))$ to win slot s^*
 - $p_{s*}(i)$ = price that i pays to win slot s^*
- Where to bid within this range?
 - Too high: Bidder $i + 1$ will undercut i and force them into a slot with lower utility
 - Too low: Bidder $i - 1$ will out bid
 - Want competitors to pay as much as possible

(Nisan et. al. 2011)
The Balanced Bidding (BB) Strategy

- Bidder i targets the slot s^*_i which maximizes their utility given b_{-i}
 - $s^*_i = \arg\max_s \{CTR_s(v_i - p_s(i))\}$
- Bidder i makes the max bid b' that wouldn’t lower utility if they were undercut
 - $CTR_{s^*_i}(v_i - p_{s^*_i}(i)) = CTR_{s^*_{i-1}}(v_i - b')$
- The BB Strategy converges to VCG equilibrium if exactly one random bidder updates their bid after every round
 - Known as the asynchronous bidding model
- What if all bidders simultaneously submit new bids after each round?
 - Requires slightly different strategy called Restricted Balanced Bidding (RBB)

(Cary et. al. 2014)
The Restricted Balanced Bidding (RBB) Strategy

- Bidder i targets the slot $s_i^* \leq s_i$ which maximizes their utility given b_{-i}
 - $s_i^* = \arg\max_s \{\text{CTR}_s(v_i - p_s(i))\}$
 - s_i^* must have a CTR no higher than the CTR of s_i
- Bidder i makes the max bid b' that wouldn’t lower utility if they were undercut
 - $\text{CTR}_{s_i^*}(v_i - p_{s_i^*}(i)) = \text{CTR}_{s_{i-1}^*}(v_i - b')$
- The RBB Strategy converges to the VCG equilibrium if all bidders change bids after each round
 - Known as the synchronous model
- Both BB and RBB were later proven to be incentive compatible
 - If all bidders use best-response bidding, there is no benefit to deviating

(Cary et. al. 2014)
Collusion in SSAs

- Advertisers have started delegating bidding campaigns to digital marketing agencies (DMAs)
- DMAs often bid on the behalf of multiple advertisers in the same auction
- Coordinating prices between advertisers causes payments to decrease
- Introduces completely different bidding strategies
Collusion in SSAs

- **Reminder:** Bidder i chooses a bid such that getting underbid won’t affect utility
 - $b_i = v_i - (\text{CTR}_i / \text{CTR}_{i-1}) \times (v_i - b_{i+1})$

- **Consider a scenario with 8 bidders and 7 slots**
 - Valuations $v = (12, 10.5, 10.4, 10.3, 10.2, 10.1, 10, 1)$
 - CTRs = $(50, 40, 30.1, 20, 10, 2, 1, 0)$
 - DMA D contains bidders 5 and 6, i.e. $D = \{5, 6\}$

(Decarolis et. al. 2020)
<table>
<thead>
<tr>
<th>Bidder</th>
<th>VCG Equilibrium Bid</th>
<th>Bid After Collusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>10.11</td>
<td>9.91</td>
</tr>
<tr>
<td>3</td>
<td>10.01</td>
<td>9.76</td>
</tr>
<tr>
<td>4</td>
<td>9.88</td>
<td>9.12</td>
</tr>
<tr>
<td>5</td>
<td>9.67</td>
<td>9.5</td>
</tr>
<tr>
<td>6</td>
<td>9.18</td>
<td>7.94</td>
</tr>
<tr>
<td>7</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Revenue: 55.35
Revenue: 52.73

<- Lowered by DMA to benefit bidder 5
Collusion in SSAs

- Reminder: Utility $u_i = CTR_s(v_i - p_s)$
- Bidder 4 undercuts bidder 5 to increase their utility after the DMA lowered the bid of bidder 6
 - Utility of slot 4 = 20(10.3 - 9.5) = 16
 - Utility of slot 5 = 10(10.3 - 7.94) = 23.6
- Bidder 5 then moved up to slot 4, which increased their utility relative to the VCG eq.
 - Utility from VCG eq. = 10(10.2 - 9.67) = 5.3
 - Utility from collusion eq. = 20(10.2 - 9.12) = 21.6
- Resulting allocation is inefficient
• Optimal bidding strategies became difficult to ascertain when these auctions were scaled up
• Both types of auction became susceptible to collusion at large scale
• A clear trade-off emerged between security and efficiency
 • Spectrum auctions are complex and holistic due to the importance and cost of the items being auctioned
 • SSAs are much simpler and intuitive to allow for quick completion and low barrier of entry, making them more susceptible to collusion and inefficiencies
Questions?