- A seller/auctioneer.
- Selling "single item".
- \(N \): set of agents/bidders/players.

\[\text{agent } i \in N \text{ values the item at say } v_i \]

\[\text{private info/true type } b_i \text{ to agent } i. \]

Sealed Bid Auctions:

1. Auctioneer solicits "bids" from the agents in a sealed envelope.

\[\text{agent } i \text{ bids } b_i \text{ in a sealed envelope.} \]

\[b_i \text{ need not be } v_i \]

2. Auctioneer opens all envelopes, looks at the bids' values

\[i \text{ decides} \]

\[\text{Auctioneer's Goal: max } \sum_i v_i \]

\[\text{give the item to agent } i \text{ with } v_i \text{ max.} \]

\[\text{winner = agent } i \text{ with } v_i \text{ max.} \]

\[\text{payment } = P \]

\[u_i(b_1, \ldots, b_n) = v_i - P \text{ if } i = i^* \text{ (winner)} \]

\[= 0 \text{ otherwise.} \]

\[\text{winner = highest bidder} \]

| \hline
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1 \mid)</td>
<td>(\ln)</td>
<td>(\ln)</td>
</tr>
</tbody>
</table>
\hline
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_i</td>
<td>1500</td>
<td>800</td>
<td>2000</td>
</tr>
<tr>
<td>b_i</td>
<td>1495</td>
<td>600</td>
<td>180</td>
</tr>
</tbody>
</table>

First price auction: Highest bidder wins, pays the bid.

Example: $N = 1, 2$, $V_1, V_2 \sim U[0, 1]$

Suppose: $b_2 = \frac{V_2}{2}$

$$
u_i(b_1, b_2) = (V_i - b_1) \Pr[b_1 \geq b_2] + 0 \Pr[b_1 < b_2]

= (V_i - b_1) \Pr[b_1 \geq V_2]

= (V_i - b_1) (2b_2)

$$

$$\begin{align*}
\mathbf{b}_1 &= \arg\max_{b_1} \nu_i(b_1, b_2) \\
&= \arg\max_{b_1} (V_i - b_1)(2b_2) \\
&= \arg\max_{b_1} 2V_i b_1 - 2b_1^2
\end{align*}$$

$$\frac{d}{db_1} (2V_i b_1 - 2b_1^2) = 0$$

$$\Rightarrow 2V_i - 4b_1 = 0$$

$$\Rightarrow b_1 = \frac{V_i}{2}$$

Similarly, if $b_1 = \frac{V_i}{2}$ then best bid for agent 2 is $b_2 = \frac{V_2}{2}$.

\[b_2 = \frac{v_0}{2} \]

\[\left(\frac{v_1}{2}, \frac{v_2}{2} \right) \text{ is a BNE.} \]

Generalize, \(N = \{1, \ldots, n\} \), \(v_i \sim U[0, 1] \),

\[b_i = \frac{(n-1)}{n} v_i \quad \forall i \quad \text{is a NE.} \]

1. What if \(v_i \) 's have a complex distribution?
2. " " " " " " different " " " " ?
3. What if agents are not fully rational?
4. If there are other NE & agents could not coordinate on what to play?

* Second Price: Highest bidder wins, pays the second highest bid.

\[\text{winner} = \arg \max_i b_i = i^* \]

\[b_i = \text{critical bid} \quad \forall i \neq i^* \]

\[\text{payment } b_i = \begin{cases} \max_k b_k & \text{if } i = i^* \\ 0 & \text{otherwise} \end{cases} \]

\[= 0 \quad \text{otherwise} \]

11. (Vickrey '61): Under second price, for each \(i \),
Thm (Vickery’61): Under second price, for each i, $b_i = v_i$ is an optimal bid no matter what others are bidding.

1)

v_i, $b_i = v_i$ is a DSE.

2)

v_i, $\forall b_i$, $u_i(v_i, b_i) \geq u_i(b_i, b_i)$, $\forall b_i$

Proof: Fix an agent i, fix b_i (arbitrarily), agent i bids b_i

$v_i = \max_{b_i} u_i(b_i)$

\[
\begin{cases}
\text{case I: } i \text{ wins.} & \Rightarrow \max_{k \neq i} b_k \\
\quad u_i(b_i, b_i) = v_i - b_i & (b_i \geq B_i) \\
\text{case II: } i \text{ looses.} & \\
\quad u_i(b_i, b_{-i}) = 0.
\end{cases}
\]

\[u_i(b_i, b_{-i}) = u_i(v_i, b_{-i})\]

Case I

\[0 \leq u_i(v_i, b_i) \quad b_i\]

Case II

\[u_i(b_i, b_i) = 0 = u_i(v_i, b_{-i})\]
\(u_i(b_i, b_{-i}) = 0 = u_i(v_i, b_{-i}) \)

Dominant strategy Invative Compatible (DSIC)

Truthful Auction

"Ebay = second price."

English Auction: Increasing price.

\[V_1 < V_2 \ldots \quad V_{m-1} \quad V_m \]

\[p = 0 \]

Dutch Auction: Decreasing price

\[V_1 \quad \ldots \quad V_m \]

\[p = 1 \]

First price.