Reverse Auction & Routing Games.

Last lec: Spectrum Auctions. (FCC)

- Item = \((\text{location, freq band})\) ⇒ Heterogeneous items ⇒ Combinatorial auction.

⇒ VCG is not applicable.

- Simultaneous Ascending Auctions (sell similar items separately in English auction format)

 * Package bidding.

- Since 2014: FCC does two step process:

 1. **Step 1:** Reverse auction (buy spectrum)
 2. **Step 2:** Forward (sell)

 Based on “Desired” & who all are willing to sell/liquidate

 At the location: “Available” “Free Up”

 20 60 100 MHz.

Step 1:

- A: set 25 agents
 - Agent \(i\) has value \(v_i\) for her spectrum. (Private)
 - \(b_i\): bid or agent \(i\)

 \(v_i\): range if owns.

⇒ If we buy out \(S \subseteq A\) then we have to pack \((A\setminus S)\) in the “available” range.
We say \(S \) is a \(^\text{"feasible"}^\) set of winners if \(A \setminus S \) can be packed in the \(^\text{"available"}^\) range.

Algorithm (Reverse Auction):

1. Init. \(S = A \). (\(\Rightarrow \ A \setminus S = \emptyset \) \& hence \(^\text{"feasible"}^\))

2. While \(\exists i \in S \) s.t. \(S \setminus \{i\} \) is \(^\text{"feasible"}^\)

 Remove one such \(i \) from \(S \) \(\Rightarrow \emptyset \)

End while

3. Declare \(S \) as winners.

\(\emptyset \) is underdetermined, how to ensure some one allocation rule?

\(\Rightarrow \) If all agents are \(^\text{"equal"}^\) then remove the \(^\text{"highest bidder"}^\)

\(\Rightarrow \) Per-capita \(^\text{"highest bid"}^\)

\(\Rightarrow f(\text{bid}, \text{sec, etc-type} \& \text{specrum}) \).

\(\emptyset \) Re-packing \(A \setminus S' \) \((S' = S \cup \{i\}) \): packing + clearing.

\(\emptyset \) This graph \(k \)-colorable?
SAT solvers.

B. Braess’s Paradox

\(\text{cost}^P(50, 50) = \frac{50}{100} + 1 = 1.5 \)

\(\text{cost}(50, 50) = 1.5 \times 100 = 150 \)

\(\text{cost}^P(s-a-b-t) = \frac{50}{100} + \frac{5}{100} = 1.57 \)

\(\text{cost}(s-a-b-t) = \frac{50}{100} + \frac{5}{100} = 1.57 \)

\(\text{cost}^P(\text{NE}) = \frac{100}{100} + \frac{100}{100} = 2 \)

\(\text{cost}(\text{NE}) = 200 \)

\(\text{cost}(\text{OPT}) = 150 \).

What is \(\text{OPT} \)?

\((50, 50) \)

"Price vs. Anarchy" = \(\frac{\text{cost}(\text{cost NE})}{\text{cost}(\text{OPT})} = \frac{1.57}{1.5} \approx \frac{1}{3} \)

A. Pigro N/w.

\(\text{cost}(x, 1-x) = x \cdot x + (1-x) \cdot 1 \)

\(= x^2 + 1 - x \).

NE: No "incentive to deviate" slow can change their path and reduce their cost.

0.1 vs 0.9

\(\text{cost} 0.1 \) vs \(\text{cost} 1 \).
\[NE = (1, 0), \quad \text{cost}(1, 0) = 1 \]

\[\text{Opt} = \arg \min_x \ (x^p + (-x)) \]

\[\frac{d}{dx} \text{cost} = 2x - 1 = 0 \quad \Rightarrow \quad x = \frac{1}{2} \]

\[\text{Opt} = \left(\frac{1}{2}, \frac{1}{2} \right) \quad \text{cost} (\text{Opt}) = \frac{1}{4} + 1 - \frac{1}{2} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4} \]

\[p \rightarrow \frac{\text{cost}(NE)}{\text{cost}(\text{Opt})} = \frac{1}{\frac{3}{4}} = \frac{4}{3} \]

\[\text{lo-incidence?} \]

\[\begin{align*}
\text{cost}(x, 1-x) &= x \cdot x^p + (1-x) \cdot 1 \\
&= x^{p+1} + 1 - x \\
\end{align*} \]

\[NE = (1, 0), \quad \text{cost}(NE) = 1 \]

\[\text{Opt} = \arg \min \ x^{p+1} - x \]

\[\frac{d}{dx} \text{cost} = (p+1) x^p - 1 = 0 \quad \Rightarrow \quad x = \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \]

\[\text{cost} (\text{Opt}) = \lim_{p \to 0} \left(\frac{1}{p+1} \right)^{\frac{1}{p}} + 1 - \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \]
Lec 19 - Reverse auction → Routing games Page 5

1. \[r_1 \rightarrow r_1 \]
2. \[0 \rightarrow 1 \]
3. \[0 + 1 - 1 = 0 \]

\[
\text{PoA} = \frac{\text{cost(NE)} = x}{\text{cost(LP)} = 0} \rightarrow \infty
\]

Conclusion:
- Definitely the degree of the cost-function matters.
- Does the capacity of m/w matter?
- Goal: No!!

Set up
- A directed m/w \(G = (V, E) \)
- Special nodes in \(V \).
- \(2 \)-unit flow has to go from \(s \) to \(t \).

For each edge \(e \in E \), cost function \(c_e : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \)

\[c_e \in C \]

Non-dec, convex, continuous.

Then: Given a class \(C \) of cost functions, among all m/w's with edge costs from \(C \), "fishou-like" m/w has the worst PoA.