Fair Division: Proportional, MMS

CS 580
$31^{\text {st }}$ August 2021

Instructor: Ruta Mehta
1 I L L I N O I S

Most slides are curtesy Prof. J. Garg
\cdots
－
R

都

1
I

．

\square

號
，

\begin{abstract}

\begin{abstract}

Abstract

\end{abstract}

\end{abstract}

\begin{abstract}

Abstract

\qquad

\end{abstract}

\qquad
\qquad

Proportional (average)

- n agents

■ M : set of m indivisible items (like cell phone, painting, etc.)
■ Agent i has a valuation function $v_{i}: 2^{m} \rightarrow \mathbb{R}$ over subsets of items

Fairness:
Envy-free (EF)

Proportional (Prop):

Get value at least average of the grand-bundle

$$
v_{i}\left(A_{i}\right) \geq \frac{1}{n} v_{i}(M)
$$

	g_{1}	g_{2}	g_{3}	g_{4}
a_{1}	100	100	10	90
a_{2}	100	100	90	10

Sub-additive Valuations

Sub-additive:

$$
\begin{aligned}
v_{i}(A \cup B) & \leq v_{i}(A)+v_{i}(B), \quad \forall A, B \in M \\
& \geqslant(\text { super-additive })
\end{aligned}
$$

Claim: $E F \Rightarrow$ Prop (sub-additive) PropA. ... A_{n}) is $E F \Rightarrow$
$\forall_{i}: \quad V_{i}\left(A_{i}\right) \geqslant V_{i}\left(A_{k}\right) \quad \forall k . \Rightarrow$

$$
\begin{aligned}
& V_{i}\left(A_{i}\right) \geqslant \sum_{k=1}^{n} V_{i}\left(A_{k}\right) \geqslant V_{i}(M) \Rightarrow \\
& n V_{i}\left(A_{i}\right) \geqslant \frac{1}{n} V_{i}(M)_{D}
\end{aligned}
$$

Prop: May not always exist!

- n agents
- M : set of m indivisible items (like cell phone, painting, etc.)

■ Agent i has a valuation function $v_{i}: 2^{m} \rightarrow \mathbb{R}$ over subsets of items

Fairness:

Envy-free (EF)

Proportional (Prop):

Get value at least average of the grand-bundle

$$
v_{i}\left(A_{i}\right) \geq \frac{1}{n} v_{i}(M)
$$

Proportionality up to One Item (Prop1)

- Prop1: A is proportional up to one item if each agent gets at least $1 / n$ share of all items after adding one more item from outside:

$$
v_{i}\left(A_{i} \cup\{g\}\right) \geq \frac{1}{n} v_{i}(M), \quad \exists g \in M \backslash A_{i}, \forall i \in N
$$

Prop1

Claim: EF1 implies Prop1 for subadditive valuations

\Rightarrow Envy-cycle procedure outputs a Prop1 allocation
Proof:

Prop1

- EF1 implies Prop1 for subadditive valuations
\Rightarrow Envy-cycle procedure outputs a Prop1 allocation
- +PO: Additive Valuations
$\square \mathrm{EF} 1+\mathrm{PO}$ allocation exists but no polynomial-time algorithm is known!
\square Prop1 +PO ? Algorithm based on competitive equilibrium.

Proportionality

- A set N of n agents, a set M of m indivisible items

■ Proportionality: Allocation $A=\left(A_{1}, \ldots, A_{n}\right)$ is proportional if each agent gets at least $1 / n$ share of all items:

$$
v_{i}\left(A_{i}\right) \geq \frac{v_{i}(M)}{n}, \quad \forall i \in N
$$

Cut-and-choose?

Maximin Share (MMS) [B11]

Cut-and-choose.

- Suppose we allow agent i to propose a partition of items into n bundles with the condition that i will choose at the end
- Clearly, i partitions items in a way that maximizes the value of her least preferred bundle
- $\mu_{i}:=$ Maximum value of $i^{\prime} s$ least preferred bundle

Maximin Share (MMS) [B11]

Cut-and-choose.

