Bargaining

Thursday, September 30, 2021 1:53 PM

* Efficiency

A Symmetry: Shoperties

Desired

Y= { (24, 24) > 0 / 2424=1} D = (0,0) splitting a dollar eg.

*Folus on 2-player setting.

X = { set & possible outcomes & the burgaining }

D = Disagreement point it tengaining fails

U= {(V1, V2)= (4(Q2), 42(Q2)) / >CEX}, d= (4(P), 42(P))

utility tunctions as agets

Assumptions: U is convex, cospact. (U,d) is a burgaining instance

OGOOD Proporties & Bongaining

f(U, d) = V*

(0) \$ >d

Pareto - optisel

(if d= d2)

(SI)
$$(x_1,x_2)>0$$
, (B_1,B_2)
 $U'=\{(x_1,x_2)>0, (B_1,B_2)\}$
 $U'=\{(x_1,x_2)>0, (B_1,B_2)\}$

Suppose out,
$$(v_1^i, v_2^i) = s^{in}(0, a)$$

opr = $(v_1^i - d) \cdot (v_2^i - d) = (v_2^i - d) \cdot (v_1^i - d)$

But $(v_1^i, v_2^i) + (v_2^i, v_1^i)$ are opt v_1^i

if $v_1^i = v_2^i$ (: v_1^i

SC Exercise

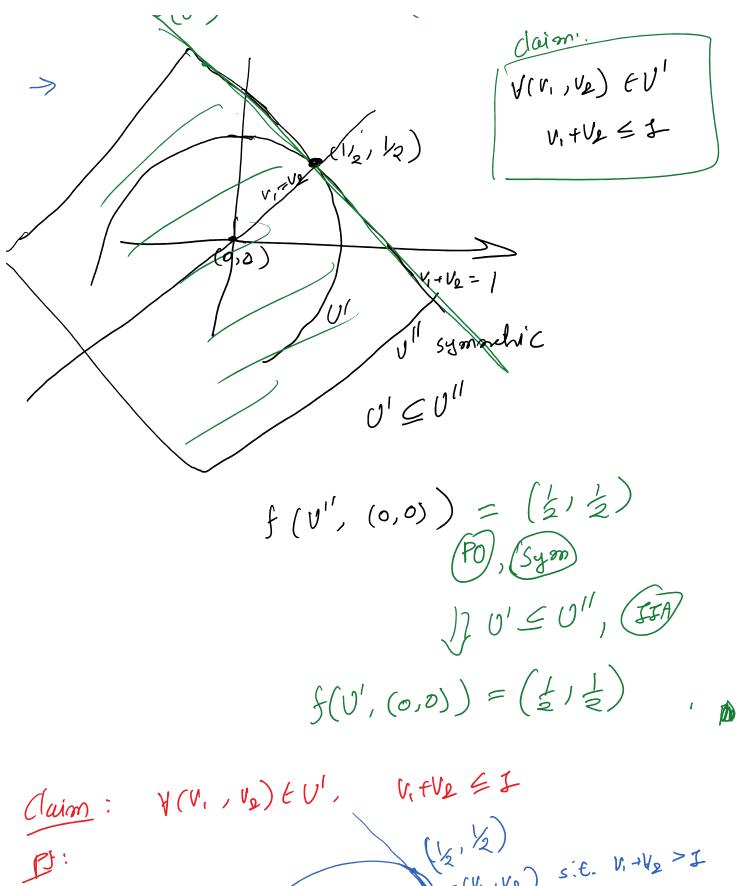
(i) $v_1^i = v_2^i \cdot (v_1^i, d) = s^{in}(0, d)$

Use $(s.1)$ to reduce to $(v_1^i, v_2^i) = s^{in}(0, d)$.

Use $(s.1)$ to reduce to $(v_1^i, v_2^i) = s^{in}(v_1^i, d)$

($(v_1^i, v_2^i) = s^{in}(v_1^i, d) = s^{in}(v_1^i, d)$

($(v_1^i, v_2^i) = s^{in}(v_1^i, d) = s^{in}(v_1^i, d)$


The suffices to show that $(v_1^i, v_2^i) = s^{in}(v_1^i, d)$

($(v_1^i, v_2^i) = s^{in}(v_1^i, d) = s^{in}(v_1^i, d)$

($(v_1^i, v_2^i) = s^{in}(v_1^i, d) = s^{in}(v_1^i, d)$

($(v_1^i, v_2^i) = s^{in}(v_1^i, d)$

($(v_1^i$

(1/2, 1/2) (V, , Ve) s.t. V, +V2 > I

t= (1-2) (ま,ま)ナ (1,12) $(t_1 - 0) (t_2 - 0) = ((1 - \lambda) \pm t \lambda V_1) \cdot ((1 - \lambda) \pm t \lambda V_2)$ $= (1-\lambda)^2 + \lambda (1-\lambda) (V_1 + V_2)$ $(1-1)^{2} + \frac{\lambda(1-1)}{2} + \frac{\lambda^{2}V_{1}V_{2}}{2}$ $\xi^{N}(v', Q) = (\frac{1}{2}, \frac{1}{5})$ 2000×10^{-1} 2000×10^{-1} 2000 $(t_1-0)(t_2-0) > (t_2-0)(t_2-0)$