	Reverse Anction & Routing Games. Thursday, October 28, 2021 1:53 PM
A	last lec: Spectrum Auchions, (FCC)
	item = (location, fog band) > Heterogeneous items = Continuto auction
	>VCG is not applicable.
☆	Explish auction toward)
	package bidding.
A	Sime 2014: FCC does two dep process
	Step 1: leverse auction (buy spectrum) Step 2: Forward 11 (sell 11)
	> Bosed on "Desard" & alo all are willing to sell religgish
	At to location. " Available" "Free U" 100 MRz.
	Step 1: A: set 85 agents
	A: set \$5 agents agent is los value "Vi" for her spectrum. (Private)
	bi: bid or agel i
	3 It we buy out S = A Hen we love to pack
	(A)S) in the 'available' same.

Ent oslipe

3. Declare Sas veinners.

(#) is under determined, How to consule sonotone allocation rule?

= It all agents are "equal" Hen remove the "Kighert bidder"

OR

= Pen-capita Gyfort bid

> f (bid, rie, old-type-B-spectrum).

The Re-packing A/S' (S'= SUZiZ): packing + (aloning.

35 this graft k-colorable 9

SAT Solvers.

$$(50,50) = \frac{50}{100} + 1 = (1.5)$$

(ost (50,50)=1.5×100= 150 $(ost)(s-a-b-t) = \frac{so}{(os)} + \frac{s1}{(os)} = (.67)$ (OSTPONE) = 100 + 100 = 2.

$$99: S-a-b-t$$
 $1: S-b-t$
 $63t = 1 + 100 = 2$
 107

$$(ost(NE) = 200)$$

 $(ost(6P7) = 150)$

What is opt? (50,50)

$$\frac{(ost(wost NE))}{(vst(oPT))} = \frac{yop}{150} = \frac{h}{3}$$

$$cost(x, 1-x) = x \cdot x + (1-x) \cdot 1$$

$$s x^2 + 1-x$$

NE: No " intin', tisione" flow can dange heir put and reduce their (ost.

$$NE = (1,0) \quad (ost(1,0) = 1)$$

$$OPT = ungmin \quad (x^{2} + (-x)) \quad 1$$

$$d \quad || = 2x - 1 = 0$$

$$d \quad || = 2x - 1 = 0$$

$$\Rightarrow x = 1/2$$

$$OPT = (k_{1} / k_{2}) \quad (ost (opT) = \frac{1}{4} + 1 - \frac{1}{2} = \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$$

$$P_{0}A = \frac{(ost(NE))}{(ost (opT))} = \frac{1}{3} + \frac{1}{3}$$

$$(o-incidence)$$

opr = a-gain
$$x^{f+1}+1-x$$

$$\frac{d}{dx} = (f+1)x^{f-1} = 0$$

$$\frac{d}{dx} = x = (f+1)x^{f} = 0$$

$$\frac{d}{dx} = x$$

0+1-1 =0

POA = (OST(NE)=1 -> 0

Conclusion: Definitely the degree of the cost-tunction rather.

Does the corperty of n/w rather?

No!!

-A directed n/w G=(U,E)
-s,t special roders in V.
-z-wiks & two has to go from s to t.

For each edge $e \in E$, cost function $ce: R_t \Rightarrow R_t$ $(e \in C)$ formall for formal or formal or for formal or for

Thm: biven a class e of cost functions, Amy all n/ws with edge costs from e, "Pigou-like" n/w lows the worst Pof.