- Suppose we allow agent i to propose a partition of items into n bundles with the condition that i will choose at the end
■ Clearly, i partitions items in a way that maximizes the value of her least preferred bundle
■ $\mu_{i}:=$ Maximum value of $i^{\prime} s$ least preferred bundle
- $\Pi:=$ Set of all partitions of items into n bundles

■ $\mu_{i}:=\max _{A \in \Pi} \min _{A_{k} \in A} v_{i}\left(A_{k}\right)$

■ MMS Allocation: A is called MMS if $v_{i}\left(A_{i}\right) \geq \mu_{i}, \forall i$

- Additive valuations: $v_{i}\left(A_{i}\right)=\sum_{j \in A_{i}} v_{i j}$

MMS value/partition/allocation

MMS value/partition/allocation

Finding MMS value is NP-hard!

What is Known?

■ PTAS for finding MMS value [w97]

Existence (MMS allocation)?
■ $n=2$: yes ExERCIISE
\Rightarrow A PTAS to find $(1-\epsilon)$-MMS allocation for any $\epsilon>0$

- $n \geq 3$: NO [PW14]

What is Known?

■ PTAS for finding MMS value [w97]

Existence (MMS allocation)?
■ $n=2$: yes EXERCIISE
\Rightarrow A PTAS to find $(1-\epsilon)$-MMS allocation for any $\epsilon>0$

- $n \geq 3$: NO [PW14]

■ α-MMS allocation: $v_{i}\left(A_{i}\right) \geq \alpha \cdot \mu_{i}$
\square 2/3-MMS exists [PW14, AMNS17, BK17, KPW18, GMT18]
\square 3/4-MMS exists [GHSSY18]
$\square(3 / 4+1 /(12 n))$-MMS exists [GT20]

Properties

- Normalized valuationsScale free: $v_{i j} \leftarrow c . v_{i j}, \forall j \in M$$\sum_{j} v_{i j}=n \quad \Rightarrow \quad \mu_{i} \leq 1$
suppose rot. Let $\left(A, \ldots, A_{n}\right)$ be the MMS partition of agate i

$$
\begin{aligned}
& V_{i}(A) \geqslant \quad \geqslant V_{i}\left(A_{n}\right)>1 \\
& V_{i}(M)=\sum_{j}^{n} V_{i j}=\sum_{k=1}^{n} \frac{V_{i}}{V_{i}}\left(A_{k}\right)
\end{aligned}>n
$$

Properties

- Normalized valuations
\square Scale free: $v_{i j} \leftarrow c . v_{i j}, \forall j \in M$
$\square \sum_{j} v_{i j}=n \Rightarrow \mu_{i} \leq 1$
■ Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i 1} \geq v_{i 2} \geq \cdots v_{i m}, \forall i \in N$

Properties

- Normalized valuations
\square Scale free: $v_{i j} \leftarrow c . v_{i j}, \forall j \in M$
$\square \sum_{j} v_{i j}=n \Rightarrow \mu_{i} \leq 1$
■ Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i 1} \geq v_{i 2} \geq \cdots v_{i m}, \forall i \in N$

	\%	B	8	\% ${ }^{\text {\% }}$	Q		1	2	3	4	5
0	3	1	2	5	4	θ	5	4	3	2	1
(\%)	4	4	5	3	2	\%	5	4	4	3	2

Challenge

- Allocation of high-value items!
- If for all $i \in N$
$\square v_{i}(M)=n \Rightarrow \mu_{i} \leq 1$
$\square v_{i j} \leq \epsilon, \forall i, j$

$$
\epsilon=\operatorname{sax}_{i, j} V_{i j}
$$

$$
v_{i j} \leq \epsilon, \forall i, j
$$

Claim: After round k , if i remains then v_{i} (remaining goods) $\geq n-k$.

$$
\left\{y_{1}, \gamma_{2}, z_{3}\right\} \rightarrow A_{1}
$$

it n doesm,t shout out then

$$
\begin{aligned}
V_{n}\left(A_{1}\right) & <1-t \\
\text { ow. } \quad V_{n}\left(A_{1} \backslash A_{3}\right) & <1-t, V_{n}\left(g_{3}\right) \leqslant \epsilon
\end{aligned}
$$

$$
\Rightarrow \operatorname{Vn}\left(A_{1}\right)<1-\epsilon+\epsilon=1
$$

Bag Filling Algorithm:
Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq(1-\epsilon)$
- Assign B to i and remove them

$$
v_{i j} \leq \epsilon, \forall i, j
$$

$$
g_{1} g_{2} \ldots \ldots g_{m}
$$

Claim: After round k , if i remains then v_{i} (remaining goods) $\geq n-k$.

