
CS 580: Algorithmic Game Theory
Lecture 12: Prophet Inequality, Variants and Extensions

Vasilis Livanos
∗

1 Recap: Prophet Inequality

In the last lecture, we saw that when we want to sell a single item and we have n buyers with valuations
drawn from (potentially) different distributions D1, . . . , Dn, then the problem of maximizing revenue can
be reduced to the design of a prophet inequality. We saw that there exists a 1/2-competitive prophet
inequality for the single-item setting, and that this factor 1/2 is tight, i.e. we cannot do better for every
instance.

The standard approach to obtain this factor is to set a single threshold τ and accept the first value
Xi ≥ τ . Appropriate choices for this threshold include the median of the distribution of maxi Xi [11] as
well as 1/2E[maxi Xi] [9].

Today, we will explore some generalizations of the prophet inequality setting; in particular, when we
want to select more than one item, when the items arrive in random order or when the distributions
D1, . . . , Dn are all the same distribution D. In all such cases, the optimal prophet inequality can no longer
be obtained by a single threshold. Instead, one needs to set a different threshold τi for each random
variable Xi.

2 Extensions to Multiple Items

2.1 Background: Chernoff bounds

In the following section, we will need a result that provides bounds on the probability that a random
variable is far from its expectation. Such results are called concentration bounds. You have probably seen
such bounds before; simple example include Markov’s and Chebyshev’s inequalities. In this case, we will
need a stronger result, due to Chernoff.

Theorem 1. Let Y1, . . . , Yn be real-valued independent random variables such that Yi ∈ {0, 1} for all i.
If Sn =

∑n
i=1 Yi, then, for all t > 0

Pr[(1− t)E[ |Sn| ] ≤ |Sn| ≤ (1 + t)E[ |Sn| ] ≤ e−
E[ |Sn| ]·t2

2+t + e−
E[ |Sn| ]·t2

2 .

2.2 Cardinality constraint k

One can generalize the classical prophet inequality setting in several different ways. A natural generalization
of the single item setting is the setting where, instead of one, we can select up to k random variables,
where k ≥ 1 is a fixed constant. For linear objectives, if we select a set S ⊆ X, where |S| ≤ k, the value
we obtain is

E

[∑
i∈S

Xi

]
.

Of course, the prophet, who sees all realizations at once and thus can pick the best set of k random
variables, receives value

E

[
max

S:|S|≤k

∑
i∈S

Xi

]
.
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For this setting, Hajiaghayi, Kleinberg and Sandholm [7] showed that one can use a natural gen-
eralization of the single-item algorithm for this setting as well. Specifically, we can set a threshold T
such that the expected number of random variables who have realizations above T are k − δ for some
appropriately-chosen δ > 0. Then, we can use standard concentration bounds, in this case a Chernoff
bound, to show that the actual number of random variables with realizations above T will be between

k − 2δ and k, with high probability, thus achieving a 1−O

(√
log k
k

)
-competitive ratio.

Theorem 2. Consider the prophet inequality setting in which one can select up to k random variables
for some fixed constant k > 0. Then, there exists a value τ such that an algorithm that selects the first k
values that exceed τ receives value V such that, with probability at least 1− 2

k ,

V ≥

(
1−

√
8 ln k

k

)
· max
S:|S|≤k

∑
i∈S

Xi.

Proof. Select a threshold T such that the expected number of values ≥ T are k− δ for some appropriately
chosen δ to be decided later. For fixed realizations, let ST = {i ∈ [n] |Xi ≥ T}, where [n] = {1, 2, . . . , n}.
In other words, we want to select T such that

E [ |ST | ] = k − δ.

Since the realizations of the Xi’s are independent, for an appropriately chosen δ, one can show that
the number of realizations that are at least T are between k − 2δ and k, with high probability. To do
this, we will use Theorem 1. Let Yi be a random variable that is 1 if Xi ≥ T and 0 otherwise. Then, for
t = δ

k−δ , we have that

(1− t)E[ |ST | ] =
(
1− δ

k − δ

)
(k − δ) = k − 2δ,

(1 + t)E[ |ST | ] =
(
1 +

δ

k − δ

)
(k − δ) = k,

and thus

Pr[k − 2δ ≤ |ST | ≤ k] ≤ e
−

(k−δ)·( δ
k−δ )

2

2+ δ
k−δ + e−

(k−δ)·( δ
k−δ )

2

2

≤ 2

k
+

1

k

=
3

k
.

Thus, we have that k − 2δ ≤ |ST | ≤ k with high probability.
Now, we have ∑

i∈ST

Xi =
∑
i∈ST

T + (Xi − T ) = T · |ST |+
∑
i∈ST

(Xi − T ).

Since |ST | ≥ k − 2δ, our revenue is at least (k − 2δ)T .
Let S∗ be the optimal set selected by the prophet. Then

OPT =
∑
i∈S∗

Xi ≤
∑
i∈S∗

T + (Xi − T ) ≤ kT +

n∑
i=1

(Xi − T ),

Since |ST | ≤ k, we accepted every value that was at least T . Thus

∑
i∈ST

(Xi − T ) =

n∑
i=1

(Xi − T ) ≥ OPT − kT ≥ k − 2δ

k
(OPT − kT )

=

(
1− 2δ

k

)
OPT − (k − 2δ)T.
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Now, for δ =
√
2k log k, we get∑

i∈ST

Xi ≥
(
1− 2δ

k

)
OPT =

(
1−

√
8 log k

k

)
OPT.

