Lecture 7
 Games and Nash Equilibrium

CS 580

$14^{\text {th }}$ September 2021

Instructor: Ruta Mehta

I I L L I N O I S

Games

Randomize!

Games

Players

Randomize!
Nash (1950):
There exists a (stable) state where no player gains by unilateral deviation.

Nash equilibrium (NE)

Our focus: Two-player games

P Alice
 m strategies

$\operatorname{Pr}[$ Alice phys i AND Bob pays $j]=x_{i} y_{j}$ with this prob Alice gets $A_{i j}$ pay 888

$$
\mathbb{E}[\text { Pay \&B Af Alice }]=\sum_{i, j}\left(x x_{i} \cdot y_{i}\right) \cdot A_{i j} \sum_{i} x_{i} \sum_{j} A_{i j} y_{j}=x^{1} A y
$$

Alice

Randomize

NE: No unilateral deviation is beneficial

$$
\begin{aligned}
& \text { No unilateral deviation is beneficial } \\
& x^{T} A y \geq z^{T} A y, \quad \forall z \in \Delta_{m}=\left\{z \in \mathbb{R}^{m} \mid z \geqslant 0, \sum_{i=1}^{m} z_{i}=z\right\} \\
& x^{T} B y \geq x^{T} B z, \quad \forall z \in \Delta_{n}
\end{aligned}
$$

$$
E[\text { pay } 88 \text { Alice }]
$$

$$
=1 / 12(0+1-1)+\frac{1}{6}(-1+0+1)+\frac{1}{12}(1-1+0)
$$

$$
=0
$$

$$
E[\text { paydoo \&o Bob }]=0
$$

For Alice:

$$
\begin{aligned}
& E\left[\begin{array}{lll}
1 & \prime & P
\end{array}\right]=\frac{1}{4}+0-\frac{1}{4}=0 \\
& E\left[\begin{array}{lll}
1 & 1 & s
\end{array}\right]=-1 / 4+1 / 2+0=1 / 4 \\
& \text { the moves } \\
& \text { that give } \\
& \text { 1) rax-pay } 185 \\
& \left.\operatorname{rax} E\left[\begin{array}{ll}
n & n\left(x_{1}, x_{2}, x_{3}\right)
\end{array}\right]=(-1 / 4) x_{4}+(0) x_{0} x_{0}+\left(\frac{1}{4}\right) \cdot x_{3} \right\rvert\,
\end{aligned}
$$

2-Nash Characterization

2-Nash Characterization

$\longrightarrow \sum_{j} A_{i j} y_{j}$

2-Nash Characterization

- $i^{\text {th }}$ strategy gives Alice

- Max possible payoff: $\max _{i} e_{i} A y$
- x achieves max payoff iff

$$
\begin{aligned}
\forall i, \quad & x^{T} A y \geq(A y)_{i} \\
& \equiv \\
\forall k, \quad x_{k}>0 \Rightarrow & (A y)_{k}=\max _{i}(A y)_{i}
\end{aligned}
$$

- Max possible payoff: $\max _{i} e_{i} A y$
- x achieves max payoff ff

$$
\forall i, \quad x^{T} A y \geq(A y)_{i}
$$

$$
\forall k, \quad x_{k}>0 \Rightarrow(A y)_{k}=\max _{i}(A y)_{i}
$$

$$
(1,0,0)_{x} \operatorname{xax}_{x}\left(x_{1} \cdot 1 / 2+x_{2} \cdot 0+x_{3}\left(-\frac{1}{2}\right)\right)=1 / 2
$$

$\left\{\begin{array}{c}\forall i,(A y)_{i} \leq \pi_{A} \\ y \in \Delta_{n}\end{array}\right.$ $\hat{Q} \begin{gathered}\forall j,\left(x^{T} B\right)_{j} \leq \pi_{B} \\ x \in \Delta_{m}\end{gathered}$

$$
\left(y, \pi_{A}\right) \in P, \quad\left(x, \pi_{B}\right) \in Q
$$

Sum of payoffs
At least the sum of

$$
\overbrace{x^{T}(A+B) y}^{\substack{1 \\ x^{\top} A y+x^{T} B y}} \overbrace{\left(\pi_{A}+\pi_{B}\right)}^{\text {max payoffs } \leq 0}
$$

$$
P \begin{gathered}
\forall i,(A y)_{i} \leq \pi_{A} \\
y \in \Delta_{n}
\end{gathered}
$$

$$
Q \begin{gathered}
\forall j,\left(x^{T} B\right)_{j} \leq \pi_{B} \\
x \in \Delta_{m}
\end{gathered}
$$

$$
\left(y, \pi_{A}\right) \in P, \quad\left(x, \pi_{B}\right) \in Q
$$

Sum of payoffs
At least the sum of

$\mathbb{1}$
Complementarity

1. (x, y) is a NE
2. π_{A} and π_{B} are the max payoffs

Claim. For $\left(y, \pi_{A}\right) \in P,\left(x, \pi_{B}\right) \in Q$
(i) $x^{T}(A+B) y-\left(\pi_{A}+\pi_{B}\right) \leq 0$. $\checkmark(\because$ © , ©)
(ii) $x^{T}(A+B) y-\left(\pi_{A}+\pi_{B}\right)=0$ if and only if (x, y) is a NE.

