Lec 7: Equilibirium Notions

CS 580 (AGT)

Instructor: Ruta Mehta

Games

Randomize!

Games

Nash (1950):

There exists a state where no player gains by unilateral deviation.

Nash equilibrium (NE)

Rock-Paper-Scissors

	R	P	S	
R	0 0	-1 1	1 -1	
P	1 -1	0 0	-1 1	
S	-1 1	1 -1	0 0	

No pure stable state!

Both playing (1/3,1/3,1/3) is the only NE.

Nash Eq.: No player gains by deviating individually Why?

Formally: Games and Nash Equilibrium

- N= {1, 23 ■ *N*: Set of players/agents
- 5,750= {R, P, S} ■ $i \in N$, S_i : Set of strategies/moves of player i
- $\blacksquare s = (s_1, ..., s_n) \in X_i S_i, u_i(s)$: payoff/utility of player i (R,P) $\Psi(R,P) = -1$ $\Psi_{2}(R,P) = 1$
- $\sigma_i \in \Delta(S_i)$ randomized strategy of i
- 4:(6i,6-i)
 = sax wiltis6-i)
 Ti ■ Nash equilibrium: $\sigma = (\sigma_1, ..., \sigma_n) s.t.$ $\in N, \quad u_{i}(\sigma_{i}, \sigma_{-i}) \geq u_{i}(\tau_{i}, \sigma_{-i}), \quad \forall \tau_{i} \in \Delta(S_{i})$ Stutegy A all except i $u_{1}(R, G_{i}) = -0.3, \quad u_{1}(P, G_{2}) = 0.5, \quad u_{1}(S, G_{2}) = 0.5$

Formally: Games and Nash Equilibrium

- *N*: Set of players/agents
- $i \in N$, S_i : Set of strategies/moves of player i
- \blacksquare $s = (s_1, ..., s_n) \in X_i S_i, u_i(s)$: payoff/utility of player i
- $\sigma_i \in \Delta(S_i)$ randomized strategy of i
- Nash equilibrium: $\sigma = (\sigma_1, ..., \sigma_n) s.t.$ $\forall i \in N, \quad u_i(\sigma_i, \sigma_{-i}) \ge u_i(\tau_i, \sigma_{-i}), \quad \forall \tau_i \in \Delta(S_i)$
- **Observation:** a player randomizes only among those pure strategies that give her maximum payoff.

Prisoner's Dilemma

Two thieves caught for burglary.

Two options: {confess, not confess}

	N	C		
N	-1 -1	-6 0		
C	0 -6	-5 -5		

Prisoner's Dilemma

Two thieves caught for burglary.

Two options: {confess, not confess}

	N	C	
N	-1 -1	-6 0	
C	0 -6	-5 -5	

Dominant Strategy Equilibrium (DSE)

Prisoner's Dilemma

Two thieves caught for burglary.

Two options: {confess, not confess}

	N	C		
N	-1 -1	-6 0		
C	0 -6	-5 -5		

DSE:
$$s = (s_1, ..., s_n) \ s. \ t.$$

 $\forall i, \forall s_{-i}, \qquad u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i}),$

$$\forall s_i' \in S_i$$

Incomplete Information: Bayesian

- Utility of a player depends on her type and the actions taken in the game
 - \square θ_i is player i's type, $\theta_i \sim \Theta_i$. Utilily when θ_i type and s play is $u_i(\theta_i, s)$
 - □ Each player knows/learns its own type, but only distribution of others (before choosing action)
 - Pure strategy $s_i: \Theta_i \to S_i$ (where S_i is i's set of actions)

(In general players can also receive signals about other players' utilities; we will not go into this)

	${f L}$	R		L	R
row player (Alice) U	4	6	column player (Bob)U type 1 (prob. 0.5) D	4	6
type 1 (prob. 0.5) _D	2	4		4	6
	L	R		L	R
row player U	2	4	column player type 2 (prob. 0.5) D	2	2
type 2 (prob. 0.5) D	4	2		4	2

Car Selling Game

- A seller wants to sell a car
- A buyer has private value 'v' for the car w.p. P(v)
- Sellers knows P, but not v
- Seller sets a price 'p', and buyer decides to buy or not buy.
- If sell happens then the seller gets p, and buyer gets (v-p).

```
S_1=All possible prices, \Theta_1={1}

S_2={buy, not buy}, \Theta_2 =All possible 'v'

U_1(1,(p,\text{buy})) = p, U_1(1,(p,\text{not buy})) = 0

U_2(v,(p,\text{buy}))=v-p, U_2(v,(p,\text{not buy})) = 0
```

Bayes-Nash equilibrium

- A profile of strategies is a Bayes-Nash equilibrium if it is a Nash equilibrium for the normal form of the game
 - \square Mixed strategy of player i, $\sigma_i : \Theta_i \to \Delta(S_i)$
 - □ for every i, for every type θ_i , for every alternative action $z_i \in \Delta(S_i)$, we must have:

$$\Sigma_{\theta_{\text{-}i}} P(\theta_{\text{-}i}) u_i(\theta_i, \, \sigma_i(\theta_i), \, \underline{\sigma_{\text{-}i}(\theta_{\text{-}i})}) \geq \Sigma_{\theta_{\text{-}i}} \, P(\theta_{\text{-}i}) \, u_i(\theta_i, \, z_i, \, \underline{\sigma_{\text{-}i}(\theta_{\text{-}i})})$$

$$\Pi_{p\neq i}P(\theta_p)$$