Later, Alaei [1] was able to strengthen Theorem 2 and obtain the following result. His algorithm selects
a threshold τi for each Xi adaptively, based on the realizations of X1, . . . , Xi−1 seen so far, instead of a
fixed threshold.

Theorem 3. Consider the prophet inequality setting in which one can select up to k random variables for
some fixed constant k > 0. Then, there exists an algorithm that selects a set S ⊆ X such that |S| ≤ k and

E

[∑
i∈S

Xi

]
≥
(
1− 1√

k + 3

)
E

[
max

S:|S|≤k

∑
i∈S

Xi

]
.

Hajiaghayi, Kleinberg and Sandholm [7] also gave a lower bound for this setting, which (asymptotically)
matches the upper bound of Theorem 3. Subsequently, Jiang, Ma and Zhang [8] solved the cardinality
case completely, providing tight competitive ratios for every k instead of just asymptotically optimal.
Their idea is more complicated and involves formulating the problem as an LP and showing optimality
via the LP’s dual.

3 Benefits of Random Order: Prophet Secretary

One may wonder whether the constraint of requiring our prophet inequality results to hold for any arrival
order of the random variables, and thus also for the worst-case order, is too stringent. In practice, a grocer
usually expects their customers to arrive in a uniformly random order, and this is a standard assumption
in many other applications in which real-life noise affects the buyers’ choices on when to arrive and renders
the arrival order essentially random.

As it turns out, if we consider the standard single-item prophet inequality setting but we assume that
the algorithm sees the random variables in a uniformly random order, then we can do better than 1/2!
The resulting setting is called the prophet secretary setting and the following result is due to Esfandiari et
al [6].

Theorem 4. Consider the prophet inequality setting with random arrival order, i.e. the prophet secretary
setting. There exists an algorithm for this setting that selects a value V such that

E [V ] ≥
(
1− 1

e

)
E[max

i
Xi].

The surprising result here is that this is not tight! In fact, there has been significant progress recently
on the prophet secretary problem [3,4] and the state-of-the-art competitive ratio is 0.669 (note that
1− 1/e ≈ 0.632), due to Correa et al [4], via a multiple-threshold strategy. In the same paper, they also
show an upper bound; no algorithm can achieve a competitive ratio better than

√
3− 1 ≈ 0.732. Figuring

out the tight constant in the prophet secretary setting is a very interesting open problem.
For the cardinality case of selecting at most k values under a random arrival order, very recently,

Arnosti and Ma [2] gave a very nice result which completely resolves this setting. They showed that
if one sets a single threshold T such that, on expectation, you have k · γk realizations above T , where

γk = 1− e−k kk

k! , then one obtains a γk-competitive ratio with respect to the prophet’s value, and this is
tight for every k among single-threshold strategies! Notice that for k = 1, we retrieve the known 1− 1/e
ratio.

Asymptotically, this displays the same behaviour as in the adversarial case since, by Stirling’s approxi-
mation, we have

γk = 1− e−k k
k

k!
≈ 1− 1√

2πk
,

thus showing that, for large enough k, the arrival order of the random variables does not matter all that
much.
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4 I.I.D. Prophet Inequality

Yet another variant of the prophet inequality is the i.i.d. prophet inequality. In this setting, we assume
that all distributions are actually the same distribution D, i.e. D1 = D2 = · · · = Dn = D. Of course,
this is a stronger condition than the arrival order being random since, in the i.i.d. setting, there is no
concept of arrival order, since all draws are the same. Therefore, the “arrival order” in this instance is
essentially a random order, as it is equivalent to drawing n values from D, randomly permuting them and
then revealing them one by one to the algorithm.

For this setting, there has been significant work only in the single-item setting and, here, we encounter
something peculiar; the optimal algorithm is simple and in fact had been known for a while, yet its analysis
had proven difficult. Finally, Correa et al [5] showed that the optimal algorithm yields a 0.745-competitive
ratio with respect to the prophet’s value.

We have already alluded that the optimal threshold algorithm for this instance sets distinct thresholds
τi for each Xi. However, how should one think about these thresholds? What is the correct approach to
reason about their value? Well, clearly, if we have reached Xn, then we should accept its value no matter
what, since it is the last random variable. Therefore, the optimal threshold for Xn is τn = 0. What about
the rest?

If one ponders this question for a while, they might quickly arrive at the following realization: Since
there exists only one distribution, the optimal algorithm should accept the realization of Xi if and only if
it is higher than what the optimal algorithm would expect to get from the remaining random variables,
i.e. τi = E[ALG(Xi+1, . . . , Xn)]. In fact, this intuition turns out to be exactly correct! Let G(i) denote

E[ALG(Xi, . . . , Xn)], for brevity, where ALG is the optimal threshold algorithm.

Lemma 1. The optimal thresholds for the i.i.d. prophet inequality setting with random variables X1, X2, . . . , Xn

are: τn = 0, and for every 1 ≤ i < n,

τi = G(i+ 1).

5 Prophet Inequalities for Cost Minimization

The problem’s difficulty changes dramatically in the case where one attempts to minimize cost instead
of maximizing reward. The corresponding cost prophet inequalities [10] find applications in procurement
auctions, in which there exists one buyer attempting to purchase items from several sellers. In this setting,
there exist no algorithms that guarantee any bounded approximation to the minimum cost, even for the
simple case of two random variables. Constant-factor cost prophet inequalities are so far only known for
special cases, like in the i.i.d. setting with the distribution being an MHR1 distribution [10].
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