Security Games

	Tuesday, September 28, 2021 1:42 PM		
	Detender (leader) n targets to detend = {1n} = [n]	Attacker (Follower)	
	n targets to detand = {1 ng = [n]		
	E = set & passible defence	Can only attack "one" target	
	Strategies	it [m].	
	25 {0,13 ^m e62		
	$e_{i=1}$ is target i is defended $= 0.0$.		
	20 0.W.		
	ri= reward it i is deforded >0 while attacked.	Si = reward it i was sot deforded	1
	while attacked.	Si = reward it i was sot deforded when holde attacked it >0)
	Ci = lost o.w. <0	$\xi_i = (ost o.\omega. \leq 0)$	
	Poure play (e, i),	ecz, rem	
	rie; + Ci (1-ei)	B; (1-ei) + &; e;	
	740, 170.4)		
>	Mixal (a. la = al) plant		

A Mixed (randopized) play
PED(E)

y E A ([n])

Detender's payoff =
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

O: Suppose, we fix y for the attacker Then what a is Bert for the steader joelepeabet B xis.

aiv!

ece ic(m)

ece ic(m)

combinatorial set

Combinatorial Robleon. **→ ♦**.

A ORD: detend gates or off m-gates k-police patrol.

E= {ec{0,13ⁿ} | Eei ≤ k} € $x \in \hat{y} = \{x \in [0,1]^n \mid \xi x' \leq k \}$

21= 28e.e; => Exi = 28e & ei = 48e 60tes | c(n) e= (ic(n)) = K

2 = { rothings of size = k}

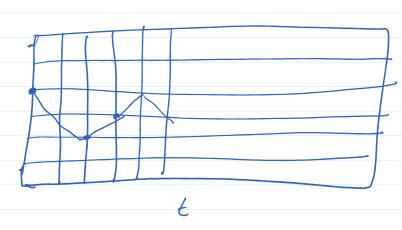
& Problem is the sax-weeight-subding

Petending hour n/w = (V, E)

p-resource

p

2 = Signs et of Vertices = k}


& Robbin is sex-weight vertex over

Lo can detend flight A -> flight B if destination & A = Source A B

Sp. ..., Som are all possible fearible subsets of

K-A.M. = werny pick k subsets that soxisizes the coverage.

Defend Ports / Forests for pouding

Goal: detend as assy targets as say times.

Theorem: It the DBR (*) problem can be solved in polynomial-time. Hen SE can be computed in poly-time.

PS: CS OG: YKEEN]

LPK DX: 8x xx + Cx (1-24)

Dual var. E. = SK (1-2K) + Ex 2/ = 3i(1-2i)+ =; 2i Vi+K ic[n] => x= Ele. G Vic [m] W ec-& - Coplex & exponential Ele =I 6 ete le = 0 Yebe. Dual prim: $\begin{cases} (3_k - s_i) y_i - v \\ s.t. \end{cases}$ $\begin{cases} (3_k - s_i) y_i - v \\ (x_k - q_k) - (x_k - q_k) \end{cases} = \begin{cases} (x_k - q_k) - (x_k - q_k) \\ (x_k - q_k) \end{cases} \begin{cases} (x_k - q_k) + (x_k - q_k) \\ (x_k - q_k) \end{cases} = \begin{cases} (x_k - q_k) - (x_k - q_k) \\ (x_k - q_k) \end{cases} \end{cases}$ Easy to q_k . DLPK: Vi+K Wi = Si - Zi Yetz, b = (e, w) = exposestially many! 7≥0 solve DLPK union Ellipsaid melled it I separation and cle Algaillan
Z=(v*, w*, y*) (osshaints DLPK check if Yetz $V^* \geq \langle e, w^* \rangle$ Separation hyporphone = v* fax (e, w*) 66-8

it $V^{\infty} \ge xux$ hun $\tau \in DUP_{K}$ polytope o.w. $e \in \mathcal{E}$ $e \in \mathcal{E}$ $f^{*} \ge xux$ (e, w^{*}) $e \in \mathcal{E}$ $f^{*} \ge xux$ (e, w^{*}) (e, w^{*}) (e