$$
\begin{aligned}
& K=1 \\
& V_{i}\left(A_{1}\right)<1 \\
& \Rightarrow V_{i}\left(M \backslash A_{1}\right)=V_{i}(M)-V_{i}(A) \\
&>n-1
\end{aligned}
$$

Bag Filling Algorithm:
Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq(1-\epsilon)$
- Assign B to i and remove them

$$
v_{i j} \leq \epsilon, \forall i, j
$$

Thm: Every agent gets at least $(1-\epsilon)$.
$\Rightarrow(1-G)-M M S$

$$
\text { Pf: } \quad \begin{aligned}
V_{i}^{\prime}\left(A_{1}^{-}\right) & \geqslant(1-\epsilon) \\
& =(1-\epsilon) \cdot 1 \\
& \geqslant(1-\epsilon) \cdot \mu_{i}
\end{aligned}
$$

Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq(1-\epsilon)$
- Assign B to i and remove the

Warm Up: 1/2-MMS Allocation

- If all $v_{i j} \leq 1 / 2$ then?
\square Done, using bag filling.
- What if some $v_{i j}>\frac{1}{2}$?

Valid Reductions

- Normalized valuations
\square Scale free: $v_{i j} \leftarrow c . v_{i j}, \forall j \in M$
- $\quad \sum_{j} v_{i j}=n \Rightarrow \mu_{i} \leq 1$
- Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i 1} \geq v_{i 2} \geq$
- Valid Reduction (α-MMS): If there exists $S \subseteq M$ and $i^{*} \in N$

$$
\begin{aligned}
& \square v_{i^{*}}(S) \geq \alpha \cdot \mu_{i^{*}}^{n}(M) \\
\Rightarrow & \mu_{i}^{n-1}(M \backslash S) \geq \mu_{i}^{n}(M), \forall i \neq i^{*}
\end{aligned} \quad i^{\star}=n
$$

\Rightarrow We can reduce the instance size!
Claim: $\left(A, \ldots, A_{n-1}\right)$ is an ,.MMS albection o8M\S to $\{1, \ldots, n-1\}$ gats then $\left(A_{1}, \ldots, A_{n-1}, S\right)$ is α-MMS allocution in the arigioal instance.

Pf:

$$
i<n, \quad v_{i}\left(A_{i}\right) \geqslant \alpha l_{i}^{n-}(M \mid s) \geqslant \alpha \mu_{i}^{n}(M)
$$

References (Indivisible Case).

[AMNS17] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. "Approximation algorithms for computing maximin share allocations". In: ACM Trans. Algorithms 13.4 (2017)
[BBKN18] Siddharth Barman, Arpita Biswas, Sanath Kumar Krishnamurthy, and Y. Narahari. "Groupwise maximin fair allocation of indivisible goods". In: AAA/ 2018
[BK17] Siddharth Barman and Sanath Kumar Krishna Murthy. "Approximation algorithms for maximin fair division". In EC 2017
[BK19] Siddharth Barman and Sanath Kumar Krishnamurthy. "On the Proximity of Markets with Integral Equilibria" In AAA/ 2019
[BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In: EC 2018
[B11] Eric Budish. "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes". In: J. Political
Economy119.6(2011)
[CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. "The Unreasonable Fairness of Maximum Nash Welfare". In: EC2016
[GMT19] Jugal Garg, Peter McGlaughlin, and Setareh Taki. "Approximating Maximin Share Allocations". In: SOSA@SODA 2019 [GT20] Jugal Garg and Setareh Taki. "An Improved Approximation Algorithm for Maximin Shares". In: EC 2020
[GHSSY18] Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. "Fair allocation of indivisible goods: Improvement and generalization". In EC 2018
[HL19] Xin Huang and Pinyan Lu. "An algorithmic framework for approximating maximin share allocation of chores". In:
arxiv:1907.04505
[KBKZ09] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. "On the Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods with Additive Preferences". In: Algorithmic Decision Theory (ADT). 2009
[KPW18] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. "Fair Enough: Guaranteeing Approximate Maximin Shares". In: J. ACM 65.2 (2018), 8:1-8:27
[PW14] Ariel D Procaccia and Junxing Wang. "Fair enough: Guaranteeing approximate maximin shares". In EC 2014
[W97] Gerhard J Woeginger. "A polynomial-time approximation scheme for maximizing the minimum machine completion time". In:
Operations Research Letters 20.4 (1997)