$$
\begin{aligned}
& \left(x^{\top} A y-\pi_{A}\right)+\left(x^{\top} B y-\pi_{B}\right)=0 \\
& x^{\top} A y=\pi_{A}, \quad x^{\top} B y=\pi_{B} \quad\left(\because x^{\top} A y \leqslant \pi_{A}, x^{\top} B y \leq \pi_{B}\right) \\
\Leftrightarrow & x^{\top} A y=\pi_{A} \geqslant \operatorname{sux}_{z \in \Delta_{m}} z^{\top} A y \quad(\because(1)) \\
& x^{\top} B y=\pi_{B} \geqslant \operatorname{sax}_{z \in \Delta_{n}} x^{\top} B Z \quad(\because \text { (3) }) \\
\Leftrightarrow & (x, y) \text { is NE. }
\end{aligned}
$$

$$
P \begin{array}{|c|}
\hline \forall i,(A y)_{i} \leq \pi_{A} \\
y \in \Delta_{n}
\end{array} \quad Q \begin{array}{|c}
\forall j,\left(x^{T} B\right)_{j} \leq \pi_{B} \\
x \in \Delta_{m}
\end{array}
$$

Claim. For $\left(y, \pi_{A}\right) \in P,\left(x, \pi_{B}\right) \in Q$
(i) $x^{T}(A+B) y-\left(\pi_{A}+\pi_{B}\right) \leq 0$.
(ii) $x^{T}(A+B) y-\left(\pi_{A}+\pi_{B}\right)=0$ if and only if (x, y) is a NE.

$$
P \begin{gathered}
\forall i,(A y)_{i} \leq \pi_{A} \\
y \in \Delta_{n}
\end{gathered}
$$

$$
Q \begin{gathered}
\forall j,\left(x^{T} B\right)_{j} \leq \pi_{B} \\
x \in \Delta_{m}
\end{gathered}
$$

$$
\left(y, \pi_{A}\right) \in P, \quad\left(x, \pi_{B}\right) \in Q
$$

2-Sum of payoffs
At least the sum of max payoffs

$$
\max : \overbrace{x^{T}(A+B) y-\left(\pi_{A}+\pi_{B}\right)}^{=\mathbf{0}} \longleftrightarrow
$$

s.t. $\left(y, \pi_{A}\right) \in P,\left(x, \pi_{B} \widehat{\lfloor } \in Q\right.$

Complementarity

1. (x, y) is a NE
2. π_{A} and π_{B} are the max payoffs

$$
P \begin{gathered}
\forall i,(A y)_{i} \leq \pi_{A} \\
y \in \Delta_{n}
\end{gathered}
$$

$$
Q \begin{gathered}
\forall j,\left(x^{T} B\right)_{j} \leq \pi_{B} \\
x \in \Delta_{m}
\end{gathered}
$$

$$
\left(y, \pi_{A}\right) \in P, \quad\left(x, \pi_{B}\right) \in Q
$$

Theorem. If (A, B) is zero-sum, i.e., $A+B=0$, then 2-Nash \rightarrow linear programming

$$
\begin{aligned}
& \text { max: }\left(x^{T}(A+B y)-\left(\pi_{A}+\pi_{B}\right)\right. \\
& \text { s.t. }\left(y, \pi_{A}\right) \in P, \quad\left(x, \pi_{B}\right) \in Q
\end{aligned}
$$

$$
\begin{aligned}
P \begin{array}{c}
\forall i,(A y)_{i} \leq \pi_{A} \\
y \in \Delta_{n}
\end{array} & Q \begin{array}{|}
\forall j,\left(x^{T} B\right)_{j} \leq \pi_{B} \\
x \in \Delta_{m}
\end{array} \\
\left(y, \pi_{A}\right) \in P, & \left(x, \pi_{B}\right) \in Q
\end{aligned}
$$

Theorem. If (A, B) is zero-sum, i.e., $A+B=0$, then 2-Nash \rightarrow linear programming

$$
\begin{aligned}
& \max :-\left(\pi_{A}+\pi_{B}\right) \\
& \text { s.t. }\left(y, \pi_{A}\right) \in P, \quad\left(x, \pi_{B}\right) \in Q
\end{aligned}
$$

Theorem. [yon Neumann'28] (max-min $=\min -m a x)$ Game $(A,-A)$ Wrt A, Alice is a maximizer and Bob minimizer $\sum_{x} \max _{x} \min _{y} x^{T} A y=\min _{y} \max _{x} x^{T} A y, \&$ the max-min is NE.

$$
\text { Pf: } \begin{aligned}
x^{*} & =\operatorname{argax}_{x}^{\sin } \sin _{y} x^{\top} A y, y^{\phi}=\operatorname{again}_{y} \operatorname{sax}_{x} x^{\top} A y \\
\text { sax } \min _{x} x^{\top} A y=\operatorname{sim}_{y} x^{*} A y & \leqslant x^{\star} A y^{*}
\end{aligned}
$$

Clarion: (\tilde{x}, \tilde{y}) is $N E$

$$
\begin{aligned}
& \text { is NE } \\
& \sin _{y} x^{\top} A y \geqslant \tilde{x}^{\top} A \tilde{y} \geqslant \operatorname{sax}_{x} x^{\top} A y^{\$}
\end{aligned}
$$

